Continuous Functions

Def: A function $f: D \subset \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $x_{0} \in D$ if for every sequence $\left(x_{n}\right)_{n \in N}$ in D such that $x_{n} \rightarrow x_{0}$, we have $f\left(x_{n}\right) \longrightarrow f\left(x_{0}\right)$. If $f(x)$ is continuous at every $x_{0} \in D$, then we say $f(x)$ is continuous (on D).

Both definitions of continuity (ω / sequences, above, and w/ $\varepsilon-\delta$ are equivalent).
Theorem: A function $f: D \subset \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $x_{0} \in D$ if and only if $\forall \varepsilon>0, \exists \delta>0$ such that if $x \in D$ satisfies $\left|x-x_{0}\right|<\delta$, then $\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$.
Rf: $(\forall \varepsilon>0 \quad \exists \delta>0 \ldots) \Longrightarrow$ (f is cont.)
Given $\varepsilon>0$, there exits $\delta>0$ such that if $x \in D$ $\left|x-x_{0}\right|<\delta$, then $\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$. If $x_{n} \in D$ is a sequence such that $x_{n} \rightarrow x_{0}$, then there exists
$N \in \mathbb{N}$ such that $n>N \Rightarrow\left|x_{n}-x_{0}\right|<\delta$. This implies $\left|f\left(x_{n}\right)-f\left(x_{0}\right)\right|<\varepsilon$, i.e. $\quad f\left(x_{n}\right) \longrightarrow f\left(x_{0}\right)$.
Conversely, we now meed to prove that

$$
(\forall \varepsilon>0 \quad \exists \delta>0 \ldots) \Longleftarrow(f \text { is cont. })
$$

Suppose, by contradiction, that f is cont. at x_{0}, but $(\forall \varepsilon>0 \quad \exists \delta>0 \ldots)$ fails, ie. $\exists \varepsilon>0$ s.t. $\forall \delta>0$, if $x \in D, \quad\left|x-x_{0}\right|<\delta$ but $\left|f(x)-f\left(x_{0}\right)\right| \geqslant \varepsilon$. Take $\delta=\frac{1}{n}$ for each $n \in \mathbb{N}$, and let $x_{n} \in D$ be the corresponding $x \in D$ with $\left|x_{n}-x_{0}\right|<\frac{1}{n}$ and $\left|f\left(x_{n}\right)-f\left(x_{0}\right)\right| \geqslant \varepsilon>0$. In other words, $x_{n} \rightarrow x_{0}$ but $f\left(x_{n}\right) \nrightarrow f\left(x_{0}\right)$, giving the desired contradiction to f being continues.

Example: Prove that $f(x)=2 x^{2}+1$ is continuous
(i) with definition (using sequence),
(ii) with $\varepsilon-\delta$.
(i) Given $x_{n} \rightarrow x_{0}$, note that $f\left(x_{n}\right)=2 x_{n}^{2}+1$, so

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \underbrace{2 x_{n}^{2}+1}_{\begin{array}{c}
f\left(x_{n}\right) \\
\text { Properties of limits of }
\end{array}}=2 \cdot(\underbrace{\lim _{n \rightarrow \infty} x_{n}}_{x_{0}})^{2}+1=2 x_{0}^{2}+1=f\left(x_{0}\right) ; \\
\text { i.e. } f(x) \text { is } \\
\text { continuous. }
\end{gathered}
$$

Properties of limits of
sequences from post lectures
(ii) Given $\varepsilon>0$, we need to find $\delta>0$ such that

$$
\left|x-x_{0}\right|<\delta \Rightarrow\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon
$$

$$
\left.\begin{array}{rl}
f(x)=2 x^{2}+1 \\
f\left(x_{0}\right) & =2 x_{0}^{2}+1
\end{array}\right\} \Longrightarrow\left|f(x)-f\left(x_{0}\right)\right|=\left|2 x^{2}+1-\left(2 x_{0}^{2}+1\right)\right|
$$

Need to bound independently of $x:=2\left|x^{2}-x_{0}^{2}\right|$

$$
\left|x+x_{0}\right| \leqslant 1+2\left|x_{0}\right| \cdots=2 \underbrace{\left|x-x_{0}\right|}_{<\delta} \cdot \underbrace{\left|x+x_{0}\right|}_{? ?}
$$

