Example:
$$f_{n}: [0,1] \rightarrow R$$

 $f_{n}(x) = \begin{cases} n^{2}x & nf & x \in [0, \frac{1}{n}] \\ n^{2}(\frac{2}{n}-x) & \text{if } x \in [\frac{1}{n}, \frac{2}{n}] \\ 0 & \text{otherwise} \end{cases}$
 $f_{n} = 1$
 $f_{n} = 1$
 $f_{n} = 1$
 $f_{n}(x) = n$
 f

• But (finition has no convergent subsequence.
(not even pointwise convergent!)
Pt: Suppose, by contradiction, that
$$fn_{\kappa}(x) = sin(n_{\kappa}x)$$
 convergeo
pointwise on $[0,2\pi]$. Then for all $x \in [0,2\pi]$ are would have:
 $O \stackrel{()}{=} \lim_{\kappa \to \infty} (fn_{\kappa}(x) - fn_{\kappa n}(x))^2 \lim_{\kappa \to \infty} (sin(n_{\kappa n}x) - sin(n_{\kappa n}x))^2$
 $\chi_{-\infty} = \infty$ we only saw a special version of two in Ladre 24
By Lebesque's Dominated Convergence Thin
 $\lim_{\kappa \to \infty} \int_{0}^{2\pi} (sin(n_{\kappa}x) - sin(n_{\kappa n}x))^2 dx \stackrel{()}{=} \int_{0}^{2\pi} O dx = 0$.
However, $\int_{0}^{2\pi} (sin(n_{\kappa}x) - sin(n_{\kappa n}x))^2 dx = 2\pi$, which gives
the desired contradiction.
An additional property that ensures the existence of
convergent subsequence is:
Definition: A flowing $F = [f_{\lambda}:[a,b] - R: \lambda \in \Lambda]$ is called
equicontinuous if $H \ge 70$ $\exists \le 20$ s.t. for all $f_{\lambda} \in F$
 $|x-y| < \delta \implies |g_{\lambda}(k) - f_{\lambda}(y)| < \xi$.

Proposition: If
$$f_{n}: [a,b] \rightarrow R$$
 are continuous functions
that converge uniformly on $[a,b]$ to $f: [a,b] \rightarrow R$, then
 $F = \{f_{n}: [a,b] \rightarrow R: n \in N\}$ is equicontinuous.
P: Given $E = 0$, some $f_{n} \rightarrow f$ uniformly, $\exists N \in A$ s.t.
if $N \ge N$, then $|f_{n}(R) - f_{N}(R)| < \frac{E}{3}$ for all $x \in [a,b]$.
Recell continuous function on a closed interval are
uniformly continuous, hence, for each $1 \le i \le N$, $\exists f_{i} > 0$
s.t. $|x-y| < S: \implies |f_{i}(x) - f_{i}(y)| < \frac{E}{3}$.
Take $S = \min S_{i} > 0$. then if $1 \le i \le N$ and
 $|x-y| < S$, then $|f_{i}(R) - f_{i}(y)| < \frac{E}{3}$. If $M \ge N$, then
 $|f_{n}(R) - f_{n}(y)| \le |f_{n}(x) - f_{i}(x)| + |f_{N}(x) - f_{N}(y)| + |f_{N}(y) - f_{n}(y)|$
Triaggle imag. $< \frac{E}{3} < \frac{E}{3} < \frac{E}{3}$

Altogether, $|x-y| < \delta \implies |f_n(x) - f_n(y)| < \varepsilon$ for all $n \in \mathbb{N}$, i.e., $F = \{f_n\}$ is equicontinuous,

Arzelà-Ascoli Theorem. Let fn: [a,b]
$$\rightarrow i\mathbb{R}$$
 be a sequence
of functions which is uniformly bounded and equicontinuous.
Then there exists a subsequence fnx that converges
uniformly on [a,b] to f: [a,b] $\rightarrow i\mathbb{R}$.
P1: Let $D = \{d_{1}, d_{2}, d_{3}, \dots\} \subset [a,b]$ be a dense and
countable subset; e.g., $D = O \cap [a,b]$. Some (fn) is
uniformly bounded, say $|f_{n}(s)| \leq M$ for all xelait] and
new, all of the following are bounded sequence:
 $\left(f_{n}(d_{1})\right)_{n \in N}$, $\left(f_{n}(d_{2})\right)_{m \in N}$, ---
By the Bolizano Weierstress than, each of the above
(bounded) sequence $|f_{n}(d_{j})| \leq M$, has a convergent
subsequence. Let $(f_{1,k}(d_{i}))_{k \in N}$ be the convergent
subsequence. Let $(f_{1,k}(d_{i}))_{k \in N}$ be the convergent
of $(f_{n}(d_{i}))_{n \in N}$, and let ye be its limit:
 $f_{1,K}(d_{i}) \xrightarrow{K \to \infty} y_{1}$.
Note that $f_{1,K}(d_{i})$ is also bounded, so there is a
subsequence fa,k such that convergent
 $f_{2,K}(d_{i}) \xrightarrow{K \to \infty} y_{2}$

