p-Series $\quad p>0$

$$
\xlongequal[\text { "Harmonic }]{p=1:} \sum_{n=1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots=\lim _{n \rightarrow \infty} s_{n}
$$ Series"

$$
s_{n}=\sum_{k=1}^{n} \frac{1}{k}=\underbrace{1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}}
$$

sum of ares of red rectangles as in the picture below from $x=1$ up to $x=n+1$
\geqslant Arran under $f(x)=\frac{1}{x}$ from $x=1$ up to $x=n+1$

$$
\begin{aligned}
& =\int_{1}^{n+1} \frac{1}{x} d x \\
& =\ln (n+1)
\end{aligned}
$$

Therefore, $s_{n} \geqslant \ln (n+1)$ for all $n \in \mathbb{N}$. Taking limits as $n r_{+\infty}$ on both sides, we find:

$$
\lim _{n \rightarrow \infty} s_{n} \geqslant \lim _{n \rightarrow \infty} \ln (n+1)=+\infty
$$

Thus $\lim _{n \rightarrow \infty} s_{n}=+\infty$, and hence $\sum_{n=1}^{+\infty} \frac{1}{n}=+\infty$.

$$
p=2: \quad \sum_{n=1}^{+\infty} \frac{1}{n^{2}}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots
$$

$$
\text { 1) } s_{n}=\sum_{k=1}^{n} \frac{1}{k^{2}}=1+\underbrace{\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots+\frac{1}{n^{2}}}
$$

Sum of ores of red rectangles in the picture, from $x=1$ op to $x=n$.
$\leq 1+$ Area under $f(x)$ from $x=1$ to $x=n$

$$
\int x^{-2} d x=\frac{x^{-2+1}}{-2+1}=-\frac{1}{x}
$$

$$
\begin{aligned}
& =1+\int_{1}^{n} \frac{1}{x^{2}} d x \\
& =1+\left.\left(-\frac{1}{x}\right)\right|_{1} ^{n} \\
& =1-\frac{1}{n}+1=2-\frac{1}{n} .
\end{aligned}
$$

Therefore, $\quad s_{n} \leq 2-\frac{1}{n}$ for all $n \in \mathbb{N}$, so taking limits as $n^{n_{+\infty}}$, we find:

$$
\lim _{n \rightarrow \infty} s_{n} \leq \lim _{n \rightarrow \infty} 2-\frac{1}{n}=2
$$

Thus $\left(s_{n}\right)_{n \in \mathbb{N}}$ is an increasing sequence, bounded from above by 2, therefore it converges.
(It can be shown that $\lim _{n \rightarrow \infty} s_{n}=\frac{\pi^{2}}{6}<2$).
Theorem. The p-series $\sum_{n=1}^{+\infty} \frac{1}{n^{p}}$ converges of and only if $p>1$.
Proof:
If $p>1$, then

$$
\begin{aligned}
S_{n}=\sum_{k=1}^{n} \frac{1}{k^{p}} & =1+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\cdots+\frac{1}{n^{p}} \\
& \leq 1+\int_{1}^{n} \frac{1}{x^{p}} d x=1+\left.\left(\frac{x^{1-p}}{1-p}\right)\right|_{1} ^{n}= \\
& =1+\frac{n^{1-p}}{1-p}-\frac{1}{1-p} \xrightarrow{n^{p}+\infty} 1+\frac{1}{p-1}
\end{aligned}
$$

The sequence of portion sums $\left(s_{n}\right)_{n \in N}$ is increasing and bounded fou cove by $1+\frac{1}{p-1}$ and thus converges: $\quad \sum_{n=1}^{+\infty} \frac{1}{n^{p}} \leq 1+\frac{1}{p-1}<\infty$.
If $0<p \leqslant 1$, then $\frac{1}{n^{p}} \geqslant \frac{1}{n}$. So by the $\left.\begin{array}{l}\text { Comparison Tot, } \sum_{n=1}^{+\infty} \frac{1}{n^{p}} \geqslant \sum_{\substack{n=1}}^{\sum_{n=1}^{+\infty} \frac{1}{n}}=+\infty \text {. } \\ \sum_{n} \text { serocicies } \\ n^{p}\end{array}\right)+\infty$.
Integral Test
Suppose that $f(x)$ is continuous, positive, decreasing on the holf-line $\left[1_{1}+\infty\right)$. Then $\sum_{n=1}^{+\infty} a_{n}$ converges $\Longleftrightarrow \int_{1}^{+\infty} f(x) d x$ converges where $a_{n}=f(n), n \in \mathbb{N}$.

