Recall: $f: D \subset \mathbb{R} \rightarrow \mathbb{R}$ is continuous at x_{0} if for every sequence $x_{n} \rightarrow x_{0}$, the sequence $f\left(x_{n}\right)$ satisfies $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f\left(x_{0}\right)$.

Very important in optimization, to guarentee the existence of min/max.
Theorem. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. Then $f(x)$ is bounded, and $f(x)$ assumes its min and max in $[a, b]$, i.e., there exist points $x_{\text {min }}, x_{\text {max }} \in[a, b]$ such that

$$
f\left(x_{\text {max }}\right)=\operatorname{mim}_{x \in[0, b]} f(x) \quad \text { and } \quad f\left(x_{\text {max }}\right)=\operatorname{mox}_{x \in[0,1]} f(x)
$$

Proof: Suppose that $f:[a, b] \rightarrow R$ is unbounded, that is, $\forall u \in \mathbb{N} \exists x_{n} \in[a, b]$ s.t. $\left|f\left(x_{n}\right)\right| \geqslant n$.

By the Bolzano-Weierstross Theorem, the sequence x_{n} must admit a convergent subsequence $x_{n_{k}}$ because it is bounded; say $\quad x_{n_{k}} \longrightarrow x_{0} \in[a, b]$.
Since $f(x)$ is continuous, $f\left(x_{n_{k}}\right) \rightarrow f\left(x_{0}\right)$.
However $\left|f\left(x_{n_{k}}\right)\right| \geqslant n_{k}$ so $\left|f\left(x_{n_{k}}\right)\right| \rightarrow+\infty$, Contradicting $\left|f\left(x_{n_{k}}\right)\right| \rightarrow\left|f\left(x_{0}\right)\right|<+\infty$. Thus, $f(x)$ is bounded on $[a, b]$.

Let $M=\sup \{f(x): x \in[a, b]\}$. Since $f(x)$ is bounded, this sup exists and is a finite real number. For every $n \in \mathbb{N}$, there exists $y_{n} \in[a, b]$ such that

$$
M-\frac{1}{n}<f(y n) \leqslant M
$$

Clearly, $\lim _{n \rightarrow \infty} f\left(y_{n}\right)=M$.
By Bolzano-Weierstross, y_{n} has a convergent subsequence $y_{n_{k}}$ say $y_{n_{k}} \rightarrow x_{\text {max }}$. Since $f(x)$ is continuous $y_{n_{k}} \rightarrow x_{\text {max }} \rightarrow f\left(y_{n_{k}}\right) \rightarrow f\left(x_{\text {max }}\right)$ and therefore $f\left(x_{\text {max }}\right)=M$. In other words, $\sup _{x \in[a b]} f(x)$ is attained at $x=x_{\text {max }}$. Similarly, applying the same reasoning
to $-f(x)$ we find $x_{\min } \in[a, b]$ st. $-f\left(x_{\text {min }}\right)=\sup _{x \in[0,6]}-f(x)$ and thus $f\left(x_{\text {min }}\right)=\inf _{x \in[0,1]} f(x)$, i.e., $\inf _{x \in[0,5]} f(x)$ is attained at $x=x_{\text {min }}$.

Intermediate Valve Theorem.
If $f:[a, b] \rightarrow \mathbb{R}$ is a continuous function, and y_{0} is between $f(a)$ and $f(b)$, then there exits $x_{0} \in[a, b]$ such that $f\left(x_{0}\right)=y_{0}$.

Proof: Without loos of geverdity,

let us assume that $f(a)<y_{0}<f(b)$. Let

$$
S=\left\{x \in[0, b]: \quad f(x)<y_{0}\right\} .
$$

Since $a \in S$, we have $S \neq \phi$; let $x_{0}=\sup S$. Thus $\forall n \in \mathbb{N}, \exists s_{n} \in S$ s.t. $x_{0}-\frac{1}{n}<s_{n} \leqslant x_{0}$. Clearly $s_{n} \longrightarrow x_{0}$ and $f\left(s_{n}\right)<y_{0}$ for all $n \in \mathbb{N}$; $\operatorname{so} f\left(x_{0}\right)=\lim _{n \rightarrow \infty} f\left(s_{n}\right) \leq y_{0}$. Let $t_{n}=\min \left\{b, x_{0}+\frac{1}{n}\right\}$,
then $\quad x_{0} \leq t_{n} \leq x_{0}+\frac{1}{n} \quad$ so $\quad t_{n} \rightarrow x_{0} \quad$ and $t_{n} \notin S, \forall n \in \mathbb{N}$ so $f\left(t_{n}\right) \geqslant y_{0}, \forall n \in \mathbb{N}$. Thus $f\left(t_{n}\right) \rightarrow f\left(x_{0}\right)$ and $f\left(x_{0}\right)=\lim _{n \rightarrow \infty} f\left(t_{n}\right) \geqslant y_{0}$. Therefore $y_{0} \leq f\left(x_{0}\right) \leq y_{0}$ so $f\left(x_{0}\right)=y_{0}$.
Corollary. The image $\{f(x): x \in[a, b)\}$ of a closed interval $[a, b]$ by a continuous function $f:[a, b] \rightarrow \mathbb{R}$ is also a closed interval, or a single point.