(if $\left|x-x_{0}\right|<1$, then

$$
\begin{aligned}
& |x|=\left|x-x_{0}+x_{0}\right| \leq \underbrace{\left|x-x_{0}\right|}_{<1}+\left|x_{0}\right|<\underbrace{1+\left|x_{0}\right|}_{n_{0} \text { dependence m } x!} \\
& 0\left|x+x_{0}\right| \leq|x|+\left|x_{0}\right|<1+2\left|x_{0}\right| .
\end{aligned}
$$

$$
\leq 2\left|x-x_{0}\right| \cdot\left(1+2\left|x_{0}\right|\right)<\varepsilon
$$

Solve for $\left|x-x_{0}\right|$:

$$
\begin{aligned}
\left|x-x_{0}\right| & <\frac{\varepsilon}{2\left(1+2\left|x_{0}\right|\right)} \\
\delta & <2
\end{aligned}
$$ follows that if $\left|x-x_{0}\right|<\delta$, then $\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$.

Examples of functions that are not continuous: $f(x)=\left\{\begin{array}{lll}1 & \text { if } & x \in \mathbb{Q} \\ 0 & \text { if } & x \notin \mathbb{Q}\end{array} \begin{array}{l}\text { is } n_{0} t \text { continuous at } \\ x_{0} \in \mathbb{R}, \text { since there }\end{array}\right.$ list sequences $x_{n} \in \mathbb{Q}, y_{n} \notin \mathbb{Q}$ with $x_{n} \rightarrow x_{0}, y_{n} \rightarrow x_{0}$.

Note $f\left(x_{n}\right)=1$ and $f\left(y_{n}\right)=0$, so no matter if $x_{0} \in \mathbb{Q}$ or $x_{0} \notin \mathbb{Q}$, at least one of them is going to violate the condition $f\left(x_{n}\right) \longrightarrow f\left(x_{0}\right)$ or $f\left(y_{n}\right) \longrightarrow f\left(x_{0}\right)$.

$$
f(x)=\left\{\begin{array}{lll}
\frac{1}{x} \sin \left(\frac{1}{x^{2}}\right) & \text { if } x \neq 0 & \text { is continuous at } \\
0 & \text { all } x_{0} \neq 0, \text { but it } \\
& \text { if } x=0 & \text { hot continuous } \\
& \text { at } x_{0}=0 .
\end{array}\right.
$$

It suffices to show a sequence x_{n} such that $x_{n} \rightarrow x_{0}=0$ but $f\left(x_{n}\right) \xrightarrow{l} f\left(x_{0}\right)=0$. Let us fund x_{n} such that $f\left(x_{n}\right)=\frac{1}{x_{n}}$; namely we solve:

$$
\frac{1}{x_{n}} \sin \left(\frac{1}{x_{n}^{2}}\right)=\frac{1}{x_{n}} \Longleftrightarrow \frac{1}{x_{n}^{2}}=2 \pi n+\frac{\pi}{2}
$$

Let $x_{n}=\frac{1}{\sqrt{\frac{\pi}{2}+2 \pi n}}$ for all $n \in \mathbb{N}$.

$$
\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{\frac{\pi}{2}+2 \pi n}}=0
$$

So, altogether, we have $x_{n} \rightarrow 0$ but $f\left(x_{n}\right)=\frac{1}{x_{n}}$
So $\quad \lim _{k \rightarrow \infty} f\left(x_{n}\right)=\lim _{n \rightarrow \infty} \frac{1}{x_{n}}=+\infty . \quad\left(\neq f\left(x_{0}\right)=0\right)$.
Exercise: How about

$$
f(x)=\left\{\begin{array}{lll}
x^{p} \sin \left(\frac{1}{x}\right) & \text { if } & x \neq 0 \\
0 & \text { if } & x=0
\end{array}\right.
$$

For what values of p is it continuous at $x_{0}=0$?

Theorem. If $f: D \subset \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $x_{0} \in D$, then so are $|f|$ and $c . f, c \in \mathbb{R}$.