Pf: Consider the portal sins

$$
S_{n}=\sum_{k=1}^{n} a_{k}=\sum_{k=1}^{n} f(k)
$$

Since we ore assuming $f(x)$ is portive, we have $f(k)>0, \forall k \in \mathbb{N}$, so $\left(s_{n}\right)_{n \in \mathbb{N}}$ is an increasing sequence. Let us bound it frown above using the assumption that $\int_{1}^{+\infty} f(x) d x<\infty$. For each $n \geqslant 2$:

Rectangles torching graph of $f(x)$ at the top sight comer

Thus:

$$
\begin{aligned}
s_{n} & =a_{1}+a_{2}+\cdots+a_{n} \\
& \leq a_{1}+\int_{1}^{n} f(x) d x
\end{aligned}
$$

Taking limits as $m \lambda+\infty$,

$$
\lim _{n \rightarrow \infty} s_{n} \leq \lim _{n \rightarrow \infty} a_{1}+\int_{1}^{n} f(x) d x=a_{1}+\int_{1}^{+\infty} f(x) d x<\infty
$$

Therefore $\left(s_{n}\right)_{n \in \mathbb{N}}$ convegues (b / c it is bounded from above and increasing).
Conversely, suppose $\sum_{n=1}^{+\infty} a_{n}$ converges; ie. $\left(s_{n}\right)_{n \leq N}$ converges.

Use rectangles that touch the Thus, for all $n \in \mathbb{N}$,

$$
=\int_{1}^{n+1} f(x) d x
$$

$$
S_{n} \geqslant \int_{1}^{n+1} f(x) d x
$$

Taking limits as $n^{n+\infty}$,

$$
L=\lim _{n \rightarrow \infty} s_{n} \geq \lim _{n \rightarrow \infty} \int_{1}^{n+1} f(x) d x=\int_{1}^{+\infty} f(x) d x
$$

hypothesis Thus $\int_{1}^{+\infty} f(x) d x<\infty$.

Alternating Series

$$
\sum_{n=1}^{+\infty}(-1)^{n+1} a_{n}=a_{1}-a_{2}+a_{3}-a_{4}+a_{5}-a_{6}+\ldots
$$

Theorem. If $a_{1} \geqslant a_{2} \geqslant a_{3} \geqslant \ldots$, ie., $\left(a_{n}\right)_{n \in \mathbb{N}}$ is decreasing and $\lim _{n \rightarrow \infty} a_{n}=0$, then $\sum_{n=1}^{+\infty}(-1)^{n+1} a_{n}$ converges. Moreover $s_{n}:=\sum_{k=1}^{n}(-1)^{k+1} a_{k} \quad \begin{gathered}n=1 \\ \text { sati } f y\end{gathered}$ $\left|s_{n}-s\right| \leq a_{n}$ for all $n \in \mathbb{N}$, where $\lim _{n \rightarrow \infty} s_{n}=s$.

P1: Note that the subsequence $\left(S_{2 n}\right)_{n \in \mathbb{N}}$ is increasing:

$$
s_{2 n+2}-s_{2 n}=-a_{2 n+2}+a_{2 n+1} \geqslant 0
$$

and, similarly, the subsequence $\left(s_{2 n+1}\right)_{n \in N}$ is decreexty:

$$
s_{2 n+1}-s_{2 n-1}=a_{2 n+1}-a_{2 n} \leq 0
$$

$$
\left\lvert\, \begin{array}{|ll}
& \\
& \left(S_{2 n+1}\right) \\
& \\
\ddots
\end{array}\right.
$$

We claim that for all $n, m \in \mathbb{N}$

$$
S_{2 m} \leq S_{2 n+1}
$$

$\uparrow \quad \prime^{\prime}$
First, note $S_{2 n} \leq S_{2 n+1}$ for all new All' even elements because $s_{2 n+1}-s_{2 n}=a_{2 n+1} \geqslant 0$.
element.

If $m \leq n$, then $S_{2 m} \leq S_{2 n} \leq S_{2 n+1}$.
If $m \geqslant n$, then $s_{2 n+1} \geqslant s_{2 m+1} \geqslant s_{2 m}$.
So $\left(S_{z w}\right)_{m \in N}$ is increasing and bounded from love by $s_{2 n+1}$ for any $n \in N$, e.p., by s_{3}. Therefore $\left(s_{2 m}\right) m \in N$ converges.
Similarly $\left(s_{2 n+1}\right)_{n \in \mathbb{N}}$ is decreasing and bounded from below by $s_{2 m}$ for any $m \in \mathbb{N}$, e.g., s_{2}. Thus, $\left(S_{2 n+1}\right)_{n \in \mathbb{N}}$ converges. Say

$$
t=\lim _{m \rightarrow \infty} S_{2 n+1}, \quad S=\lim _{m \rightarrow \infty} s_{2 m} .
$$

