Exercise Session

1) Let $f(x)=|x|$ for $x \in \mathbb{R}$. Is there a power series Manx x^{n} such that $f(x)=\sum a_{n} x^{n}$ for all $x \in(-1,1)$?
2) Use the fact that $e^{x}=\sum_{n=0}^{+\infty} \frac{x^{n}}{n!}$ for all $x \in \mathbb{R}$ to:
\angle Proved in
a) Express $f(x)=e^{-x^{2}}$ as a power series centered et $x_{0}=0$.
b) Express $F(x)=\int_{0}^{x} e^{-t^{2}} d t$ as a power series centered at $x_{0}=0$.
3) Prove that $|\cos x-\cos y| \leq|x-y|$ for all $x, y \in \mathbb{R}$.
4) Suppose $f: R \rightarrow R$ satisfies $|f(x)-f(y)| \leq(x-y)^{2}$ for all $x, y \in \mathbb{R}$. Prove that f is a constant function.
5) Prove that if $f(x)$ is differentiable at $x=x_{0}$, then

$$
f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}-h\right)}{2 h}
$$

6) $\operatorname{HW} 4$ a), d)
a) $\sum_{n=1}^{+\infty} 3 n^{2} e^{-n^{3}} \longrightarrow$ Integral teat (see solutions!) \rightarrow Ratio test Root test
$\limsup _{n \rightarrow \infty}\left|\frac{a_{n}+1}{a_{n}}\right|<1 \Rightarrow \sum a_{n} \begin{gathered}\text { converges. } \\ \text { (absolutely) }\end{gathered}$

$$
\begin{aligned}
& a_{n}=3 n^{2} \cdot e^{-n^{3}}, \quad a_{n+1}=3(n+1)^{2} \cdot e^{-(n+1)^{3}}=n^{3}+3 n^{2}+3 n+1 \\
& \left|\frac{a_{n+1}}{a_{n}}\right| \stackrel{\downarrow}{=} \frac{3(n+1)^{2} \cdot e^{-(n+1)^{3}}}{3 n^{2} \cdot e^{-n^{3}}}=\left(\frac{n+1}{n}\right)^{2} e^{-(n+1)^{3}+n^{3}} \\
& =\underbrace{\left(1+\frac{1}{n}\right)^{2}}_{\downarrow} \cdot \underbrace{e^{-3 n^{2}-3 n-1}}_{\substack{~}} \xrightarrow{n \rightarrow+\infty} 0 .<1
\end{aligned}
$$

Absolutely $b / c \quad\left|a_{n}\right|=a_{n}>0$.
d) $\sum_{n=1}^{+\infty}\left[\sin \left(\frac{n \pi}{7}\right)\right]^{n} \longleftarrow$ suggests using Root trot
$\limsup \left|a_{n}\right|^{1 / n}=\limsup \left|\sin \left(\frac{n \pi}{7}\right)\right|=$ "Oorgeot subsequantiol $\limsup _{n \rightarrow \infty}\left|a_{n}\right|^{n}=\limsup _{n \rightarrow \infty}\left|\sin \left(\frac{n \pi}{7}\right)\right|=$ limit of $\left(\left\lvert\, \sin \left(\frac{n \pi}{7}\right)_{n \geqslant 1}\right.\right.$, $\left(\left\lvert\, \sin \left(\frac{n \pi}{7}\right)\right.\right)_{n \geqslant 1} \lim _{n \rightarrow \infty}\left|\sin \frac{n \pi}{7}\right|$ D.N.E.

There ore 4 different (1

Thus, $\quad \limsup _{n \rightarrow \infty}\left|\sin \left(\frac{n \pi}{7}\right)\right|=\cos \left(\frac{\pi}{14}\right)<1$
Root terr
\Rightarrow Series converges absolutely.
2) Use the fact that $e^{x}=\sum_{n=0}^{+\infty} \frac{x^{n}}{n!}$ for all $x \in \mathbb{R}$ to: Proved in
a) Express $f(x)=e^{-x^{2}}$ as a power series centered et $x_{0}=0$. Lecture 21
b) Express $F(x)=\int_{0}^{x} e^{-t^{2}} d t$ as a power series centered $d x x_{0}=0$.
a) " $e^{y}=\sum_{n=0}^{+\infty} \frac{y^{n}}{n!}$ and set $y=-x^{2}$

$$
f(x)=e^{\left(-x^{2}\right)}=\sum_{n=0}^{+\infty} \frac{\left(-x^{2}\right)^{n}}{n!}=\sum_{n=0}^{+\infty} \frac{(-1)^{n} x^{2 n}}{n!}
$$

Rodivs of convergence:

$$
R=+\infty
$$

b)

$$
=\sum_{n=0}^{+\infty} \frac{(-1)^{n} \cdot x^{2 n+1}}{n!(2 n+1)}
$$

(Lecture 18)

1) Let $f(x)=|x|$ for $x \in \mathbb{R}$. Is there a power series $\sum a_{n} x^{n}$ such that $f(x)=\sum a_{n} x^{n}$ for all $x \in(-1,1)$?

