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TaylorSe
From past lectures : we may define functions via power series :

f :(- I.RF-sir-R-fs.p-limsuplo.nl
"

ha

" radius of convergence
"

too

flx)= [ anxn
n=o a [

so •

(✗-✗Ñ, ✗0--0✓ "

centered at Xo -0
"

What's the relation between (a) ⇐ ☐

and fled ?
"

A- :
"

from Lecture 18
,
we may differentiate term - by- term :

no: f G) = É aux
"

=⑨ta1X+azE+a> ✗3+4×4 . . .

M=0

to I 1 d d d
a- 1 : L' G) = [ man . ✗

n-1

= ⑨+ 2azX -1393×2+44×7 . . .
N=1

I1
to n-z t d L

k=z : f
"

(x) = Eh-ln-DAiX-2a@t3.2asXt4.3.a,×?- .
a-2

It d L d

By induction , we arrive et : i i ; ; ;

to

HE :{
"

A) = { n.lu - 1) . - . - (n- +1) - an .×
" "

n=k



If we compute the above at ✗ = 0 ,
the result is

the term with n=k
,
since all other terms roush :

n

1%1=1*101 = n.lu -s) - - - fu -ftp.an-n ! . an

=

f.%f%=°thus : f'
"'
6) = n ! - an i. e. an =

_n!
This motivates defining the following

Def: The Taylor Series of flx) centered at ✗=xo

is ÉEk(✗-%)? The r¥r of
a- o

n !

order n for this Taylor series is

Rnlx)= ft) - É(✗- xD!
k=o

K

-

fix)=É cx-x.in ⇐ him Rnlx)=o
⇐ o

k ! n→o

-
the function f is equal
to its Taylor series at ×.



Tajlorsthm .

Let f :(a.b) → IR
,

where - a sacbe + a.

Suppose the nth derivative f
" exists for all ✗ c- lab) .

Then
, for all ✗ =/ Xo

,

there exists
g

between ✗ audios . f. :

Rnlx) - fIf¥(×- xD
"

↳ ItRemainder of Xo y ✗

order on for the
Taylor series of flx)
Tcentered at ✗ =Xo

Proof. Fix ✗ =/ Xo and n> 1 .

Let M be the solution to

fix)=É lx-x.ie + M.lu?,-*T- ④
✗=o

K !

④ e-
i M=µ¥y(fled - É 8*1×07

k-ok.TK-xo
Then it suffices to show that f "Yy)=M for some

y between % and × '

Rollés,thgY→¥toDefine g:(abt → R as

$
0114--0161) - -follows: l¥→.



Mlt - xD
"

glt-I-E.lt#Y-lt-x.Y+-u.-flt1Noteg(xo)--0andg*(xo)--ofor all Ken-1
.

Moreover gal -0 by # .

By Rolle 's thin , there
exists is between ✗ and xo×
such that g'(a) =o . FYI
since g

'
vanishes at t=xs ⑤

and t.to , by Rolle 's Thm (again), there exists Xz

between xo and X1 such that g
" /✗a) =o . Repeated

applications of Rolle 's thin produce a finite sequence

✗
1 , Xz , ✗3, Xq . - - -

,
✗in

such that g 1×+1=0
.

At Ken
,
we get g'

"

(a) = 0
.

But we have

that g"Yt)=M - f. %) , so vanishing et t - in

means that 0--84×4 = M - f
" /xn) , ie,

f
"
/xn) __M .

Take y=✗n .

☐



Corollary: Let f :(a.b) → IR
,

where - a sack c- + a.