Frow the first theorem
 proven today!
(More precisely, $\{f(x): x \in[a, b)\}=\left[f\left(x_{\text {min }}\right), f\left(x_{\text {max }}\right)\right]$
Applications of Intermediate Valve Theorem

1. Existence of fixed points: If $f:[0,1] \rightarrow[0,1]$ is a continuous function mapping $[0,1]$ to itself, then there exists $x_{0} \in[0,1]$ a fixed paint, i.e., $f\left(x_{0}\right)=x_{0}$.
$1 \uparrow \quad \frac{\text { Pf: Let }}{} \quad g(x)=f(x)-x$; note $g(x)$ is
continuous,

$$
\begin{aligned}
& g(0)=f(0) \geqslant 0 \\
& g(1)=f(1)-1 \leq 0
\end{aligned}
$$

Apply I.V.T. to $g(x)$ and $y_{0}=0$, we see that $\exists x_{0} \in[0,1]$ s.t. $g\left(x_{0}\right)=y_{0}=0$. Muss, $f\left(x_{0}\right)=x_{0}$.
2. Existence of $n^{\text {th }}$ root $\sqrt[n]{a}$ of any $a>0$

Consider $f(x)=x^{n}-a$; which is a contimerous function and $f\left(x_{0}\right)=0$ precisely at $x_{0}=\sqrt[n]{a}$. To prove that such x_{0} exists, we use I.V.T. with:

$$
\begin{aligned}
& f(0)=0^{n}-a=-a<0 \\
& f(b)=b^{n}-a>0
\end{aligned}
$$

for every $b>0$ such that $a<b^{n}$. Therefore I.V.T. implies $\exists x_{0} \in(0, b)$ such that $f\left(x_{0}\right)=0$, as desired.

Exercise: TRUE or FALSE? Justify.

1. A continuous function attains a maximum $1 \rightarrow \mathbb{R}$ any interval.
in given by $f(x)=\frac{1}{x}$.
FALSE: consider $f:(0,1) \rightarrow \mathbb{R}$. $f(x)$ is continuous at every $x_{0} \in(0,1)$, but $\lim _{x \rightarrow 0} f(x)=+\infty$; there's no maximum.
(To make it TRUE, we must request that the interval
2. The image of any function $f:[a, b] \rightarrow \mathbb{R}$ is an interval.
FALSE: Take for example

$$
f(x)=\left\{\begin{array}{lll}
0 & \text { if } & x \in\left[a, \frac{a+b}{2}\right) \\
1 & \text { if } & x \in\left[\frac{a+b}{2}, b\right]
\end{array}\right.
$$

Image of $f(x)$ is $\{0,1\}$, so not an interval.

(To make it TRUE, we must request $f(x)$ to be continuous.)
3. Every polynomial of odd degree has at least one real root. What happens if the degree is even?
TRUE: Application of Intermediate Valve Theorem. (odd degree) Proof: Let $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$. $\left(U_{p}\right.$ to replacing p with $-p$, without loss of generality, 4.some $a_{n}>0$).

Since $n=$ degree $p(x)$ is odd, we have that
for x sufficiently large negative, $p(x)<0$
x sufficiently large positive, $p(x)>0$,
ie. $\lim _{x \rightarrow-\infty} p(x)=-\infty$ and $\lim _{x \rightarrow+\infty} p(x)=+\infty$.
Thus $\exists M>0$ such that

$$
p(-M)<0 \quad \text { and } p(M)>0
$$

By the Intermediate Valve theorem, $\exists x_{0} \in[-M, M]$ such that $p\left(x_{0}\right)=0$.
Q: What about polynomials of even deginee?
A; They may not hove any reel roots:

$$
p(x)=x^{2}+1
$$

(whet fails is that

