Recall (from Lecture 8):
Bolzano-Weierstross Thu: Every bounded sequence $\left(S_{n}\right)_{n \in \mathbb{N}}$ of real numbers has a convergent subsequence.

Q: Is there a version of this fact that applies to sequenus $\left(f_{n}\right)_{n \in \mathbb{N}}$ of functions?

A: Yes: Arzelà-Ascoli Theorem.
r
What notion of boundedness do we need?

$$
\left(f_{n}\right)_{n \in \mathbb{N}} \quad f_{n}:[a, b] \rightarrow \mathbb{R}
$$

1) pointwise bounded if $\forall n \in \mathbb{N} \exists M_{n}>0$ such that $\left|f_{n}(x)\right| \leq M_{n}$; for all $x \in[a, b]$
2) uniformly bounded if $\exists M>0$ such that $\left|f_{n}(x)\right| \leq M$ for all $n \in \mathbb{N}$ and $x \in[a, b]$.

Clearly, 2) \Rightarrow 1). Let us show that 1) $\Rightarrow 2$)

Example: $f_{n}:[0,1] \rightarrow \mathbb{R}$

$$
f_{n}(x)=\left\{\begin{array}{lll}
n^{2} x & \text { if } & x \in\left[0, \frac{1}{n}\right] \\
n^{2}\left(\frac{2}{n}-x\right) & \text { if } x \in\left[\frac{1}{n}, \frac{2}{n}\right] \\
0 & \text { otherwise }
\end{array}\right.
$$

Pointuise bounded

$$
\left|f_{n}(x)\right| \leq n
$$

But $\left(f_{n}\right)_{n \in N}$ is not uniformly bounded $f_{n}\left(\frac{1}{n}\right)=n$ and $\forall M>0 \exists n \in \mathbb{N}$ s.t. $\operatorname{fn}\left(\frac{1}{n}\right)=n>M$ hance $\left|f_{n}(x)\right| \leq M$ is vacated for $x=\frac{1}{n}$.

However even $\left(f_{n}\right)$ is uniformly bounded, that is, even if $\left|f_{u}(x)\right| \leq M, \forall x \in[a, b], n \in \mathbb{N}$, it night not have any convergent subsequence:
Example: $f_{n}:[0,2 \pi] \rightarrow \mathbb{R}, \quad f_{n}(x)=\sin (n x)$

- Clearly $\left(f_{n}\right)_{n \in N}$ is uniformly bounded:

$$
\left|f_{n}(x)\right|=|\sin (n x)| \leq 1
$$

- But (far noN has no convergent subsequence. (not even pointwise convergent!)
Pl: Suppose, by contradiction, that $f n_{k}(x)=\sin \left(n_{k} x\right)$ converges pointwise on $[0,2 \pi]$. Then for all $x \in[0,2 \pi]$ we would have:
$O \stackrel{(E)}{=} \lim _{k \rightarrow \infty}\left(f n_{k}(x)-f n_{k+1}(x)\right)^{2}=\lim _{k \rightarrow \infty}\left(\sin \left(n_{k} x\right)-\sin \left(n_{k+1} x\right)\right)^{2}$ we only saw a special version of this in Ledure 24
By Lebesgue's Dominated Convergence Tum

$$
\lim _{k \rightarrow \infty} \int_{0}^{2 \pi}\left(\sin \left(n_{k} x\right)-\sin \left(n_{k+1} x\right)\right)^{2} d x \stackrel{\otimes}{=} \int_{0}^{2 \pi} 0 d x=0
$$

However, $\quad \int_{0}^{2 \pi}\left(\sin \left(n_{k} x\right)-\sin \left(n_{k+1} x\right)\right)^{2} d x=2 \pi$, which gives the desired contradiction.