Recall $f(x)=|x|$ is not differentiable at $x_{0}=0$:

$$
f^{\prime}(x)=\left\{\begin{array}{cl}
1 & \text { if } x>0 \\
-1 & \text { if } x<0
\end{array}\right.
$$

However, a power series $\sum \alpha_{n} x^{n}$ with radius of convergence $R>0$ is always differentiable in $(-R, R)$, with derivative $\sum n \cdot a_{n} \cdot x^{n-1}$. Therefore $f(x)=|x|$ cannot be written as $\sum a_{n} x^{n}$ in any neighborhood of $x_{0}=0$, because it would then be differentiable at $x_{0}=0$.

Remark:

not continuous at $X_{0}=1$

R is contionous at $x_{0}=1$.
(even difflecentioble!)

Thu: $\left(f_{n}\right)$ cont., $f_{u} \overrightarrow{\text { vain. }} f \Rightarrow f$ is cont.
4) Suppose $f: R \rightarrow \mathbb{R}$ satisfies $|f(x)-f(y)| \stackrel{*}{\leq}(x-y)^{2}$ for all $x_{1}, \in \mathbb{R}$. Prove that f is a constant function.

$$
\begin{aligned}
f^{\prime}\left(x_{0}\right) \mid & =\lim _{x \rightarrow x_{0}}\left|\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}\right|=\lim _{x \rightarrow x_{0}} \frac{\left|f(x)-f\left(k_{0}\right)\right|}{\left|x-x_{0}\right|} \leq \\
& \leq \lim _{x \rightarrow x_{0}} \frac{\left(x-x_{0}\right)^{2}}{\left|x-x_{0}\right|}=\lim _{x \rightarrow x_{0}} \frac{\left|x-x_{0}\right|^{2}}{\left|x-x_{0}\right|}=0 .
\end{aligned}
$$

So $f^{\prime} \equiv 0$ and hence $f(x)=$ constant.
5) Prove that if $f(x)$ is differentiable at $x=x_{0}$, then

$$
f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}-h\right)}{2 h}
$$

Def: $f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}$
Lemme: $f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$
Pf: Use substitution $x=x_{0}+h: \quad x \rightarrow x_{0} \rightleftarrows h \rightarrow 0$

$$
\begin{gathered}
h=x-x_{0} \\
\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} .
\end{gathered}
$$

Forward difference"

$$
\lim _{h \rightarrow 0} \frac{f^{(\text {forward })}\left(k_{0}+h\right)-f\left(x_{0}-h\right)^{(\text {belkwerh })}}{2 h}
$$

$$
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)+f\left(x_{0}\right)-f\left(x_{0}-h\right)}{2 h}=
$$

$$
=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{2 h}+\frac{f\left(x_{0}\right)-f\left(x_{0}-h\right)}{2 h}
$$

$$
\begin{aligned}
& =\frac{1}{2} \underbrace{\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}}_{f^{\prime}\left(x_{0}\right)}+\frac{1}{2} \lim _{h \rightarrow 0} \frac{f\left(x_{0}\right)-f\left(x_{0}-h\right)}{h} \\
& =\frac{1}{2} f^{\prime}\left(x_{0}\right)+\frac{1}{2} f^{\prime}\left(x_{0}\right) \\
& \cdots=\lim _{h \rightarrow 0} \frac{f(y+h)-f(y)}{h}=f^{\prime}\left(x_{0}\right) \\
& =f^{\prime}\left(x_{0}\right) \text {. }
\end{aligned}
$$

3) Prove that $|\cos x-\cos y| \leq|x-y|$ for all $x, y \in \mathbb{R}$.

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)=\cos x$. Recall that $f(x)$ is differentiable at every $x \in \mathbb{R}$ and $f^{\prime}(x)=-\sin x$. Given $x, y \in \mathbb{R}$, se $y<x$, we apply the

Mean Valve Theorem to $f:[y, x] \rightarrow \mathbb{R}$; and obtain:

$$
f(x)-f(y)=f^{\prime}(z) \cdot(x-y)
$$

for some $z \in(y, x)$, that is:

$$
\cos x-\cos y=(-\sin z)(x-y)
$$

Taking absolute values, we find:

$$
|\cos x-\cos y|=\underbrace{|-\sin z|}_{\leq 1}|x-y| \leq|x-y| .
$$