We claim that
$$(g_m)_{m\in\mathbb{N}}$$
 converges uniformly
on $[a,b]$. From results in Lecture 17, it is
enough to show that $(g_m)_{m\in\mathbb{N}}$ is uniformly Cauchy.
HERO BNENSI. $n_{im} \ge N$
 $|g_m(k) - g_m(k)| < \Sigma$, $\forall x \in [a,b]$

Since
$$F = \{f_n\}$$
 is equicontinuous, als $f = \{g_m\}$ is
equicontinuous (because $g \in F$). So, given $E > 0$,
there exists $S > 0$ s.t. for all $x, y \in [a, b]$, $m \in N$,
 $|x-y| < S \implies |g_m(x) - g_m(y)| < \frac{E}{3}$
Choose $J \in N$ longe enorgh so that $\{d_1, d_2, ..., d_J\}$
is such that $\forall x \in [a, b] = 1 \le j \le J$ with
 $|x-d_j| < S$.
Every $(g_m(d_j))_{m \in N}$ is convergent (to y_j) and hence
Cauchy, i.e. $\exists N, \in N$ s.t. $n, m \ge N_j$. Then
 $|g_m(d_j) - g_m(d_j)| < \frac{E}{3}$.

Let
$$N = \max_{1 \le j \le J} N_j$$
. Then, if $n, m \ge N$,
 $1 \le j \le J$ triangle imag.
 $\left| \Im(x) - \Im(x) \right| \le \left| \Im(x) - \Im(d_j) \right| + \left| \Im(d_j) - \Im(d_j) \right|$
 $< \frac{2}{3} = \frac{2}{3$

Where
$$dj$$
, $1 \leq j \leq J$ is such that $|x - dj| < S$.
Thus $(gon)_m$ is uniformly Cauchy and hence it has
a muiformly convergent subsequence.
What is the least area?
 $f = \int_{-1}^{1} \int$

A: No: there is no such $\beta \in \mathcal{F}$.

For any $f \in F$, A(f) > 0. $\forall n \in N$, consider $f_n(x) = x^{2n}$. (hearly $f_n \in F$. $A(f_n) = \int_{-1}^{1} x^{2n} dx = \frac{x^{2n+1}}{2n+1} \Big|_{-1}^{1} = \frac{2}{2n+1} \frac{n^{2}+\infty}{2n+1} 0$.

So if
$$f_0 \in F$$
 existed, $A(f_0) \leq A(f_u) = \frac{2}{2n+1}$
so $A(f_0) = 0$. This contradiction implies that no
such for F exists.

RmK: F is not equicontinuous.
Indeed, if F was equicantinuous, then
$$\{f_{N}(x) = x^{2n}\}$$

Would also be equicantinuous; and hence by $4rzek_{-}$
Ascolu, it would have a unif. com. subsequence.

Let
$$\{fn_{k}\}\ be a subsequence of $\{fn_{1}\}\ \text{that convergence}$
invition M_{2} ; say $fn_{k} \longrightarrow \phi_{C}: [-1, \overline{1}] \longrightarrow [0, \overline{1}]$.
 $A(\phi_{C}) = \int_{-1}^{1} \phi_{C}(x) dx = \int_{-1}^{1} \lim_{k \to \infty} fn_{k}(x) dx = \lim_{k \to \infty} \int_{-1}^{1} fn_{k}(x) dx$
 $= \lim_{k \to \infty} A(fn_{k}) \stackrel{@}{=} M_{C}.$
So we found a continuous function $\phi_{C}: [-1, \overline{1}] \rightarrow [0, \overline{1}]$
with $\phi_{C}(-1) = 1 = \phi_{C}(1)$ which attains the inf.;
 $1.e._{1}$ the "area under" ϕ_{C} is the least possible
nunong the areas under functions $f_{C}.$
 $Rink:$ what does $\phi_{C}: [-1, \overline{1}] \rightarrow [0, \overline{1}]$ lack like?
 $\int_{-1}^{1} \int_{0}^{1} \int_{$$$