Pf: If $x_{n} \rightarrow x_{0}$, then $\left|f\left(x_{n}\right)\right| \rightarrow\left|f\left(x_{0}\right)\right|$ because:

$$
\lim _{n \rightarrow \infty}\left|f\left(x_{n}\right)\right|=|\underbrace{\lim _{n \rightarrow \infty} f\left(x_{n}\right)}_{f\left(x_{0}\right)}|=\left|f\left(x_{0}\right)\right|
$$

Moreover, $\lim _{n \rightarrow \infty} c \cdot f\left(x_{n}\right)=c \cdot \underbrace{\lim _{h \rightarrow \infty} f\left(x_{n}\right)}_{f\left(x_{0}\right)}=c \cdot f\left(x_{0}\right)$.

Theorem. If f and g are continuous at $x_{0} \in \mathbb{R}$, so are $f+g, f . g$, and $\frac{f}{g} \quad\left(\right.$ provided $\left.g\left(x_{0}\right) \neq 0\right)$.
Pf: Let $x_{n} \rightarrow x_{0}$, and mote that:

$$
\begin{aligned}
\lim _{n \rightarrow \infty}(f+g)\left(x_{n}\right) & =\lim _{n \rightarrow \infty} f\left(x_{n}\right)+g\left(x_{n}\right) \\
& =\lim _{n \rightarrow \infty} f\left(x_{n}\right)+\lim _{n \rightarrow \infty} g\left(x_{n}\right) \\
& =f\left(x_{0}\right)+g\left(x_{0}\right) \\
& =(f+g)\left(x_{0}\right)
\end{aligned}
$$

Similarly, the continuity of $f \cdot g$ and $\frac{f}{g}$ follows from properties of limits of products and ratios.

Theorem. If $f(x)$ is continuous at x_{0}, and $g(x)$ is continuous at $f\left(x_{0}\right)$,
then $(g \circ f)(x)$ is continuous at x_{0}.
Pf: Let $x_{n} \rightarrow x_{0}$. By continuity of $f(x)$ at x_{0}, we have $f\left(x_{n}\right) \rightarrow f\left(x_{0}\right)$. Let $y_{n}=f\left(x_{n}\right)$ and note $y_{n} \rightarrow f\left(x_{0}\right)$. So by continuity of $g(x)$ at $f\left(x_{0}\right)$, we have that $g(y n) \rightarrow g\left(f\left(x_{0}\right)\right)$. Therefore, $(g \circ f)\left(x_{n}\right) \rightarrow(g \circ f)\left(x_{0}\right)$;
that is, $(g \circ f)$ is continuous at x_{0}.

$$
g\left(f\left(x_{n}\right)\right)
$$

Theorem. If f and g are continuous at $x_{0} \in \mathbb{R}$, so are the functions $\max \{f, g\}$ and $\min \{f, g\}$.
Pf: (Trick: write down an analytic formula for max/min)

$$
\begin{aligned}
& \max \{a, b\}=\frac{1}{2}(a+b)+\frac{1}{2}|a-b| \\
& \min \{a, b\}=\frac{1}{2}(a+b)-\frac{1}{2}|a-b| \\
& |a-b|=\left\{\begin{array}{ll}
a-b, & \text { i } a \geqslant b \\
b-a, & \text { if } a<b
\end{array} \quad \frac{1}{2}(a+b)+\frac{1}{2}|a-b|= \begin{cases}\frac{1}{2}(a+b)+\frac{1}{2}(a-b), & \text { if } a \geqslant b \\
\frac{1}{2}(\alpha+b)+\frac{1}{2}(b-a), & \text { if } a<b\end{cases} \right. \\
& =\left\{\begin{array}{ll}
a & \text { if } a>b \\
b & \text { if } a<b
\end{array}=\max \{a, b\}\right. \text {. } \\
& \text { So } \max \{f g\}=\frac{1}{2}(f+g)+\frac{1}{2}|f-g| \text { is a }
\end{aligned}
$$

Composition (sum, difference, product with constant, absolute value of, and composition) of continuous functions, hence is itself continuous by the results proved also re. Similarly for min $\{f, g\}$.

