Axions
N1.
$$A \in \mathbb{N}$$

N2. If $N \in \mathbb{N}$, then there exists a unique
successor of N , denoted $M+1$, and that
 $M+1 \in \mathbb{N}$.
N3. The element $I \in \mathbb{N}$ is not the successor
of any element in \mathbb{N} .
N4. If $N, M \in \mathbb{N}$ such that their successors
coincide, i.e., $M+1 = M+1$, then $N=M$.
N5. If a subset $S \subset \mathbb{N}$ is such that
 $M = S$
Important
 $I \notin N \in S$, then $M+1 \in S$
induction.

Proofs by Induction a based on Axion NS.
Suppose you wish to prove that a certain
property, say Pn, holds for all med.
Define the set S = {men N : Pn holds}.
By Axion NS, to prove that S = N, it suffices
to show that:
Bosis: Pa holds, i.e., IES.
Step: If Pn holds, then Pn+1 also holds,
I.e., if MES, then MIES.
Example:
Proposition: For all MEN,
I+Z+...t N =
$$\frac{m(n+1)}{2}$$
.
Proof: (by Induction) Let Pn be the property that
Pn: I+Z+...t N = $\frac{m(n+1)}{2}$.
Bosis: P1: I = $\frac{1.(1+1)}{2}$ true.
Step: We need to show that if Pn is frue,

Hnen also
$$P_{N+1}$$
 is true.
Since we are assuming that P_{N} is true, we have
 $1+2+\cdots+n = \frac{n(n+1)}{2}$
Add $n+1$ to both sides:
 $1+2+\cdots+n+(n+1)^{n}\frac{n(n+1)}{2}+(n+1)$
 $=\frac{(n+1)}{2}(n+2)$
 $=\frac{(n+1)((n+1)+1)}{2}$
The above statement to precisely P_{n+1} .
By induction, it fellows that P_{N} is true for all net N .
Proposition: For all $n \in N$, the number 5^{N} - $4n-1$
 ns diviseble by 16.
Pl. (by Induction). Let P_{N} be the property that
 $16|5^{N}-4n-1$.
 $n = \frac{n(n+1)}{2}$

Boois: P_1 : $5^{-4} \cdot 1 - 1 = 0$
Step: Pn => Pn+1
"jupties"
Suppose 16 5 ⁿ - 4n - 1. Now compute
$5^{n+1} - 4(n+1) - 1 = 5.5^{n} - 4n - 4 - 1$
-16n + 16n
= 5.5 - 20n - 5 + 16n
$= 5(5^{n} - 4n - 1) + 16n$
Viener Hais Hais this is
number is divisible by 16 also divis.
The dove number is a sum of two y 16.
numbers divisible by 16, thus it is divisible
by 16 as well. This vecifies that Party hold
provided that 'm does.

Proposition (Ex 1.3). For all MEN,

$$I^{2} + Z^{2} + 3^{2} + \dots + N^{2} = \frac{n(n+1)(2n+4)}{6}$$
Proof: Let Pn be the property that

$$P_{n}: I^{2} + Z^{2} + 3^{2} + \dots + N^{2} = \frac{n(n+1)(2n+4)}{6}$$
Doss: P_{1}: I^{2} = $\frac{1(1+1)(2.1+4)}{6} = \frac{2.3}{6}$
Step: Want to show that $P_{n} \Longrightarrow P_{n+4}$.

$$I^{2} + 2^{2} + \dots + N^{2} + (N+4)^{2} (P_{n}) = \frac{n(n+1)(2n+4)}{6} + (N+4)^{2}$$

$$= \frac{(n+1)}{6} (n(2n+4) + 6(n+4))$$

$$= (n+2)(2n+3)$$
The above is precisely P_{n+4} .

$$I = \frac{(n+2)(2n+3)}{6}$$
The above is precisely P_{n+4} .

$$I = \frac{(n+2)(2n+3)}{6}$$
The obove is precisely P_{n+4} .

$$I = \frac{(n+2)(2n+3)}{6}$$
The above $P_{n} = P_{n+4}$.

$$I = \frac{(n+2)(2n+3)}{6}$$
The above $P_{n} = P_{n+4}$.

$$I = \frac{(n+2)(2n+3)}{6}$$
The above P_{n+4} .

$$I = \frac{(n+4)(2n+3)}{6}$$

Note: Three are similar formulas for

$$1^{K} + 2^{K} + 3^{K} + \dots + n^{K} = \dots$$

in terms of Bernoulli numbers. These formules are
difficult to obtain, but, once you have a condidate,
proving H by induction is easy.
Ex: Prove that for all XEIR and all MEN
 $| sim(mx) | \leq N. | sim x |$. (two is done in Ros)
Proposition: (Ex 1.6). For all MEN, 7 | (11^M - 4^m)
Proposition: (Ex 1.6). For all MEN, 7 | (11^M - 4^m)
Let Prove the statement 7 | (11^M - 4^m).
Basis: P1: 7 | 11⁴ - 4⁴
 $14^{M+1} - 4^{M+1} = 11.11^{M} - 4.4^{M}$
 $= (4+7).11^{M} - 4.4^{M}$
 $= 4.(11^{M} - 4^{M}) + 7.11^{M}$
is divisible by divisible by 7.
The above sum of members div. by 7 is also div. by 7.

Proposition: For all
$$a, b \in \mathbb{Z}$$
 and $N \in \mathbb{N}$,
 $b \mid (a+b)^{N} - a^{N}$
Note: The previous proposition nos the case $a=4$
 $b=7$.
These also follow from the $\binom{N}{k} = \frac{M!}{k!(n-k)!}$
Binomial Theorem : $(a+b)^{n} = \sum_{k=0}^{n} \binom{N}{k} a^{k} \cdot b^{n-k}$
This Thin can $= \binom{N}{n} a^{n} + \binom{M}{4} a^{n-1} b + \binom{N}{2} a^{k-2} b^{k+1}$
also be proved
 $M = \binom{M}{2} a^{k-1} (M) a^{k-1} (M) b^{k-1} (M) b^{k}$
Note: $(a+b)^{N} - a^{n} = a^{n} + \binom{M}{n} a^{n-1} b^{k} + \dots + \binom{M}{n} a^{k-1} b^{n-1} b^{n-1}$
 $= b \left(\binom{M}{1} a^{n-1} + \binom{N}{2} a^{n-2} b^{k-1} + \dots + \binom{M}{n} a^{k-2} b^{n-1} \right)$
 $e^{22} + \binom{M}{2} a, b \in \mathbb{Z}$.