An additional property that ensures the existence of convergent subsequences is:
Definition: A family $F=\left\{f_{\lambda}:[a, b] \rightarrow R: \lambda \in A\right\}$ is called equicontinuors if $\forall \varepsilon>0 \quad \exists \delta>0$ s.t. for all $f_{\lambda} \in \mathcal{F}$

$$
|x-y|<\delta \Rightarrow\left|f_{\lambda}(x)-f_{\lambda}(y)\right|<\varepsilon
$$

Proposition: If $f_{n}:[a, b] \rightarrow \mathbb{R}$ are continuous functions that converge uniformly $a_{n}[a, b]$ to $f:[a, b] \rightarrow \mathbb{R}$, then $F=\left\{f_{n}:[a, b] \rightarrow \mathbb{R}: n \in \mathbb{N}\right\}$ is equicontincous.
Pf: Given $\varepsilon>0$, since $f u \rightarrow f$ uniformly, $\exists N \in \mathbb{N}$ sit. if $n \geq N$, then $\left|f_{n}(x)-f_{N}(x)\right|<\frac{\varepsilon}{3}$ for all $x \in[a, b]$. Recall conctimasus function on a closed interval are uniformly continues, hence, for each $1 \leq i \leq N, \exists \delta_{i}>0$ s.t. $|x-y|<\delta_{i} \Longrightarrow\left|f_{i}(x)-f_{i}(y)\right|<\frac{\varepsilon}{3}$.

Take $\delta=\min _{1 \leq i \leq N} \delta_{i}>0$. Then of $1 \leq i \leq N$ and $|x-y|<\delta$, then $\left|f_{i}(x)-f_{i}(y)\right|<\frac{\varepsilon}{3}$. If $n \geqslant N$, then

$$
\begin{aligned}
\left|f_{n}(x)-f_{n}(y)\right| & \leq \underbrace{\left|f_{n}(x)-f_{N}(x)\right|}_{\text {Triougle ineq. }}+\underbrace{\left|f_{N}(x)-f_{N}(y)\right|}_{<\frac{\varepsilon}{3}}+\underbrace{\left|f_{N}(y)-f_{n}(y)\right|}_{<\frac{\varepsilon}{3}} \\
& <\varepsilon .
\end{aligned}
$$

Altogether, $|x-y|<\delta \Longrightarrow\left|f_{n}(x)-f_{n}(y)\right|<\varepsilon$ for all $n \in \mathbb{N}$, ie., $\mathcal{F}=\left\{f_{n}\right\}$ is equicontinuous,

Arzelà-Ascoli Theorem. Let $f_{n}:[a, b] \rightarrow \mathbb{R}$ be a sequence of functions which is uniformly bounded and equicontinuous. Then there exists a subsequence $f_{n_{k}}$ that converges uniformly on $[a, b]$ to $f:[a, b] \rightarrow \mathbb{R}$.

Pf: Let $D=\left\{d_{1}, d_{2}, d_{3}, \ldots\right\} \subset[a, b]$ be a dense and countable subset; e.g., $D=\mathbb{Q} \cap[a, b]$. Since $\left(f_{n}\right)$ is uniformly bounded, say $\left|f_{n}(x)\right| \leq M$ for all $x \in[a, b]$ and $n \in \mathbb{N}$, all of the following are bounded sequences:

$$
\left(f_{n}\left(d_{1}\right)\right)_{n \in \mathbb{N}}, \quad\left(f_{n}\left(d_{2}\right)\right)_{n \in N}, \ldots
$$

By the Bolzano- Weierstrass Thu, each of the above (bounded) sequences $\left|f_{n}\left(d_{j}\right)\right| \leq M$, has a convergent subsequence. Let $\left(f_{1, k}\left(d_{1}\right)\right)_{k \in N}$ be the convergent subsequence of $\left(f_{n}\left(d_{1}\right)\right)_{n \in N}$, and let y_{1} be its limit:

$$
f_{1, k}\left(d_{1}\right) \xrightarrow{k \rightarrow \infty} y_{1}
$$

Note that $f_{1, k}\left(d_{2}\right)$ is also bounded, so there is a subsequence $f_{2, k}$ such that converges:

