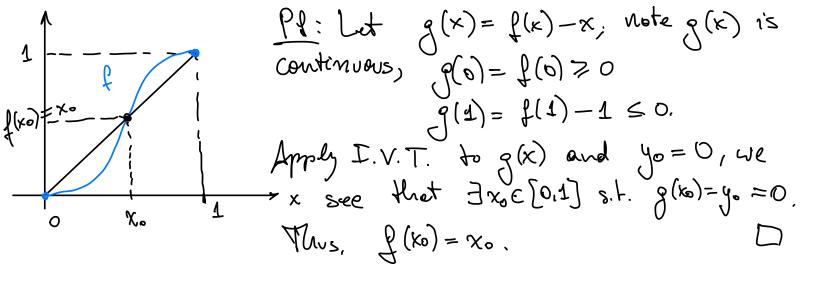
Recall:
$$f: D \subset \mathbb{R} \to \mathbb{R}$$
 is continuous at x if for every
sequence $x_n \to x_0$, the sequence $f(x_n)$ satisfies
live $f(x_n) = f(x_0)$.
Note: $f(x_n) = f(x_0)$.
Note: $f(x_n) = f(x_0)$.
Theorem. Let $f: [a_1b] \to \mathbb{R}$ be a continuous function.
Then $f(x)$ is bounded, and $f(x)$ assumes its min
and max in $[a_1b]$, i.e., there exist points
 $x_{\min}, x_{\max} \in [a_1b]$ such that
 $f(x_{\min}) = \min_{x \in [a_1b]} f(x)$ and $f(x_{\max}) = \max_{x \in [a_1b]} f(x)$.
 $f(x_{\min}) = \min_{x \in [a_1b]} f(x)$ and $f(x_{\max}) = \max_{x \in [a_1b]} f(x)$.
 $f(x) = \min_{x \in [a_1b]} f(x)$ and $f(x_{\max}) = \max_{x \in [a_1b]} f(x)$.
 $f(x) = \min_{x \in [a_1b]} f(x) = \max_{x \in [a_1b]} f(x)$.
 $f(x) = \min_{x \in [a_1b]} f(x) = \max_{x \in [a_1b]} f(x)$.
 $f(x) = \max_{x \in [a_1b]} f(x) = \max_{x \in [a_1b]} f(x)$.
 $f(x) = \max_{x \in [a_1b]} f(x) = \max_{x \in [a_1b]} f(x)$.
 $f(x) = \max_{x \in [a_1b]} f(x) = \max_{x \in [a_1b]} f(x)$.
 $f(x) = \max_{x \in [a_1b]} f(x) = \max_{x \in [a_1b]} f(x)$.
 $f(x) = \max_{x \in [a_1b]} f(x) = \max_{x \in [a_1b]} f(x)$.
 $f(x) = \max_{x \in [a_1b]} f(x) = \max_{x \in [a_1b]} f(x)$.
 $f(x) = \max_{x \in [a_1b]} f(x) = \max_{x \in [a_1b]} f(x)$.

By the Boleano-Weierstros Theorem, the sequence
Non anust admit a convergent subsequence
$$X_{N_K}$$

because it is bounded; say $X_{N_K} \longrightarrow X_0 \in [a, b]$.
Since $f(\mathbf{x})$ is continuous, $f(X_{N_K}) \longrightarrow f(X_0)$.
However $|f(X_{N_K})| \longrightarrow N_K$ so $|f(X_{N_K})| \longrightarrow +\infty$,
controducting $|f(X_{N_K})| \longrightarrow |f(X_0)| \longrightarrow +\infty$.
Thus, $f(X)$ is bounded on $[a, b]$.
Let $M = \sup i f(X) : X \in [a, b]$. Since $f(x)$ is
bounded, this $\sup exists$ and is a finite
real number. For every $M \in N$, there exists
 $f(y_0)$ $y_0 \in [a, b]$ such that
 $M - \frac{1}{N} \qquad (learly, lim f(y_0) = M.$
 $M - \frac{1}{N} \qquad (learly, lim f(y_0) = M.$
By Bolzano-Weierstross, y_0 has a convergent subsequence
 y_{N_K} , say $y_{N_K} \longrightarrow X_{Max}$. Since $f(X)$ is continuous
 y_{N_K} , Say $y_{N_K} \longrightarrow f(y_{N_K})$ and therefore
 $f(x_{M_K}) = M$. In other words, $\sup f(X)$ is attained
 X_{Clab} .

