Recall from last time:
Thum (Weinstruss M-test). Let
$$(M_K)_{K\in N}$$
 be a sequence such
that $\sum_{k=1}^{\infty} M_K < \infty$. If $g_K(x)$ is a sequence of functions
such that $|g_K(x)| \leq M_K$ for all $x \in S$ and $K\in N$, then
 $\sum_{k=1}^{\infty} g_K(k)$ converges uniformly on S.
Let $g(k) = \sum_{k=1}^{\infty} g_K(k)$, where $g_K(k)$ are as above.
From earlier results (continuity is preserved under uniform
convergence), it follows that if $g_K(w)$ is cartinuous
for all $K\in N$, then so is $g(k)$.
Q: Domain of $g(k)$ if it is a power series;
 $t \in g g_K(k) = Q_K x^K$ for all $K\in N$?
A: If the rodius of convergence is $R = \frac{1}{R}$, where
 $\beta = \lim_{m \to \infty} |Q_M|^M$, then Domain (g) contains $(-R_1R)$.
Proposition: If $\sum_{k=1}^{\infty} q_K x^k$ is a power series of
convergence R , then if $O < R_1 < R$, the power series
(onvergence R , then if $O < R_1 < R$, the power series
(onvergence R , then if $O < R_1 < R$, the power series

Pf: First, note that the radius of convergence
of
$$\sum_{n=1}^{+\infty} n \cdot a_n x^{n-1}$$
 is the same as that of
 $x \cdot \left(\sum_{n=1}^{+\infty} n \cdot a_n x^{n-1}\right) = \sum_{n=1}^{+\infty} n \cdot a_n x^n$. The same holds for
 $\frac{1}{2} \cdot \sum_{n=1}^{+\infty} n \cdot a_n x^{n-1} = \sum_{n=1}^{+\infty} n \cdot a_n x^n$. The same holds for
 $\frac{1}{2} \cdot \sum_{n=1}^{+\infty} n \cdot a_n x^n$. So the radius of convergence for
these series is $R = \frac{1}{\beta}$ where
 $\beta_{\text{derivbre}} = \lim_{n \to \infty} \sup_{n \to \infty} \left| n \cdot a_n \right|^2 = \lim_{n \to \infty} n \cdot h \cdot \lim_{n \to \infty} \max_{n \to \infty} \left| a_n \right|^2 = \beta_{\text{original}}$
 $\beta_{\text{integral}} = \lim_{n \to \infty} \sup_{n \to \infty} \left| \frac{a_n}{n + 1} \right|^2 = \lim_{n \to \infty} \frac{1}{(n + 1)^{N_n}} \cdot \lim_{n \to \infty} \max_{n \to \infty} \left| a_n \right|^2 = \beta_{\text{original}}$
 $\beta_{\text{integral}} = \lim_{n \to \infty} \max_{n \to \infty} \left| \frac{a_n}{n + 1} \right|^2 = \lim_{n \to \infty} \frac{1}{(n + 1)^{N_n}} \cdot \lim_{n \to \infty} \max_{n \to \infty} \left| a_n \right|^2 = \beta_{\text{original}}$
 $\beta_{\text{integration}} = \max_{n \to \infty} f(x) = \sum_{n \to \infty}^{\infty} a_n x^n$ has radius of convergence R .

Then
$$\int_{0}^{x} f(t) dt = \sum_{n=0}^{+\infty} \frac{a_n}{n+1} x^{n+1}$$
 for $|x| < R$.

P: As seen above,
$$f(w) = \sum_{m=0}^{m} a_m x^m$$
 converges variables
on $[-R_1, R_1]$ for any $0 \le R_1 \le R$. Thus for all $0 \le < R_1$:
 $\lim_{m \to \infty} \int_0^{\infty} \left(\sum_{K=0}^m a_K t^K \right) dt \stackrel{\perp}{=} \int_0^{\infty} f(t) dt \stackrel{(f)}{=} \int_{0}^{\infty} e_{K+1} r^K dt =$
 $\int_0^{\infty} \int_0^{\infty} \left(\sum_{K=0}^m a_K t^K \right) dt \stackrel{\perp}{=} \int_0^{\infty} \int_0^{\infty} e_K t^K dt =$
 $\int_0^{\infty} \int_0^{\infty} \left(\sum_{K=0}^m a_K t^K \right) dt \stackrel{=}{=} \sum_{K=0}^m a_K \left(\sum_{K+1}^{K+1} \right) \int_0^{\infty} e_{K+1} r^K dt =$
 $= \sum_{K=0}^m a_K \frac{t^{K+1}}{K+1} \int_0^{\infty} e_{K-0} a_K \left(\frac{x^{K+1}}{K+1} - \frac{y^{K+1}}{y^{K+1}} \right)$
 $= \sum_{K=0}^m a_K \frac{t^{K+1}}{K+1} \int_0^{\infty} e_{K-0} a_K \left(\frac{x^{K+1}}{x^{K+1}} - \frac{y^{K+1}}{y^{K+1}} \right)$
Taking limits as $n = \infty$ in the above proves the desired the desired the desired the formula $result$.
Differentiation term - h_1 - ferm $\sum_{K=0}^{k=0} a_K x^k dt$.

N

Proof must not we lim
$$f''(x) \neq f'(x)$$
 if f_{n-ef} .
[Recall that differentiability need not be preserved under
invitor convergence, like, sey, continuity.
PL: We will use integration term-by-term.
Let $g(x) = \sum_{n=1}^{\infty} m \cdot an \cdot x^{n-1}$ and vecall that the
vectors of convergence of $g(x)$ is the same as that
of $f'(x) = \sum_{n=0}^{\infty} an \cdot x^n$. By Integration term-by-term, we
have $\int_{0}^{\infty} g(t) dt = \sum_{n=1}^{\infty} (\int n an t^n) dt = \int_{n=1}^{\infty} an t^n \Big|_{0}^{\infty}$
Therefore, as $f(x) = \int_{0}^{\infty} g(t) dt + a_0$, by the
Fundamental theorem of Calarlus $\frac{d}{dx} \int_{0}^{\infty} g(t) dt = g(x)$
So $f'(x) = g(x)$; for all $|x| < R$.

Revisiting an example from Lecture 45:

$$\begin{aligned}
f(x) &= \int_{N=1}^{\infty} \frac{x^{N}}{N} = x + \frac{x^{2}}{2} + \frac{x^{2}}{2} + \frac{x^{2}}{4} + \frac{x^{4}}{4} + \cdots \\ & \int \int \int \frac{dx}{4} + \frac{dx}{4} + \frac{x^{4}}{4} + \frac{x^{4}}{4}$$