MAT 320/640

Lecture 21

11/17/2021

If we compute the above at
$$x=0$$
, the venet is
the term with $n=k$, since all other terms vanah:
 $f^{(n)}(0) = f^{(k)}(0) = m(m-2) \dots (n-k+3)$. $a_n = m!$ an
 t thus: $f^{(n)}(0) = m! \cdot a_n$ i.e. $a_n = \frac{f^{(n)}(5)}{n!}$
This motivates defensing the following
Def: The Taylor Series of $f^{(k)}$ centered at $x=x_0$
is $\frac{f^{(n)}(k)}{n!}(x-x_0)^n$. The greenainder of
order m for this Taylor series is
 $R_m(x) = f^{(x)} - \sum_{k=0}^{N-4} \frac{f^{(k)}(k)}{k!}(x-x_0)^k$.
Thus $f^{(x)} = \sum_{k=0}^{\infty} \frac{f^{(0)}(k)}{k!}(x-x_0)^k \iff \lim_{n\to\infty} R_n(x) = 0$
the function f is equal
to its taylor series at x .

$$\begin{array}{rcl} \hline \mbox{Jaylor's Thum. Let } f:(a,b) \rightarrow \mathbb{R}, & \mbox{where } -\infty \leq a < b \leq +\infty. \\ & \mbox{Suppose the nth derivative } f^{(m)} & \mbox{exists for all } & \mbox{w} \in (a,b). \\ & \mbox{Then., for all } & \mbox{x} \neq \mbox{xo, there exists } & \mbox{between } & \mbox{and } \mbox{ko s.t}: \\ & \mbox{Revainder of } & \mbox{mode } & \mbox{mode } \\ & \mbox{Revainder of } & \mbox{mode } & \mbox{mode } \\ & \mbox{ender m for the } & \mbox{Taylor Series of } f(\mbox{k)} \\ & \mbox{centered at } \mbox{x=} \mbox{so } \\ & \mbox{field of } \\ & \mbox{mode } \\ & \mbox{field of } \\ &$$

$$g(t) = \sum_{k=0}^{n-1} \frac{g^{(k)}(x_0)}{k!} (t-x_0)^k + \frac{M(t-x_0)^n}{n!} - f(t)$$
Note $g(x_0) = 0$ and $g^{(k)}(x_0) = 0$ for all $k \le n-1$.
Moreover $g(x) = 0$ by (A).
By Kolle's Thun, there $g^{(k)}(x_0) = 0$ for all $k \le n-1$.
By Kolle's Thun, there $g^{(k)}(x_0) = 0$ for all $k \le n-1$.
By Kolle's Thun, there $g^{(k)}(x_0) = 0$.
Since g' vanishes at $t=x_1$ $g=0$ $g=0$
Since g' vanishes at $t=x_1$ $g=0$ $g=0$
between x_0 and x_1 such that $g''(x_0) = 0$. Repeated
applications of folle's Thun (again), there exists x_2
between x_0 and x_1 such that $g''(x_0) = 0$. Repeated
applications of folle's Thun produce a finite sequence
 $x_1, x_2, x_3, x_{1}, \ldots, x_n$ such that $g^{(k)}(x_k) = 0$.
At $k = n$, we get $g^{(n)}(x_n) = 0$. But we have
that $g^{(n)}(t) = M - f^{(n)}(t)$, sor vanishing at $t = x_n$
(means that $0 = g^{(n)}(x_n) = M - f^{(n)}(x_n)$, i_0 ;
 $f^{(n)}(x_n) = M$. Take $y = x_n$.

Corollary: Let
$$f:(a,b) \rightarrow \mathbb{R}$$
, where $-\infty \leq a < b \leq +\infty$.
Suppose all derivatives $\int_{k}^{m} exist,$ for all $n \geq 1$ and $x \in (a,b)$, and
 $|f^{(n)}(x)| \leq C$ for all $n \geq 1$ and $x \in (a,b)$.
Then
 $\lim_{n \to \infty} \mathbb{R}_{n}(x) = 0$ for all $x \in (a,b)$.
 $\lim_{n \to \infty} \mathbb{R}_{n}(x) = 0$ for all $x \in (a,b)$.
 $\lim_{n \to \infty} \mathbb{R}_{n}(x) = 0$ for all $x \in (a,b)$.
 $\lim_{n \to \infty} \mathbb{R}_{n}(x) = 0$ for all $x \in (a,b)$.
 $\lim_{n \to \infty} \mathbb{R}_{n}(x) = 0$ for all $x \in (a,b)$.
 $\lim_{n \to \infty} \mathbb{R}_{n}(x) = 0$ for all $x \in (a,b)$.
 $\lim_{n \to \infty} \mathbb{R}_{n}(x) = 0$ for all $n \geq 1$ and $x \in (a,b)$.
 $\lim_{n \to \infty} \mathbb{R}_{n}(x) = \frac{1}{n} \mathbb{E}_{n}(x) = \frac{1}{n} \mathbb{E}_{n}(x) = \frac{1}{n!} \mathbb{E}_{n}(x)$.
 $\lim_{n \to \infty} \mathbb{E}_{n}(x) = \frac{1}{n!} \mathbb{E}_{n}(x) = \frac{1}{n!} \mathbb{E}_{n}(x) = \frac{1}{n!} \mathbb{E}_{n}(x) = \frac{1}{n!} \mathbb{E}_{n}(x) = 0$.
 $\lim_{n \to \infty} \mathbb{E}_{n!}(x) = 0$, and hence $\lim_{n \to \infty} \mathbb{E}_{n}(x) = 0$.
This corollary allows us to fund many examples of functions that coincide with them Toplar Series.

Example.
$$f: \mathbb{R} \to \mathbb{R}$$
, $f'(x) = e^{x}$
From Calculus, we know $g^{(m)}(x) = f(x) = e^{x}$, so on
any fixed interval $(-M, M)$, $M > 0$, all derivatives
of $f(x)$ ore bounded, namely $|f^{(m)}(x)| = |e^{x}| \leq e^{M}$.
Taking $C = e^{M}$ in the previous $C = e^{M} = e^{x}/$
Corollary, we conclude that
 $f(x) = e^{x}$ agrees with its Taylor $-M = M$.
Series of all points in $(-M, M)$. Since $M > 0$ is
orbitrary, it follows that the same conclusion
halds on all \mathbb{R} .
Recall: Taylor Series of $f(x) = e^{x}$ cantered at $x_0 = 0$ is $\sum_{M=0}^{+\infty} \frac{x}{M}$.
Thus, $e^{x} = \sum_{M=0}^{+\infty} \frac{x^{M}}{M!}$
 $f(x) = \sum_{M=0}^{+\infty} \frac{x^{M}}{M!}$
Taylor Series of $f(x) = e^{x}$ cantered at $x_0 = 0$ is $\sum_{M=0}^{+\infty} \frac{x}{M!}$.
Simularly, you can use the Corollary above to show

Line
$$\left(\frac{4}{\chi^{4}} - \frac{2}{\chi^{3}}\right)e^{-4\chi} = 0$$

 $relynomial in \frac{1}{\chi}$ (Happild
 $relynomial in \frac{1}{\chi}$