$$
f_{2, k}\left(d_{2}\right) \xrightarrow{k \rightarrow \infty} y_{2}
$$

Continuing in this way, taking subsequences, we get:

such that $\left(f_{m, k}\right)_{k \in \mathbb{N}}$ is a subsequence of $\left(f_{m-1, k}\right)_{k \in \mathbb{N}}$; if $j \leq m$ then $f_{m, k}\left(d_{j}\right) \longrightarrow y_{j} \quad$ as $k \rightarrow \infty$. Choose $k(m) \geqslant m$ large enough so that if

$$
j \leq m, \quad k(m) \leq k \quad \Longrightarrow \quad\left|f_{m_{1 k}}\left(d_{j}\right)-j j\right|<\frac{1}{m}
$$

The "superdiogonal" subsequence

$$
g_{m}(x):=f_{m, k(m)}(x)
$$

Converges to a limit at every $d_{j} \in D_{i}$ namely

$$
g_{m}\left(d_{j}\right) \xrightarrow{m \rightarrow \infty} y_{j}
$$

We claim that $\left(g_{m}\right)_{m \in \mathbb{N}}$ converges uniformly on [a,b]. From results in Lecture 17, it is enough to show that $\left(g_{m}\right)_{m \in N}$ is uniformly Cauchy.

$$
\begin{array}{ll}
\forall \varepsilon>0 \quad \exists N \in \mathbb{N} \text { s.t. } & n_{1} m \geqslant N \\
\left|g_{m}(x)-g_{m}(x)\right|<\varepsilon, & \forall x \in[a, b]
\end{array}
$$

Since $\mathcal{F}=\left\{f_{n}\right\}$ is equicontinuovs, a lo $\}=\left\{g_{m}\right\}$ is equicontinuous (because $g \subset \mathcal{F}$). So, given $\varepsilon>0$, there exists $\delta>0$ s.t. for all $x, y \in[a, b], m \in N$,

$$
|x-y|<\delta \stackrel{(1)}{\Longrightarrow}\left|g_{m}(x)-g_{m}(y)\right|<\frac{\varepsilon}{3}
$$

Choose $J \in \mathbb{N}$ longe enough so that $\left\{d_{1}, d_{2}, \ldots, d_{J}\right\}$ is such that $\forall x \in[a, b] \quad \exists 1 \leq j \leq J$ with $\left|x-d_{j}\right|<\delta$.

Every $\left(g_{m}\left(d_{j}\right)\right)_{m \in \mathbb{N}}$ is convergent (to $\left.g_{j}\right)$ and hence Cauchy, is. $\exists N_{j} \in N$ s.t. $n, m \geqslant N_{j}$ (2) then
(2)

$$
\left|g_{n}\left(d_{j}\right)-g_{m}\left(d_{j}\right)\right|^{2}<\frac{\varepsilon}{3} .
$$

Let $N=\max _{1 \leq j \leq J} N_{j}$, Them, if $n, m \geqslant N$,

$$
\begin{array}{r}
1 \leq j \leq J \\
\left|g_{n}(x)-g_{m}(x)\right| \leq \underbrace{\mid(6)}_{<\varepsilon / 3} \underbrace{\left|g_{n}(x)-g_{n}\left(d_{j}\right)\right|}_{<\varepsilon / 3}+\underbrace{\left|g_{n}\left(d_{j}\right)-g_{m}\left(d_{j}\right)\right|}_{<\varepsilon / 3} \\
+\underbrace{\mid g_{m}}_{m m\left(d_{j}\right)-g_{n}(x) \mid}<\varepsilon .
\end{array}
$$

where $d_{j}, 1 \leq j \leq J$ is such that $\left|x-d_{j}\right|<\delta$.
Thus (gan) is uniformly Cauchy and hence it has a uniformly convergent subsequence.

