Taylor Series
From post lectures; we may define functions via power series: $f:(-\mathbb{R}, \mathbb{R}) \longrightarrow \mathbb{R} \quad \mathbb{R}=\frac{1}{\beta}, \quad \beta=\operatorname{limsip}_{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}$
$+\infty$

$$
\frac{f}{N}(x)=\sum_{n=0}^{+\infty} a_{n} x^{n} \frac{x}{\pi}\left(x-x_{0}\right)^{n}, \quad x_{0}=0
$$

"centered at $x_{0}=0 "$
Q: What's the relation between $\left(a_{n}\right)_{n \geqslant 0}$ and $f(x)$?
"A:" From Lecture 18, we may differentiate term-by-term:

$$
\begin{aligned}
& k=0: f(x)=\sum_{n=0}^{+\infty} a_{n} x^{n}=f_{n=1}^{+\infty} n \cdot a_{n} \cdot x^{n-1}=a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+\ldots \\
& k=2 a_{2} x+3 a_{3} x^{2}+4 a_{4} x^{3}+\cdots \\
& k=2: f^{\prime \prime}(x)=\sum_{n=2}^{+\infty} n \cdot(n-1) a_{n} \cdot x^{n-2}
\end{aligned}
$$

By induction, we arrive ot:

$$
\underline{\underline{k}}: f^{(k)}(x)=\sum_{n=k}^{+\infty} n \cdot(n-1) \cdot \cdots(n-k+1) \cdot a_{n} \cdot x^{n-k}
$$

If we compute the above at $x=0$, the result is the term with $n=k$, since all other terms voush:

$$
f^{(n)}(0)=f^{(k)}(0)=n \cdot(n-1) \cdots \cdot(\underbrace{\left(n-k^{k}+1\right.}_{1}) \cdot a_{n}=n!\cdot a_{n}
$$

Thus: $f^{(n)}(0)=n!\cdot a_{n}$ ie. $a_{n}=\frac{f^{(n)}(0)}{n!}$
This motivates deferring the following
Def: The Taylor Series of $f(x)$ centered at $x=x_{0}$ is $\sum_{n=0}^{+\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}$. The remainder of order n for this Taylor series is

$$
R_{n}(x)=f(x)-\sum_{k=0}^{n-1} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k} .
$$

Thus $f(x)=\sum_{k=0}^{+\infty} \frac{f^{n}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k} \Longleftrightarrow \lim _{n \rightarrow \infty} R_{n}(x)=0$
The function f is equal to its Taylor Series at x.

Taylor's Thu. Let $f:(a, b) \rightarrow \mathbb{R}$, where $-\infty \leq a<b \leq+\infty$.
Suppose the $n^{\text {th }}$ derivative $f^{(n)}$ exists for all $x \in(a, b)$.
Then, for all $x \neq x_{0}$, there exists y between x and x_{0} s.t:

Remainder of

$$
R_{n}(x)=\frac{f^{(n)}(y)}{n!}\left(x-x_{0}\right)^{n}
$$ order n for the

Taylor Series of $f(x)$
centered at $x=x_{0}$

Proof. $F i x \quad x \neq x_{0}$ and $x \geqslant 1$. Let M be the solution to

$$
\begin{align*}
f(x) & =\sum_{k=0}^{n-1} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}+\frac{M \cdot\left(x-x_{0}\right)^{n}}{n!} \\
(\text { i.e., } M & \left.=\frac{n!}{\left(x-x_{0}\right)^{n}}\left(f(x)-\sum_{k=0}^{n-1} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}\right) .\right)
\end{align*}
$$

Then it suffices to show that $f^{(M)}(y)=M$ for some y between x_{0} and x.

