MAT 320/640

 $= \ln(n+1)$

2

Therefore,
$$Sn \leq l - \frac{1}{n}$$
 for all $M \in M$,
so taking limits as $n \neq \infty$, we find:
 $lim Sn \leq lim l - \frac{1}{n} = l$
Thus $(Sn)_{N \in \mathbb{N}}$ is an increating sequence,
bounded from above by l , therefore it converges.
(It can be shown that $\lim_{N \to \infty} Sn = \frac{\pi^2}{6} < d$).
Theorem. The p-series $\sum_{N=1}^{\infty} \frac{1}{N^2}$ converges if and only of $p > 1$.
Proof:
 $If p = 1$, then $0 \leq p \leq 1$ for $p > 1$
 $M = 1 + \int_{1}^{\infty} \frac{1}{N^2} dx = 1 + \left(\frac{x^{1-p}}{1-p}\right)\Big|_{1}^{\infty} = 1 + \frac{\pi^{1-p}}{1-p} \leq 0$

Since we are assuming
$$f(x)$$
 is positive, we
have $f(k) > 0$, $\forall k \in \mathbb{N}$, so $(Sn)_{n \in \mathbb{N}}$ is an increasing
sequence. Let us bound it from above using the
assumption that $\int_{1}^{+\infty} f(x) dx < \infty$. For each $N \ge 2$:
 $\int_{1}^{+\infty} f(x) dx < \infty$. For each $N \ge 2$:
 $\int_{1}^{+\infty} f(x) dx < \infty$. For each $N \ge 2$:
 $\int_{1}^{+\infty} f(x) dx < \infty$. For each $N \ge 2$:
 $\int_{1}^{+\infty} f(x) dx = 1$ y to $x = n$
 $f(x) = a_{2} + a_{3} + \dots + a_{n}$
 $f(x) = a_{2} + a_{3} + \dots + a_{n}$
 $f(x) = a_{2} + a_{3} + \dots + a_{n}$
 $f(x) = a_{2} + a_{3} + \dots + a_{n}$
 $f(x) = a_{2} + a_{3} + \dots + a_{n}$
 $f(x) = a_{2} + a_{3} + \dots + a_{n}$
 $f(x) = a_{2} + a_{3} + \dots + a_{n}$
 $f(x) = a_{2} + a_{3} + \dots + a_{n}$
 $f(x) = a_{2} + a_{3} + \dots + a_{n}$
 $f(x) = a_{2} + a_{3} + \dots + a_{n}$
 $f(x) = a_{2} + a_{3} + \dots + a_{n}$
 $f(x) = a_{2} + a_{3} + \dots + a_{n}$
 $f(x) = a_{2} + a_{3} + \dots + a_{n}$
 $f(x) = a_{2} + a_{3} + \dots + a_{n}$
 $f(x) = a_{2} + a_{3} + \dots + a_{n}$
 $f(x) = a_{2} + a_{3} + \dots + a_{n}$
 $f(x) = a_{2} + a_{3} + \dots + a_{n}$
 $f(x) = a_{2} + a_{3} + \dots + a_{n}$
 $f(x) = a_{2} + a_{3} + \dots + a_{n}$
 $f(x) = a_{2} + a_{3} + \dots + a_{n}$
 $f(x) = a_{2} + a_{3} + \dots + a_{n}$
 $f(x) = a_{2} + a_{3} + \dots + a_{n}$
 $f(x) = a_{2} + a_{3} + \dots + a_{n}$
 $f(x) = a_{2} + a_{3} + \dots + a_{n}$
 $f(x) = a_{2} + a_{3} + \dots + a_{n}$

$$Sn = n_{1} + a_{2} + \dots + a_{n}$$

$$\leq a_{1} + \int_{1}^{n} f(x) dx$$

$$Taking limits cs n + \infty,$$

$$\lim_{n \to \infty} Sn \leq \lim_{n \to \infty} a_{1} + \int_{1}^{n} f(x) dx = a_{1} + \int_{1}^{+\infty} f(x) dx < \infty$$