Comporting their difference, we find:

$$
\begin{aligned}
t-s & =\lim _{n \rightarrow \infty} s_{2 n+1}-\lim _{n \rightarrow \infty} s_{2 n}=\lim _{n \rightarrow \infty}(\underbrace{a_{2 n+1}}_{\left.a_{2 n+1}-s_{2 n}\right)} \\
& =\lim _{n \rightarrow \infty} a_{2 n+1}=0 .
\end{aligned}
$$

Thus $t=s$; and hence $\lim _{n \rightarrow \infty} s_{n}=s$.
To prove $\left|s_{n}-s\right| \leq a_{n}$, vote that for all $k \in N$,

$$
s_{2 k} \leq s \leq S_{2 k+1}
$$

So:

$$
\begin{aligned}
& S_{2 k+1}-S \leq S_{2 k+1}-s_{2 k}=a_{2 k+1} \leq a_{2 k} \\
& S-S_{2 k} \leq S_{2 k+1}-s_{2 k}=a_{2 k+1} \leq a_{2 k}
\end{aligned}
$$

80: $\left|S-S_{n}\right| \leq a_{n}$ both if n is even or odd.

Examples: Justify (using a convergence test) whether each - $\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n}<\infty$ of the following converges or diverges:

Alternating series $w / \quad a_{n}=\frac{1}{n}$
"Alternating harmonic Serve"
a_{n} decreasing, $\lim _{n \rightarrow \infty} a_{n}=0$

$$
\begin{aligned}
& \sum_{n=1}^{\sum_{n}^{+\infty} \frac{5^{n}}{n!}} \begin{array}{l}
\text { Ratio tot } a_{n} \\
=\frac{5^{n}}{n!}, a_{n+1}=\frac{5^{n+1}}{(n+1)!} \\
\frac{a_{n+1}}{a_{n}}=\frac{5^{n+1}}{(n+1)!} \cdot \frac{n!}{5^{n}}=\frac{5}{n+1}
\end{array}, \quad l
\end{aligned}
$$

$$
\limsup _{n \rightarrow \infty}\left|\frac{Q_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{5}{n+1}=0<1 \Rightarrow
$$

Serves absolutely

$$
\begin{aligned}
& \sum_{n=0}^{+\infty}\left(\frac{2}{(-1)^{n}-3}\right)^{n} \quad \text { diverges. } \\
& \left|a_{n}\right|^{\frac{1}{n}}=\frac{2}{\left|(-1)^{n}-3\right|}= \begin{cases}\frac{2}{2}=1 & n \text { even } \\
\frac{2}{4}=\frac{1}{2} & n \text { odd }\end{cases}
\end{aligned}
$$

$\limsup _{n \rightarrow \infty}\left|a_{n}\right|^{\frac{1}{n}}=1 \quad$ Root trot does not apply
However, the above shows that $a_{n}=1$ if $n i s$ even. So the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ does not converge to 0 , so $\sum_{n=1}^{+\infty} a_{n}$ diverges by the "nt h-term test".
$\cdot\left(\frac{1}{2}\right)+\left(\frac{1}{3}\right)+\left(\frac{1}{2^{2}}\right)+\left(\frac{1}{3^{2}}\right)+\left(\frac{1}{2^{3}}\right)+\left(\frac{1}{3^{3}}\right)+\left(\frac{1}{2^{4}}\right)+\left(\frac{1}{3^{4}}\right)+\left(\frac{1}{2^{2}}\right)+\left(\frac{1}{3^{5}}\right)+\cdots$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \sup \left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{m \rightarrow \infty} \frac{1}{2}\left(\frac{3}{2}\right)^{m}=+\infty \\
& \liminf _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{m \rightarrow \infty}\left(\frac{2}{3}\right)^{m}=0 .
\end{aligned}
$$

does not apply.
Root trot:

$$
\frac{\text { Root trot: }}{\left|a_{n}\right|^{\frac{1}{n}}}= \begin{cases}\left(\frac{1}{2^{m}}\right)^{\frac{1}{2 m}}=\frac{1}{\sqrt{2}} & \text { if } n \text { is odd } \\ \left(\frac{1}{3^{m}}\right)^{\frac{1}{2 m}}=\frac{1}{\sqrt{3}} & \text { if } n \text { is even. }\end{cases}
$$

$\operatorname{limsip}_{n \rightarrow \infty}\left|a_{n}\right|^{\frac{1}{n}}=\frac{1}{\sqrt{2}}<1 . \quad \begin{gathered}\text { Root tret } \\ \text { applies } \\ \text { and implies }\end{gathered}$ that the series converges absolutely.