Define $g:(a, b) \rightarrow \mathbb{R}$ as
follows:
Roble's Thu (Lecture 20)

$$
g(t)=\sum_{k=0}^{n-1} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(t-x_{0}\right)^{k}+\frac{M\left(t-x_{0}\right)^{n}}{n!}-f(t)
$$

Note $g\left(x_{0}\right)=0$ and $g^{(k)}\left(x_{0}\right)=0$ for all $k \leq n-1$. Moreverer $g(x)=0 \quad b y(x)$.
By Rale's. Thu, there exists x_{1} between x and x_{0} such that $g^{\prime}\left(x_{1}\right)=0$.
Since g^{\prime} vanishes at $t=x_{1}$
 and $t=x_{0}$, by Rolle's Thu (again), there exist x_{2} between x_{0} and x_{1} such that $g^{\prime \prime}\left(x_{2}\right)=0$. Repeated applications of Role's The produce a finite sequence $x_{1}, x_{2}, x_{3}, x_{4}, \ldots, x_{n}$ such that $g^{(k)}\left(x_{k}\right)=0$. At $k=n$, we gat $g^{(n)}\left(x_{n}\right)=0$. But we have that $g^{(n)}(t)=M-f^{(n)}(t)$, so vanislung at $t>x_{n}$ means that $0=g^{(n)}\left(x_{n}\right)=M-f^{(n)}\left(x_{n}\right)$, $i_{\text {e., }}$ $f^{(n)}\left(x_{n}\right)=M$. Take $y=x_{n}$.

Convelery: Let $f:(a, b) \rightarrow \mathbb{R}$, where $-\infty \leq a<b \leq+\infty$.
Suppose all derivatives $f^{(n)}$ exist, for all $n \geqslant 1$ and $x \in(a, b)$, and $\left|f^{(\mu)}(x)\right| \leq C$ for all $n \geqslant 1$ and $x \in(a, b)$. Then
$\lim _{n \rightarrow \infty} \underbrace{R_{n}(x)}_{\pi}=0$ Remainder of oil $x \in(a, b)$.
in Taylor Series of $f(x)$
centered at $x_{0} \in(a, b)$
In prorticular, in this coss, $f(x)=\sum_{k=0}^{+\infty} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}$.
Proof: By Taylor's Thu, we have that $\forall n \geqslant 1 \quad \exists y_{n}$ between x and x_{0} such that $R_{n}(x)=\frac{f^{(n)}\left(y_{n}\right)}{n!}\left(x-x_{0}\right)^{n}$. Since $\left|g^{(n)}(x)\right| \leq C$, we have

$$
0 \leq\left|R_{n}(x)\right|=\frac{\left|f^{(n)}\left(y_{n}\right)\right|}{n!}\left|x-x_{0}\right|^{n} \leq \frac{C}{n!}\left|x-x_{0}\right|^{n} \xrightarrow{n \rightarrow \infty} 0
$$

since $\lim _{n \rightarrow \infty} \frac{\left|x-x_{0}\right|^{n}}{n!}=0$, and hence $\lim _{n \rightarrow \infty} \operatorname{Rn}(x)=0$.

This Corollary allows us to find many examples of functions that coincide with there Baylor Series.

Example. $f: \mathbb{R} \rightarrow \mathbb{R}, \quad f(x)=e^{x}$
From Calculus, we know $f^{(n)}(x)=f(x)=e^{x}$; so on any fixed interval $(-M, M), M>0$, all derivatives of $f(x)$ are bounded, namal, $\quad\left|f^{(n)}(x)\right|=\left|e^{x}\right| \leq e^{M}$. Taking $C=e^{M}$ in the previous Corollary, we conclude that $f(x)=e^{x}$ agrees with its Baylor
 Series of abl points in $(-M, M)$. Since $M>0$ is arbitrary, it follows that the same conclusion holds on all \mathbb{R}.
Recall: Teylor Series of $f(x)=e^{x}$ centered at $x_{0}=0$ is $\sum_{n=0}^{+\infty} \frac{x^{n}}{n!}$ Thus,

Similarly, you can use the Covollory above to show

$$
\begin{aligned}
& \binom{u_{s e}}{C=1} \\
& \sin x \stackrel{\downarrow}{=} \sum_{k=0}^{+\infty} \frac{(-1)^{k}}{(2 k+1)!} x^{2 k+1} \\
& \binom{U \text { se }}{C=1} \\
& \cos x \stackrel{\downarrow}{=} \sum_{k=0}^{+\infty} \frac{(-1)^{k}}{(2 k)!} x^{2 k} \\
& \text { 个 Taylor Series of } \sin x \\
& \text { centered at } x=0 \\
& \cos x \stackrel{\downarrow}{=} \sum_{k=0}^{+\infty} \frac{(-1)^{k}}{(2 k)!} x^{2 k}
\end{aligned}
$$

- Teylor Series of $\cos x$ centered at $x=0$.