What is the least area? "Calculus of Variations"

Q. Does there exist $f_{0} \in \mathbb{\sim}$ s.t. $A(f) \geqslant A\left(f_{0}\right)$ for all $f \in F$?

A: No: there is mu such $f \in \mathcal{F}$.
For any $f \in F, \quad A(f)>0$.
$\forall n \in \mathbb{N}$, consider $f_{n}(x)=x^{2 n}$. Clearly $f_{n} \in F$.

$$
A(f n)=\int_{-1}^{1} x^{2 n} d x=\left.\frac{x^{2 n+1}}{2 n+1}\right|_{-1} ^{1}=\frac{2}{2 n+1} \xrightarrow{n^{4}+\infty} 0
$$

So if $f_{0} \in F$ existed, $A\left(f_{0}\right) \leq A\left(f_{u}\right)=\frac{2}{2 n+1}$ so $A\left(f_{0}\right)=0$. This contradiction implies that no such $f_{0} \in F$ exists.

Rmk: F is not equicontinuous.
Indeed, if F was equicontinuas, then $\left\{f n(x)=x^{2 n}\right\}$ would also be equicontinuors; and hence by trzelaAscots, it would have a unif. conc. subsequence.

Q: Is there a fix?
$A^{\prime}: Y_{\text {es: }}$ consider the following subclass of F :

$$
\left.\begin{array}{l}
F_{c}=\{f:[-1,1] \rightarrow[0,1] ; f(-1)=1=f(1) \\
\\
\qquad \begin{array}{l}
|f(x)-f(y)| \leq c|x-y|, \forall x, y \in[-1,1)
\end{array} \\
N_{0} t e: \forall c>0, F_{c} \nsubseteq F \quad \text { Lipschitz }
\end{array}\right\}
$$

Claim: \mathbb{F}_{c} is equicontimuors.
$\forall \varepsilon>0$, let $\delta=\varepsilon / c$. Then if $x, y \in[-1,1]$

$$
|x-y|<\delta \Rightarrow|f(x)-f(y)| \leq c|x-j|<c \cdot \delta=\varepsilon
$$

Clearly, F_{C} is uniformly bounded:

$$
|f(x)| \leq 1 \quad \forall x \in[-1,1], \quad \forall f \in \mathbb{F}_{c}
$$

By Arzela'-Ascoli, any sequence of functions in F_{c} has a subsequence that converges uniformly on $[-1,1]$.

$$
\text { Let } \mu_{c}=\inf \left\{A(f): f \in \mathcal{F}_{c}\right\}
$$

$$
\int_{\pi} \frac{\mu_{c} \mu_{c}+1 / n}{\text { - non-empty }}
$$

$$
\begin{equation*}
\forall n \in \mathbb{N}, \exists f_{n} \in \mathbb{F}_{c} \quad \text { s.t. } \tag{*}
\end{equation*}
$$

- Mon-emprty from below by 0 .

Let $\left\{f n_{k}\right\}$ be a subsequence of $\left\{f_{n}\right\}$ that converges uniformly; say $f_{n_{k}} \longrightarrow \phi_{c}:[-1,1] \rightarrow[0,1]$.

$$
\begin{aligned}
A\left(\phi_{c}\right) & =\int_{-1}^{1} \phi_{c}(x) d x=\int_{-1}^{1} \lim _{k \rightarrow \infty} f_{n_{k}}(x) d x=\lim _{k \rightarrow \infty} \int_{-1}^{1} f_{n_{k}}(x) d x \\
& =\lim _{k \rightarrow \infty} A\left(f_{n_{k}}\right) \stackrel{\otimes}{=} \mu_{c} .
\end{aligned}
$$

So we found a continues function $\phi_{c}:[-1,1] \rightarrow[0,1]$ with $\phi_{c}(-1)=1=\phi_{c}(1)$ which attains the inf.; (.e.) the "area under" ϕ_{c} is the least possible among the areas under functions in \mathcal{F}_{c}.

Rok: What does $\phi_{c}:[-1,1] \rightarrow[0,1]$ look like?

$$
\begin{aligned}
& \phi_{1}(x)=|x| \\
& \left(\mu_{1}=1\right) .
\end{aligned}
$$