Three fore
$$(Sn)_{n\in\mathbb{N}}$$
 converges $(\forall c \ it is bounded from above and increasing).
(Burressely, suppose $\sum_{n=1}^{\infty} a_n$ converges; i.e. $(Sn)_{n\in\mathbb{N}}$ (Burressely, $Suppose \sum_{n=1}^{\infty} a_n$ converges; i.e. $(Sn)_{n\in\mathbb{N}}$ (Burressely, $Sn \in \mathbb{N}$ (Burressely) is at one of a sector of a sector (M) is at the top left convert $(M)_{N}$ is $n \neq 1$. If (N) dx.
Thus, for all $n\in\mathbb{N}$, $= \int_{1}^{n+1} f(N) dx$.
Taking limits as $n = 1$ and $\int_{1}^{n+1} f(N) dx = \int_{1}^{n+\infty} f(N) dx$.
L = Jun $Sn \geq \lim_{n\to\infty} \int_{1}^{n+1} f(N) dx = \int_{1}^{n+\infty} f(N) dx$
hypodiexis Thus $\int_{1}^{n} f(N) dx < \infty$.$

Alternating Series

$$\frac{1}{2} \sum_{n=1}^{\infty} \sum_{n=1}^{n+1} a_n = a_1 - a_2 + a_3 - a_4 + a_5 - a_6 + \dots$$

$$\frac{1}{2} \sum_{n=1}^{n} \frac{1}{2} \sum_{n=1}^{n} a_1 = a_2 \ge a_3 \ge \dots, \ i = i, \ (a_n) \max i \le \frac{1}{2} \sum_{n=1}^{n} a_1 \ge a_2 \ge a_3 \ge \dots, \ i = i, \ (a_n) \max i \le \frac{1}{2} \sum_{n=1}^{n} a_n \sum_{n=1}^{n} a_n \sum_{n=1}^{n} (-1)^{n+1} a_n \sum_{n=1}^{n} \sum_{n=1}^{n} (-1)^{n+1} a_n \sum_{n=1}^{n} \sum_{n=1}^{n} (-1)^{n+1} a_n \sum_{n=1}^{n} \sum_{n=1}^{n} \sum_{n=1}^{n} \sum_{n=1}^{n} (-1)^{n+1} a_n \sum_{n=1}^{n} \sum_{n=1}^{n} \sum_{n=1}^{n} \sum_{n=1}^{n} \sum_{n=1}^{n} (-1)^{n+1} a_n \sum_{n=1}^{n} \sum_{n=1}$$

If
$$M \leq N$$
, then $S_{2N} \leq S_{2n} \leq S_{2n+1}$.
If $M \geq N$, then $S_{2n+1} \geq S_{2n+1} \geq S_{2n}$.
So $(S_{2n})_{M \in N}$ is increasing and bounded
from doore by S_{2n+1} for any $M \in N$, e.g.,
by S_3 . Thursefore $(S_{2n})_{M \in N}$ converges.
Simularly $(S_{2n+1})_{M \in N}$ is decreasing and bounded
from balow by S_{2n} for any $M \in N$, e.g., S_2 .
Thus, $(S_{2n+1})_{M \in N}$ converges. Say
 $t = lem S_{2n+1}$, $S = lim S_{2n}$.
Computing their difference, $n \geq lim (S_{2n+1} - S_{2n})$
 $n \rightarrow \infty$
 $Thus = S_{2n+2} - lim S_{2n} = lim (S_{2n+1} - S_{2n})$
 a_{2n+1}
 $= lim a_{2n+1} = 0$.
Thus $t = S_{j}$ and hence $lim S_{n} = S$.
To prove $|S_n - S| \leq a_n$, rote that for all KEN,

$$S_{2K} \leq S \leq S_{2K+1}$$
So:

$$S_{2K+1} - S \leq S_{2K+1} - S_{2K} = a_{2K+1} \leq a_{2K}$$

$$S - S_{2K} \leq S_{2K+1} - S_{2K} = a_{2K+1} \leq a_{2K}$$
So:

$$|S - S_n| \leq a_n \quad both \quad if \quad n \text{ is even or odd.}$$

$$D$$

$$Examples: Justify (using a convergence tot) whether each of the following converges or diverges:
$$\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n} \leq \infty \quad b_1 \quad b_1 = Alternative Serie Test$$
Alternative series $W/$ $a_n = A$.

