MAT 320/640

Archimedean property. If a >0 and b>0, then there exists NEN such that N.a.>b. "No matter how small a zo is, and how lorge 500 is, there always is some nEIN such that Na>6." "No matter how small a spoon is, and how lorge a bathtub is, eventually you can take all the water out using the spoon." Proof: (by Contradiction). Suppose that the Archimedean property fails: there exist a 70 and 670 such that N.a ≤ b for all MEN. This means that the set S={na: nEIN} is bounded from the set $D = q M.a : n \in INS$ is bounded from above by b. By the Completeness Axion, there exists $S_0 = Sup S$. The least upper bound of S. In porticular, $S_0 \leq b$. Moreover, $S_0 - a < S_0$, $S_0 = S_0 - a$ Counst be an upper bound for S. i.e., there exists naces $S_0 = S_0 = M.a \leq S_0$, with new $Marcolor = S_0 = M.a \leq S_0$ (M+L) $a \in S$. This contradicts the fact that $S_0 = a$ (M+L) $a \in S$. This contradicts the fact that S_0 is an upper bound for S. Thus the Archimedean property holds.

Examples of sup and inf using Archimedean prop. 1) $S = \{ 1 : n \in \mathbb{N} \}$ $= \{ 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots \}$ Bounded from below? Bounded from done? $inf S = 0, \quad sip S = 1$. A: The set S is bounded from below 0 1/1/5 1/2 1 by 0, since $\frac{1}{n} > 0$ for all $n \in \mathbb{N}$. 3 The set S is bounded from above by 1, since $1 \leq 1$ for all $n \in \mathbb{N}$. The supremum of S is $\sup S = 1$, because $\frac{1}{n} \leq 1$ for all $n \in \mathbb{N}$ and $4 - n \in S$ The radius of S for all MEN and $\underline{4} = 1 \in S$. The infimum of S is inf S=O Indied, OK for all MEN (i.e., Dis a dower bound). To move O is the lorgest lower bound for S, we argve by contradiction: suppose it is not; for S, we argve there exists a DO which is a lower bound ce., suppose there exists a DO which is a lower bound for S, that is, O<a <1 for all MEIN. Take such a >0 and b=1, by the Archimedean property there exists NEN such that $N_{i}a > b=1$, which contradicts the slove statement that $a \leq 1$ for all MEN. This proves that $\inf S = 0$. 2) $S = \{\frac{n+1}{n^2} : n \in \mathbb{N}\}$ Bounded from below? Bounded from done? inf S = 0, sup S = 1 yes For all MEN, $O < \frac{N+1}{N^2} = \frac{1}{N} + \frac{1}{N^2} \le 1 + 1 = 2$ lower bound for S upper bound for S

If n=1, $\frac{m+1}{n^2} = \frac{1+1}{1^2} = 2$. If n=1, $\frac{m+4}{n^2} = \frac{4+4}{4^2} = 2$. Sup S = 2Sup S = 0, because: $S = \frac{m+1}{n^2}$ included for S = 0, because: $S = \frac{m+1}{n^2}$ included for $S = \frac{10wer}{10}$ bound for SThen (by Archimmedian property) there thien (by Archimedian property) there would exist MEN such that ZneN: M+1 <a MHL <a, contradicting the M² assumption that h >0 is S a lower bound DrS. D Density of P in R Theorem: For all a < b in R, there exists v EQ such that a <r < b. (1) Proof we must show that a r bthere exist m, n $\in \mathbb{Z}$, n > 0, $\in \mathbb{Q}$ such that $V = \frac{M}{n} \in (a,b)$, that is, $a < \frac{m}{n} < b \iff M.a < m < n.b$ Since b-a > 0, by the Archimedean property (applied to b-a and 1), there exists ne N such that n. (b-a) > 1; that is, n.b - n.a > 1.

By the directionadea property, there exists KGW
such that
$$K \ge |an|$$
 and $K \ge |bu|$; that is,
 $-K \le an \le bn \le K$
Define $K := \{j \in \mathbb{Z} : -K \le j \le K\}$ and $(j \in \mathbb{X} : a.n. \le j\}$
 $K = \mathbb{Z} \cap \{K, N\}$ Both of these are finite
 $K = \mathbb{Z} \cap \{K, N\}$ Both of these are finite
 $K = \mathbb{Z} \cap \{K, N\}$ Both of these are finite
 $K = \mathbb{Z} \cap \{K, N\}$ Both of these are finite
 $K = \mathbb{Z} \cap \{K, N\}$ Both of these are finite
 $K = \mathbb{Z} \cap \{K, N\}$ Both of these are finite
 $K = \mathbb{Z} \cap \{K, N\}$ Both of these are finite
 $K = \mathbb{Z} \cap \{K, N\}$ Both of these are finite
 $K = \mathbb{Z} \cap \{K, N\}$ Both of these are finite
and $-K, m \in \mathbb{Z}$, so $(m-1) \in K$; but
 $(m-1) \notin \{j \in \mathbb{K} : a : n \le j\}$. Thus, $a : n \ge m-1$, i.e.
 $m-1 \le a : n$. But the inequalities together:
 $m-1 \le a : n$. But the inequalities together:
 $M = 4 \le a : n$. But the inequalities $M = M \in (a, b)$.
Which is what we needed, to conclude $V = M \in (a, b)$.
 \mathbb{Z}
 $Infinities and the "extended" real line
So for we have defined (via Axions) the vel line \mathbb{R}
 M is an ordered field and complete (or gaps)
 $(algebraic drive)$ $(al$$

