Archimedean property. If $a>0$ and $b>0$, then there exists $n \in \mathbb{N}$ such that $n \cdot a>b$.
\qquad and how large $b>0$ is, there
always is some $n \in \mathbb{N}$ such that $n \cdot a>b$."
Proof: (by Contradiction). Suppose that the Archimedean property foils: there exist $a>0$ and $b>0$ such that $n \cdot a \leq b$ for all $n \in \mathbb{N}$. This means that the set $S=\{n \cdot a: n \in \mathbb{N}\}$ is bounded from above by b. By the Completeness Axiom, there exists $S_{0}=\sup S$; the least upper bound of S. In particular, $S_{0} \leq b$. Moreover, $S_{0}-a<S_{0}$, so so -a cannot' be an upper bound for S, ie., there exists
 some $n \cdot a \in S$, with $n \in \mathbb{N}$ such that

$$
S_{0}-a<n_{\substack{n}}^{n} \leq S_{0}
$$

Therefore, $S_{0}<a+n \cdot a=(n+1) a \in S$. This contradicts the fact that s_{0} is an upper bound for S. Thus the Archimedean property holds.

Examples of sup and inf using Archimedean prop.

1) $S=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$ Bounded from below? Banded from dove? $=\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots\right\} \inf S=0$, $\operatorname{sip} S=1$.
-ma nt A : The set S is bounded from below by 0 , since $\frac{1}{n}>0$ for all $n \in \mathbb{N}$. by 1 , since $\frac{1}{n} \leq 1$ for all $n \in \mathbb{N}$.
The supremum of S is $\sup S=1_{1}^{n}$ because $\frac{1}{n} \leq 1$ for all $n \in \mathbb{N}$ and $\frac{1}{1}=1 \in S$. The infimum of S is inf $S=0$. Indued, $0<\frac{1}{n}$ for all $M \in \mathbb{N}$ (ie, 0 is a lower bound). To prove O is the largest lower bound for S, we argue by contradiction: suppose it is not; (e., suppose there exists $a>0$ which is a lower bound for S, that is, $0<a \leqslant \frac{1}{n}$ for all $n \in \mathbb{N}$. Take such $a>0$ and $b=1$, by the Archimedean property there exists $n_{0} \in \mathbb{N}$ such that $n_{0} a>b=1$, which contradicts the dove statement that $a \leq \frac{1}{n}$ for all $n \in \mathbb{N}$. This proves that inf $S=0$.
2) $S=\left\{\frac{n+1}{n^{2}}: n \in \mathbb{N}\right\} \begin{array}{r}\text { Bounded from below? Banded from dave? } \\ \quad \text { inf } S=0, \quad \operatorname{sop} S=1\end{array}$

For all $n \in \mathbb{N}, \quad 0<\frac{n+1}{n^{2}}=\frac{1}{n}+\frac{1}{n^{2}} \leq 1+1=2$
upper bound for S

Density of \mathbb{Q} in \mathbb{R}
Theorem: For all $a<b$ in \mathbb{R}, there exists $r \in \mathbb{Q}$ such that $a<r<b$.
Proof. We must show that there exist $m, n \in \mathbb{Z}, n>0$,
 such that $r=\frac{m}{n} \in(a, b)$, that is,

$$
a<\frac{m}{n}<b \quad \Longleftrightarrow \quad n \cdot a<m<n \cdot b
$$

Since $b-a>0$, by the Archimedean property (applied to $b-a$ and 1), there exists $n \in \mathbb{N}$ such that $n \cdot(b-a)>1$; that is, $n \cdot b-n \cdot a>1$.

By the Archimedean property, there exists $k \in \mathbb{N}$ such that $k>|a n|$ and $k>|b x|$; that is,

$$
-k<a n<b n<k
$$

Define $\mathbb{K}^{\prime}:=\{j \in \mathbb{Z}:-k \leq j \leq k\}$ and $\{j \in \mathbb{K}: a-n<j\}$ (om $=\mathbb{Z} \cap(-k, k)$ Both of there ore finite
$-k \quad l$
sets, so they educt minima and
maxima.
Let $m=\min \{j \in \mathbb{K} ; a \cdot n<j\}$. Than $-K<a \cdot n<m$ and $-k, m \in \mathbb{Z}$, so $(m-1) \in \mathbb{K}$; but $(m-1) \notin\{j \in E: a \cdot n<j\}$. Thus, $a \cdot n \geqslant m-1$, i.e. $m-1 \leq a \cdot n$. Put the imequelitios together:
(least ines. in previous page)

$$
a \cdot n<m \leq a \cdot n+1<b \cdot n
$$

which is what we needed, to conclude $r=\frac{m}{n} \in(a, b)$.

Infinities and the "extended" real line
So for, we here defined (via Axioms) the rel line \mathbb{R} $-_{\infty} \xrightarrow[0]{1} \overbrace{0}^{1}$
which is an ordered field and complete. (algeloraic otructive)

Completeren axiom ("no gaps")

It is often useful to consider $+\infty,-\infty$, and the "extended" real lime $\mathbb{R} \cup\{-\infty,+\infty\}$. Beware that the field structure (ie., addition and multiplication) do not extend to $\{ \pm \infty\}$; even though the order does:
"For all $a \in \mathbb{R},-\infty<a<+\infty$ ".
Accordingly, we may work with unbounded intervals:

$$
\begin{aligned}
& (-\infty, a)=\{x \in \mathbb{R}: x<a\} \\
& (-\infty, a]=\{x \in \mathbb{R}: x \leq a\} \\
& (a,+\infty)=\{x \in \mathbb{R}: x>a\} \\
& {[a,+\infty)=\{x \in \mathbb{R}: x \geqslant a\}} \\
& (-\infty,+\infty)=\mathbb{R}
\end{aligned}
$$

Note: intervals are always span at the infinite endpoint.
Example: For all $a, b \in \mathbb{R}$,

$$
\left\{\begin{array}{l}
\inf (a, b)=\inf (a, b]=\inf [a, b]=\inf [a, b)=a \\
\sup (a, b)=\sup (a, b]=\sup [a, b]=\sup [a, b)=b
\end{array}\right.
$$

$$
\begin{aligned}
& \text { en } \\
& \text { inf }(-\infty, a)=\inf (-\infty, a]=-\infty \\
& \sup (-\infty, a)=\operatorname{sip}(-\infty, a]=a \\
& \inf (a,+\infty)=\inf [a,+\infty)=a \\
& \operatorname{sip}(a,+\infty)=\sup [a,+\infty)=+\infty .
\end{aligned}
$$

Just like the above, we extend the definition of inf and sup to subsets of $\mathbb{R} \cup\{ \pm \infty\}$ by setting
inf $S:=-\infty$ if S is unbounded from below sup $S:=+\infty$ if S is unbounded from dove.

Example: $S=\left\{x \in \mathbb{R}: 1-x^{2} \geqslant 0\right.$ or $\left.x \geqslant 7\right\}$ le.,

sup $S=+\infty$, since S is unbounded from dare

$$
(\inf S=-1)
$$