$$Alternative series $W/$ $a_n = A$.

$$Alternative Series $W/$ $a_n = S$.

$$Alternative Series $M/$ $a_n = S$.

$$\sum_{n=1}^{+\infty} \frac{S^n}{n!} \quad Pateo test \quad a_n = \frac{S^n}{n!}, \quad a_{nn} = \frac{S^{n+1}}{(n+1)!}$$

$$\sum_{n=2}^{+\infty} \frac{a_{n+1}}{a_n} = \frac{S^{n+1}}{(n+1)!} \cdot \frac{N!}{S^n} = \frac{S}{N+1}$$

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{S}{n+1} = 0 < 1. \Rightarrow \frac{Series}{converges}$$$$$$$$$$

$$\frac{1}{2}\sum_{n=0}^{\infty} \left(\frac{2}{(-1)^{n}-3}\right)^{n} \frac{diverges}{diverges}$$

$$\frac{1}{2}\sum_{n=0}^{\infty} \left(\frac{2}{(-1)^{n}-3}\right)^{n} \frac{diverges}{2} = 1 \quad \text{M even}$$

$$\frac{1}{2}\sum_{n=0}^{\infty} \left(\frac{2}{-1}\right)^{n} - \frac{2}{3} = \begin{cases} \frac{2}{-2} = 1 \quad \text{M even} \\ \frac{2}{-4} = \frac{1}{2} \quad \text{M odd} \end{cases}$$

$$\frac{1}{2}\sum_{n=0}^{\infty} \left(\frac{2}{-1}\right)^{n} - \frac{2}{-3} = \begin{cases} \frac{2}{-4} = \frac{1}{2} \quad \text{M odd} \end{cases}$$

$$\frac{1}{2}\sum_{n=0}^{\infty} \left(\frac{2}{-1}\right)^{n} - \frac{2}{-3} = \begin{cases} \frac{2}{-4} \quad \text{M odd} \end{cases}$$

$$\frac{1}{2}\sum_{n=0}^{\infty} \left(\frac{1}{-2}\right)^{n} + \frac{1}{2}\sum_{n=0}^{\infty} \left(\frac{1}{-2}\right)^$$

$$\begin{split} \lim_{n \to \infty} \sup \left| \frac{a_{n+L}}{a_n} \right| &= \lim_{m \to \infty} \frac{1}{2} \left(\frac{3}{2} \right)^m = + \infty \,. \\ \lim_{n \to \infty} \inf \left| \frac{a_{n+L}}{a_n} \right| &= \lim_{m \to \infty} \left(\frac{3}{3} \right)^m = 0 \,. \\ \lim_{n \to \infty} \inf \left| \frac{a_{n+L}}{a_n} \right| &= \lim_{m \to \infty} \left(\frac{3}{3} \right)^m = 0 \,. \\ \log n \to \infty + \exp n \,. \\ \log n \to \infty + \exp n \,. \\ \left(\frac{1}{2^m} \right)^{2m} &= \frac{1}{\sqrt{2}} \quad \text{if } n \text{ is odd} \\ \left(\frac{1}{2^m} \right)^{2m} &= \frac{1}{\sqrt{3}} \quad \text{if } n \text{ is even.} \\ \lim_{n \to \infty} \lim_{m \to \infty} \left| \frac{a_n}{m} \right|^m &= \frac{1}{\sqrt{2}} < 1 \,. \\ \lim_{m \to \infty} \sup_{n \to \infty} \lim_{m \to$$