Today:

1. Introduction / Course logistics \& syllabus
2. Natural numbers and proofs by induction ($\xi 1$ of Ross).

Natural numbers: $\quad \mathbb{N}=\{1,2,3,4, \ldots\}$

Axioms
1 is an element of the set \mathbb{N}
Ni. $\quad, \in \mathbb{N}^{K}$
N2. If $n \in \mathbb{N}$, then there exists a unique successor of n, denoted $n+1$, such that $n+1 \in \mathbb{N}$.
N3. The element $1 \in \mathbb{N}$ is not the successor of any element in N.
N4. If $n, m \in \mathbb{N}$ such that their successors coincide, i-e., $n+1=m+1$, then $n=m$.
N5. If a subset SCN is such that $\uparrow \quad 1 \in S$
Important

- If $n \in S$, then $n+1 \in S$ for proving statements then $S=\mathbb{N}$.
by induction.

Proofs by Induction based on Axiom NS.
Suppose you wish to prove that a certain property, say P_{n}, holds for all $n \in \mathbb{N}$.
 By Axiom NS, to prove that $S=\mathbb{N}$, it suffices to show that:

- Basis: P_{1} holds, ie., $1 \in S$.
- Step: If P_{n} holds, then P_{n+1} also holds, i.e., if $n \in S$, then $n+1 \in S$.

Example:
Proposition: For all $n \in \mathbb{N}$,

$$
1+2+\cdots+n=\frac{n(n+1)}{2}
$$

Proof: (by Induction) Let P_{n} be the property that $P_{n}!\quad 1+2+\cdots+n=\frac{n(n+1)}{2}$.
Basis: $P_{1}: 1=\frac{1 \cdot(1+1)}{2}$ true.
Step: We need to show that if P_{n} is true,
then also P_{n+1} is true.
Since we are assuming that P_{n} is true, we have

$$
1+2+\cdots+n=\frac{n(n+1)}{2}
$$

Add $n+1$ to both sides:

$$
\begin{aligned}
1+2+\cdots+n+(n+1) & =\frac{\left(p_{n}\right)}{2}+(n+1) \\
& =\frac{(n+1)}{2}(n+2) \\
& =\frac{(n+1)((n+1)+1)}{2}
\end{aligned}
$$

The above statement is precisely P_{n+1}.
By induction, it follows that P_{n} is true for all $v \in \mathbb{N}$.
Proposition: For all $n \in \mathbb{N}$, the number $5^{n}-4 n-1$ is divisible by 16.
P\&. (by Induction). Let P_{n} be the property that $16 \mid 5^{n}-4 n-1$

Basis: $\quad P_{1}: \quad S^{1}-4.1-1=0$
Step: $P_{n} \Rightarrow P_{n+1}$
"implies"
Suppose $16 \mid 5^{n}-4 n-1$. Now compute

$$
\begin{aligned}
& 5^{n+1}-4(n+1)-1=5 \cdot 5^{n}-4 n-4-1 \\
&=\underbrace{5 \cdot 5^{n}-20 n-5 n}+16 n \\
&=5 \cdot\left(5^{5^{n}-4 n-1}\right)+\underbrace{16 n}_{\text {T }} \\
& \text { by }
\end{aligned}
$$ numbers divisible by 26, thus it is divisible by 16 as well. This verifies that Pn+1 holds, provided that P_{n} does.

Proposition: $(E x$ 1.3). For all $m \in \mathbb{N}$,

$$
1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Proof: Let P_{n} be the property that $P_{n}: 1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$
Basis: $P_{1} ; 1^{2}=\frac{1(1+1)(2.1+1)}{6}=\frac{2.3}{6}$
Step: Want to show that $P_{n} \Longrightarrow P_{n+1}$.

$$
\begin{aligned}
1^{2}+2^{2}+\cdots+n^{2}+(n+1)^{2} & \stackrel{\left(P_{n}\right)}{=} \frac{n(n+1)(2 n+1)}{6}+(n+1)^{2} \\
& =\frac{(n+1)}{6}(\underbrace{n(2 n+1)+6(n+1)}_{\begin{array}{c}
2 n^{2}+n+6 n+6 \\
=(n+2)(2 n+3)
\end{array}}) \\
& =\frac{(n+1)(n+2)(2 n+3)}{6}
\end{aligned}
$$

The above is precisely P_{n+1}.
Exercise: Try on your own!
Prove that for all $n \in \mathbb{N}, 1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$ using induction.

Note: There are similar formulas for

$$
1^{k}+2^{k}+3^{k}+\cdots+n^{k}=\cdots
$$

in terms of Bernoulli numbers. These formulas are difficult to obtain, but, once you have a candidate, proving it by induction is easy.
Ex: Prove that for all $x \in \mathbb{R}$ and all $n \in \mathbb{N}$ $|\sin (n x)| \leq n .|\sin x|$. (this is done in Ross.)
Proposition: $(E \times 1.6)$. For all $n \in \mathbb{N}, 7 \mid\left(11^{n}-4^{n}\right)$.
Proof. (by Induction)
Let P_{n} be the statement $7 /\left(11^{n}-4^{n}\right)$.
Basis: $P_{1}: \quad 7 / 11^{1}-4^{1}$
Step: $P_{n} \Rightarrow P_{n+1}$.

$$
\begin{aligned}
11^{n+1}-4^{n+1} & =11 \cdot 11^{n}-4 \cdot 4^{n} \\
& =(4+7) \cdot 11^{n}-4 \cdot 4^{n} \\
& =4 \cdot(\underbrace{11^{n}-4^{n}}_{n})+\underbrace{7 \cdot 11^{n}}_{n}
\end{aligned}
$$

The dove sum of numbers div. by 7 is do dive by 7 .

Proposition: For all $a, b \in \mathbb{Z}$ and $n \in \mathbb{N}$,

$$
b \mid(a+b)^{n}-a^{n}
$$

Note: The previous Proposition was the case $a=4$ $b=7$.

These also follow from the
Binomial Theorem: $(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} \cdot b^{n-k}$
This The can also ba proved by induction on n.

$$
\begin{aligned}
=\binom{n}{n} a^{n}+\binom{M}{1} a^{n-1} \cdot b & +\binom{n}{2} a^{n-2} b^{2}+ \\
& \cdots+\binom{n}{2} a^{2} b^{n-2}+\binom{M}{1} a b^{n-1}+\binom{n}{n} b^{n}
\end{aligned}
$$

Note:

$$
\begin{aligned}
(a+b)^{n}-a^{n} & =a^{n}+\binom{n}{1} a^{n-1} \underline{b}+\cdots+\binom{n}{1} a \underline{b}^{n-1}+\underline{b}^{n}-a^{n} \\
& =b(\underbrace{\binom{n}{1} a^{n-1}+\binom{n}{2} a^{n-2} b+\cdots+\binom{n}{1} a b^{n-2}+b^{n-1}}_{\in \mathbb{Z} \text { if } a, b \in \mathbb{Z}})
\end{aligned}
$$