Example of a function that DOES NOT agree with its Taylor Series. Consider $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{lll}
e^{-1 / x} & \text { if } & x>0 \\
0 & \text { if } & x \leq 0
\end{array}\right. \\
& f(x) \neq 0<\begin{array}{l}
\text { Tailor } \\
\text { Series of } f(x) \\
\text { centered ot } x_{0}=0 .
\end{array}
\end{aligned}
$$

Claim: Fojlor Series of $f(x)$ at $x_{0}=0$ vanisher identically.

- Since $f \equiv 0$ for $x \leq 0$, all limits defining derivatives of f vanish when taken from the left $\left(x \rightarrow 0_{-}\right)$
- Let us then focus on lateral limits from the right

$$
x \rightarrow O_{+}
$$

$k=0 ; \quad \lim _{x \rightarrow 0_{+}} e^{-1 / x}=0$.

$f\left(x_{0}\right)=0<0^{\text {th }}$ order Term $\begin{aligned} & \text { Toglor Senies }\end{aligned}$

$$
k=1 ; \quad \frac{d}{d x}\left(e^{-1 / x}\right)=e^{-1 / x} \cdot \frac{d}{d x}\left(-\frac{1}{x}\right)=e^{-1 / x} \cdot \frac{1}{x^{2}}
$$

$$
\lim _{x \rightarrow 0_{+}^{+}} \underbrace{1}_{\substack{\downarrow \\ x^{2}}} e^{-1 / x}=0
$$

$$
\frac{e^{-1 / x}}{x^{2}}=\frac{e^{-y}}{1 / y^{2}}=y^{2} e^{-y}=\frac{y^{2}}{\substack{ \\y}} \underset{ }{y+x} .
$$

$$
f^{\prime}\left(x_{0}\right)=0 \quad 1^{\text {st }} \text { ovder temm } \begin{aligned}
& \text { in Teglor Serios }
\end{aligned}
$$

$$
\begin{aligned}
& k=2: \quad \frac{d^{2}}{d x^{2}}\left(e^{-1 / x}\right)=\frac{d}{d x}\left(\frac{e^{-1 / x}}{x^{2}}\right)=\frac{e^{-1 / x} \cdot \frac{1}{x^{2}} \cdot x^{2}-e^{-1 / x} \cdot 2 x}{x^{4}} \\
&=\frac{1}{x^{4}} e^{-1 / x}-\frac{2}{x^{3}} e^{-1 / x}=\left(\frac{1}{x^{4}}-\frac{2}{x^{3}}\right) e^{-1 / x}
\end{aligned}
$$

$$
\vdots
$$

k

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}}\left(\frac{d}{d x}\right)^{k} e^{-1 / x}=0 . \\
& \Downarrow \\
& \frac{f^{(k)}\left(x_{0}\right)}{k!}=0 \quad \begin{array}{l}
k^{\text {th }} \text { term in } \\
\text { Taylor Species }
\end{array}
\end{aligned}
$$

Rigorous proof can be made using induction on K, see Example 3 in $\xi 31$ of Ross.

Rank: The derivatives $f^{(n)}(x)$ of the above $f(x)$ are not uniformly bounded in any open neighborhood of $x_{0}=0$; i.e., $\nexists C \in \mathbb{R}$ s.l. $\left|f^{(n)}(x)\right| \leq C$ for all $n \geq 1$ and $x \in(-\varepsilon, \varepsilon)$.

Not only the Corollary dow not apply, the conclusion actually fails, as we've seen above.