It is often weeful to consider
$$+\infty, -\infty,$$

and the "extended real lone IR U(1- $\infty, +\infty$).
Bewore that the full structure (i.e., addition and
multiplication) do not extend to $\{\pm\infty\}$, even that
the order does:
"For all $\alpha \in \mathbb{R}$, $-\infty < \alpha < +\infty$."
Accordingly, we may work with unbounded intervals:
 $(-\infty, \alpha) = \{x \in \mathbb{R} : x < \alpha\}$ summing
 $(-\infty, \alpha) = \{x \in \mathbb{R} : x < \alpha\}$ summing
 $(\alpha, +\infty) = \{x \in \mathbb{R} : x > \alpha\}$ ore
 $(\alpha, +\infty) = \{x \in \mathbb{R} : x > \alpha\}$ ore
 $(-\infty, +\infty) = \{x \in \mathbb{R} : x > \alpha\}$ cloud
Note: instervals are always open at the informate
endpoint.
Example: For all $\alpha, b = inf[\alpha, b] = inf[\alpha, b] = \alpha$
 $(x, b) = xvp(\alpha, b] = inf[\alpha, b] = inf[\alpha, b] = b$

.

$$\begin{cases} \inf \left\{ \left(-\infty, \alpha \right) = \inf \left\{ \left(-\infty, \alpha \right) \right\} = -\infty \\ \sup \left(-\alpha, \alpha \right) = \sup \left(-\alpha, \alpha \right) = \alpha \\ \inf \left\{ \left(\alpha, +\infty \right) = \inf \left\{ \left[\alpha, +\infty \right) \right\} = \alpha \\ \sup \left(\alpha, +\infty \right) = \sup \left[\alpha, +\infty \right) = \alpha \\ \sup \left(\alpha, +\infty \right) = \sup \left[\alpha, +\infty \right) = \alpha \\ \sup \left(\alpha, +\infty \right) = \sup \left[\alpha, +\infty \right) = \alpha \\ \sup \left(\alpha, +\infty \right) = \sup \left[\alpha, +\infty \right] = \alpha \\ i \text{ wp } \left(\alpha, +\infty \right) = \sup \left[\alpha, +\infty \right] = \alpha \\ i \text{ wp } \left(\alpha, +\infty \right) = \sup \left[\alpha, +\infty \right] = \alpha \\ i \text{ wp } \left(\alpha, +\infty \right) = \sup \left[\alpha, +\infty \right] = \alpha \\ i \text{ wp } \left(\alpha, +\infty \right) = \sup \left[\alpha, +\infty \right] = \alpha \\ i \text{ wp } \left(\alpha, +\infty \right) = \sup \left[\alpha, +\infty \right] = \alpha \\ i \text{ wp } \left(\alpha, +\infty \right) = \sup \left[\alpha, +\infty \right] = \alpha \\ i \text{ wp } \left(\alpha, +\infty \right) = \sup \left[\alpha, +\infty \right] = \alpha \\ i \text{ wp } \left(\alpha, +\infty \right) = \sup \left[\alpha, +\infty \right] = \alpha \\ i \text{ wp } \left(\alpha, +\infty \right) = \sup \left[\alpha, +\infty \right] = \alpha \\ i \text{ wp } \left(\alpha, +\infty \right) = \sup \left[\alpha, +\infty \right] = \alpha \\ i \text{ wp } \left(\alpha, +\infty \right) = \sup \left[\alpha, +\infty \right] = \alpha \\ i \text{ wp } \left(\alpha, +\infty \right) = \sup \left[\alpha, +\infty \right] = \alpha \\ i \text{ wp } \left(\alpha, +\infty \right) = \sup \left[\alpha, +\infty \right] = \alpha \\ i \text{ wp } \left(\alpha, +\infty \right) = \sup \left[\alpha, +\infty \right] = \alpha \\ i \text{ wp } \left(\alpha, +\infty \right) = \sup \left[\alpha, +\infty \right] = \alpha \\ i \text{ wp } \left(\alpha, +\infty \right) = \sup \left[\alpha, +\infty \right] = \alpha \\ i \text{ wp } \left(\alpha, +\infty \right) = \sup \left[\alpha, +\infty \right] = \alpha \\ i \text{ wp } \left(\alpha, +\infty \right) = \sup \left[\alpha, +\infty \right] = \alpha \\ i \text{ wp } \left(\alpha, +\infty \right) = \sup \left[\alpha, +\infty \right] = \alpha \\ i \text{ wp } \left(\alpha, +\infty \right) = \sup \left[\alpha, +\infty \right] = \alpha \\ i \text{ wp } \left(\alpha, +\infty \right) = \sup \left[\alpha, +\infty \right] = \alpha \\ i \text{ wp } \left(\alpha, +\infty \right) = \sup \left[\alpha, +\infty \right] = \alpha \\ i \text{ wp } \left(\alpha, +\infty \right) = \sup \left[\alpha, +\infty \right] = \alpha \\ i \text{ wp } \left(\alpha, +\infty \right) = \max \\ i \text{ wp } \left(\alpha, +\infty \right) = \max \\ i \text{ wp } \left(\alpha, +\infty \right) = \max \\ i \text{ wp } \left(\alpha, +\infty \right) = \alpha \\ i \text$$