Suppose all derivatives f
" exist

, for ell n>1 and ✗ c- (ab)
,
and

/ f"'t) / E C for all m >1 and ✗ c- lab) . Then

tin Rnlx)=O for all ✗ c- (ab)
.

n→• # Remainder of order n
in Taylor series of ft)
centered at Xo c- lab) too

a- ☐

cx-x.ggIn particular, in this case
, f.G) = [

Proof: By Taylor 's Thin, we have that ltn> 1 Fyn between

✗ and Xo such that Rnk) - fÑ¥(✗- xD? Since

/ f"'t) / EC ,
we have

0s /Ruth = !{ Ix -H " s C- lx-x.ir o

n !

since him l*×
= 0 , and hence km Rt) = 0 .

n - ao n ! n- a

☐

This Corollary allows us
to find many examples

of functions that coincide with their Tylor Series .



Example . f :D → IR
, flx)=e×

From Calculus
, we know fM(x)=f(x) - e? so on

any fixed interval C- M , M) , M > o
,

add derivatives

of fix are bounded
,
mam.ly/f*lx)/--/eYEeM .

Taking C- em in the previous

Corollary , we conclude that

81×1=0 agrees
with its Tylor

&'m Ém 3
Series of all points in f-Mitt) . Since M >o is

arbitrary ,

it follows that the same conclusion

holds on all IR .

to

Recall:Teglor Series of fix)=e× centered at Xo -0 is {
I
n !

4--0

Thus
,

e×= [ ¥
ya

flx) \ "÷ Taylor Series
From above) of fled centered

(corollary at ✗- xo

Similarly , you
can use the corollary above to show



Li:)
to

sin ✗ =D ⇐ ¥¥÷g, ✗
""-1

Éaylo✓ Series of sin ✗CY:) centered at ✗ =o
1

cos ✗ = É¥¥;_ ×
"

k
Taylor series of ↳✗
centered at ✗ - o

.

EX-a-mpteof-fonct-utuol-DO-ESNT-ag.ee#iTglorSoies.-
Consider f : IR - IR defined as

^

- . - -

1-
- - - - - a-

*.r⇒ft ) = { e-
"✗
I ✗ > 0 fix,

0 if ✗ so

-0000--0--0--4 >×I
fled =/ 0←Tylor Taylor Series

Series of flx) ✗0=0 of fix centered
centered of xo=o .

at ✗= Xo

l¥ : Taylor Series of fled at Xo-0 vanishes identically .

• Since f=o for ✗ so
,
all limits defining derivatives

of f vanish when taken from the left (✗→ 0 -)

• Let us
then focus on lateral limits from the right

✗→ 0$



b- e-
"✗

=o
.

✗→ i

✗→ 0-1

←
01h order term on

Taylor series

a-a .

. ¥ (e- % / = e-
%

. dad- 1) = e-
%

. 1×2

¥1
, 0%-4*0=0i
I ✗→ 0-1

to L'Hospitd_: Substitute y=¥ → + *

é=e¥=jé1¥ . ☐

¥:¥±¥÷÷¥÷ :-, ⇒

← 1st order term .

On Tylor Series

•⇒ : ( e-
"× )=¥fÉg=¥EÉ±

✗
4

= ¥, e-
"
- ¥é

"

:(¥,

- F) e-
%

.



din (¥.

- E) e-
"✗

✗→"

p.eu#inz~ L'Hospital
geezer!
foste-_.

←
2nd term in

Tylor Series

i.
✗

"

( e- " 1=1 . . - )e¥
P¥É% [ goes

to
Eero

foster.

line ⑦
"

e-
"✗

=D
.

✗→ 0-1

It

✗
1h term in

←

tegeor Series

Rigorous proof can be made using
induction

on K
,
see Example 3 in § 31 of Ross

.



12m¥. The derivatives f.
"
(x) of the above

flx) are not iimformhgbended in
any open

neighborhood of Xoeo
,

i. e
, ☒ CER s- t .

If" (X) / EC for all wet and ✗ c- C- E. e)
.

f%)=o For n - n ,
there exist

in / < Est . fM(xul→ too .

÷É
- E

Not only the Corollary does not apply , the

conclusion actually fails , as we've seen above
.