to
$$-f(x)$$
 we find $x_{\min} \in [a,b] = d$.
 $-g(x_{\min}) = \sup_{\substack{x \in [a,b]}} -f(x)$ and thus $f(x_{\min}) = \inf_{\substack{x \in [a,b]}} f(x)$
i.e., $\inf_{\substack{x \in [a,b]}} g(x)$ is attained at $x = x_{\min}$.
I f: $[a,b] \rightarrow R$ is a $g(b)$ for
Intermediate Value Theorem.
If $f: [a,b] \rightarrow R$ is a $g(b)$ for
yo is between $f(a)$ and $f(b)$, your for
yo is between $f(a)$ and $f(b)$, your for
Near there exists $x_0 \in [a,b]$ for
Near there exists $x_0 \in [a,b]$ for
 $f(x) = y_0$.
Proof: Without loss of generality, a and x_0 b
let us assume that $f(a) < y_0 < f(b)$. Let
 $S = \{x \in [a,b]: f(x) < y_0\}.$
Sime $a \in S$, we have $S \neq \emptyset$, let $X_0 = \sup S$.
Thus the R , $B = S = S$, $X_0 - \frac{1}{n} < S_n \leq X_0$.
Clearly $S_n \rightarrow X_0$ and $f(S_n) < y_0$ for all ment,
so $f(x_0) = \lim_{m \to \infty} f(S_n) \leq y_0$. Let $t_n = \min\{b, X_0 + \frac{1}{n}\}$,

then
$$x_0 \leq t_n \leq x_0 + \frac{1}{n}$$
 so $t_n \rightarrow x_0$ and
 $t_n \notin S$, then s_0 $f(t_n) \geqslant y_{0,1}$ then $f(t_n) \gg y_0$.
Therefore $y_0 \leq f(x_0) \leq y_0$ so $f(x_0) = y_0$.
Therefore $y_0 \leq f(x_0) \leq y_0$ so $f(x_0) = y_0$.
(orollory. The intege $\{f(x): x \in [a,b]\}$
of a closed interval $[a,b]$ by a
continuous function $f:[a,b] \rightarrow iR$ is also a
closed interval, or a single point.
 $f(x_0, x_0) \leq x_0$
(More precisely, $\{f(x): x \in [a,b]\} = [f(x_0, x_0), f(x_0, x_0)]$
Applications of Intermediate Value Theorem
A Existence of fixed points: If $f:[0,d] \rightarrow [0,d]$ is
a continuous function mapping $[0,d]$ to itself, then
there exists $x_0 \in [0d]$ a fixed point, i.e., $f(x_0) = x_0$.



d. Existence of nth root Na of any a>0
Consider
$$f(x) = x^n - a$$
; which is a continuous function
and $f(x_0) = 0$ precisely at $x_0 = Na$. To prove that
such x_0 exists, we use $I.V.T.$ with:
 $f(0) = 0^n - a = -a < 0$
 $f(b) = b^n - a > 0$
for every $b > 0$ such that $a < b^n$. Therefore
 $I.V.T.$ simplies $\exists x_0 \in (0, b)$ such that
 $f(x_0) = 0$, as desired.

TRUE or FALSE? Justify. Exercise: FALSE: consider $f_i(0,1) \longrightarrow \mathbb{R}$, given by $f(x) = \frac{1}{x}$. f(x) is continuous at every xx e(0,1), but lim f(x) = + as. Phere's no maximum. (To make it TRUE, we must request that the interval be closed) 2. The image of any function $f: [a,b] \rightarrow R$ is an interval. <u>FALSE</u>: Take for example f(x) $\frac{1}{a} + \frac{1}{a} + \frac{1}{b} + \frac{1}{b} + \frac{1}{b} + \frac{1}{a} + \frac{1}{b} + \frac{1}{b} + \frac{1}{a} + \frac{1}{b} + \frac{1}$ $f(x) = \begin{cases} 0 & if \quad x \in [a, \frac{a+b}{z}] \\ 1 & if \quad x \in [\frac{a+b}{z}, b] \end{cases}$ Image of girl is 20,17, 50 not an interval. (To make it TRUE, we must request f(x) to be <u>continuous</u>.) 3. Every polynomial of odd degree has at least one real root. What happens if the degree is even? TRUE: Application of Intermediate Volue Theorem. (odd degree) <u>Proof</u>: Let $p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_n x^n + a_n$ (Up to replacing p with -p, without loss of generality, assume an > 0)

Since
$$M = \text{degree} [p(k)] 25 \text{ odd}, we have that
for x sufficiently large meative, $p(k) < 0$
 x sufficiently large provietive, $p(k) > 0$,
i.e. $\lim_{N \to \infty} p(k) = -\infty$ and $\lim_{N \to \infty} p(k) = +\infty$.
Now $p(k) = -\infty$ and $p(k) = +\infty$.
 $\lim_{N \to \infty} \frac{1}{2} (-M) < 0$ and $p(M) > 0$
how to justify $p(-M) < 0$ and $p(M) > 0$
how to justify $p(-M) < 0$ and $p(M) > 0$
how to justify $p(-M) < 0$ and $p(M) > 0$
how to justify $p(-M) < 0$ and $p(M) > 0$
how to justify $p(-M) < 0$ and $p(M) > 0$
 $\lim_{N \to \infty} \frac{1}{2} [p(N)] = ---p(-M)$
By the Instermudiate Value Theorem, $\exists x_0 \in [-M,M]$
Such that $p(x_0) = 0$.
Q: What about polynomials of even degree?
A: They muy not have any real roots:
 $p(x) = x^2 + 1$.
(what but is that
 $\lim_{N \to \infty} p(x) = +\infty$ if n is even$$