Rational numbers

$$
\mathbb{D}=\left\{\frac{a}{b}: a, b \in \mathbb{Z}, \quad b \neq 0\right\}
$$

Q1: Given two rational numbers $x, y \in Q$, is there another rational number $z \in \mathbb{Q}$ s.t. $x<z<y$ ?

A: Yes, for example, we
 may take

$$
\begin{aligned}
z & =\frac{x+y}{2} \\
& =\frac{1}{2}\left(\frac{a}{b}+\frac{c}{d}\right) \in \mathbb{Q}
\end{aligned}
$$

E.g., we can also toke weighted averages such es

$$
z_{1}=\frac{2 x+y}{3}, \quad z_{2}=\frac{x+2 y}{3} \in \mathbb{Q}
$$



Can iterate and get infinitely many ration numbers be tween any two $x, y \in \mathbb{Q}$.

Q2: Given $x, y \in \mathbb{Q}$, are all numbers between $x$ and $y$ also rational?


A2: No; for example, consider $x=1$ and $y=2$ and $z=\sqrt{2}$.

$$
\text { i } z^{2}=2 \text {; ie. } \quad z^{2}-2=0
$$

Prop: $\sqrt{2}$ is not a rational number $(\sqrt{2} \notin \mathbb{Q})$.
Pl: Suppose $\sqrt{2} \in \mathbb{Q} ;$ that $\dot{r} \quad \sqrt{2}=\left(\frac{a}{b}, \begin{array}{r}a, b \in \mathbb{Z}, \\ b \neq 0 .\end{array}\right.$ Proof by
$\uparrow$ simplified fraction:

Then $b \sqrt{2}=a$, so $2 b^{2}=a^{2}$. $a$ and $b$ have no common divisors.
Thus $a^{2}$ is even, then $a$ is also even.
Then $a^{2}$ must be divisible by 4 . Thus $b^{2}$ is even; because $b^{2}=\frac{a^{2}}{2}$. (div. by 4.) So $b$ is also even.
But $a$ and $b$ cannot both be even, because we assumed they had no corm on divisors. This contradiction proves that $\sqrt{2} \notin \$$.

Rational Zeros Theorem
Let $n \in \mathbb{N}$, and $a_{n}, a_{n-1}, \ldots, a_{1}, a_{0} \in \mathbb{Z}$. Consider the equation (gimplufed) $a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}=0$.
If $r=\frac{c}{d} \in \mathbb{Q}, c, d \in \mathbb{Z}, d \neq 0$, where $c$ and $d$ have no common divisors, solves this equation, then $c$ divides $a_{0}$ and $d$ divides $a_{n}$.
Pl: Since $r=\frac{c}{d}$ solves the equation, we have:

$$
a_{n}\left(\frac{c}{d}\right)^{n}+a_{n-1}\left(\frac{c}{d}\right)^{n-1}+\cdots+a_{1}\left(\frac{c}{d}\right)+a_{0}=0
$$

To clear denominators, we multiply both sides by $d^{n}$, and obtain:

$$
a_{n} \cdot c^{n}+a_{n-1} c^{n-1} \cdot d+a_{n-2} \cdot c^{n-2} d^{2}+\cdots+a_{1} c d^{n-1}+a_{0} d^{n}=0
$$

Solving for $a_{0} d^{n}$ to get:

$$
\begin{aligned}
a_{0} d^{n} & =-\left(a_{n} \cdot c^{n}+a_{n-1} c^{n-1} \cdot d+a_{n-2} \cdot c^{n-2} d^{2}+\cdots+a_{1} c d^{n-1}\right) \\
& =-c \underbrace{\left(a_{n} c^{n-1}+a_{n-1} c^{n-2} \cdot d+a_{n-2} c^{n-3} d^{2}+\cdots+a_{1} d^{n-1}\right)}_{\in \mathbb{Z}}
\end{aligned}
$$

So it follows that $c$ divides $a_{0} d^{n}$. Since $c$ and $d$ have no common divisors, if follows that $c$ divides $a_{0}$.
Solving instead for $a_{n} c^{n}$, we find:

$$
\begin{aligned}
a_{n} c^{n} & =-\left(a_{n-1} c^{n-1} \cdot d+a_{n-2} \cdot c^{n-2} d^{2}+\cdots+a_{1} c d^{n-1}+a_{0} d^{n}\right) \\
& =-d(\underbrace{a_{n-1} c^{n-1}+a_{n-2} c^{n-2} d+\cdots+a_{1} c d^{n-2}+a_{0} d^{n-1}}_{\in \mathbb{Z}})
\end{aligned}
$$

This proves that $d$ divides $a_{n} \cdot c^{n}$. Since $c$ and $d$ hove no common divisors, if follows that $c$ divides $a_{n}$.

Corollary: Let $n \in \mathbb{N}$ and $a_{n-1}, \ldots, a_{1}, a_{0} \in \mathbb{Z}$. Consider the equation

$$
\text { manic } \longrightarrow x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}=0
$$

Any rational solution $r \in \mathbb{Q}$ of this equation is an integer that divides $a_{0}$.
Pf: By Rational Zeros theorem, $r=\frac{c}{d} \in \mathbb{Q}$, where $\begin{array}{r}c, d \in \mathbb{Z} \\ d \neq 0\end{array}$ $d \neq 0$ have no common divisors is such that $d$ divides 1 ; and $c$ divides $a_{0}$. Thus $d= \pm 1$, hence $r= \pm c$.

Application: Another proof that $\sqrt{2} \notin \mathbb{Q}$.
Consider the equation $x^{2}-2=0$.
By the Corollary dove, any rational $r \in \mathbb{Q}$
that solves $x^{2}-2=0$ must be an integer that divides 2 . The only integers that divide 2 ore: $\pm 1, \pm 2$. Checking all if these, we see that none of them solve $x^{2}-2=0$. Therefore, there is no rational solution to $x^{2}-2=0$, ie. $\sqrt{2} \notin \mathbb{Q}$.

Ex: Prove that $\sqrt{17} \notin \mathbb{Q}$. (Using the same approach.)
Sol: Consider the equation $x^{2}-17=0$. By the Coralliory, any rational solution $r \in \mathbb{Q}$ to this equation is an integer that divictes 17 ; hence one of $\pm 1, \pm 17$. Check that none of these solve the equation, and hence $\sqrt{17} \notin \mathbb{D}$.
Ex: Prove that $\sqrt[3]{6} \notin \mathbb{Q}$. (using the same approach.) Consider the equation $x^{3}-6=0$. By the Corollary, any rational solution $v \in \mathbb{Q}$ to this equation must be an integer that divides 6; ie., one of
$\pm 1, \pm 2, \pm 3, \pm 6$. Check that none of these solve the equation, and this $\sqrt[3]{6} \notin \mathbb{P}$.

