Problem 1 (10 pts): The largest currently known Mersenne prime is $2^{82,589,933}-1$. Prove that:

$$
\sqrt{2^{82,589,933}-1} \text { is not a rational number. }
$$

Hint: Let $p(x)=x^{2}-\left(2^{82,589,933}-1\right)$ and use the above fact that $2^{82,589,933}-1$ is prime.

Solution (following HW1 Problem 2):

Consider the polynomial $p(x)=x^{2}-\left(2^{82,589,933}-1\right)$, and note that $\sqrt{2^{82,589,933}-1}$ is, by definition, the only positive root of $p(x)$. Since $p(x)$ is monic, all its coefficients are integers, and its constant coefficient is $a_{0}=2^{82,589,933}-1$, the Rational Zeros Theorem (Lecture 2) implies that any rational root of $p(x)$ must be among the divisors of $2^{82,589,933}-1$. As $2^{82,589,933}-1$ is a prime number, its divisors are ± 1 and $\pm 2^{82,589,933}-1$. By direct inspection, $p(\pm 1) \neq 0$ and $p\left(\pm 2^{82,589,933}-1\right) \neq 0$, thus $\sqrt{2^{82,589,933}-1} \notin \mathbb{Q}$.

Problem $2(10 \mathrm{pts})$: Let s_{n} be a sequence of numbers in the closed interval $[-10,10]$.
(a) Does s_{n} have to be Cauchy? Justify.
(b) Does s_{n} have to admit a Cauchy subsequence? Justify.

Hint: "Justify" means "give a proof" if you answer YES, and it means "give a counter-example" if you answer NO.

Solution:

(a) No. The fact that s_{n} is bounded, more precisely $\left|s_{n}\right| \leq 10$, is not enough to ensure that s_{n} is Cauchy. As a counter-example, take the sequence $s_{n}=(-1)^{n}$. Clearly, $\left|s_{n}\right|=1<10$ for all $n \in \mathbb{N}$, but s_{n} does not converge, so it is not Cauchy. ${ }^{1}$
(b) Yes. By the Bolzano-Weierstrass Theorem (Lecture 8), every bounded sequence of real numbers admits a convergent subsequence. Thus, since s_{n} is bounded, it admits a convergent subsequence, and this subsequence is Cauchy because it converges.

[^0]Problem 3 (15 pts): Recall from Lecture 21 that

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}, \quad \text { for all } x \in \mathbb{R}
$$

Starting from the above fact, justify every step of the way to prove that:

$$
\int_{0}^{1} \frac{e^{-x^{2}}}{3} \mathrm{~d} x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{3(2 n+1)(n!)}
$$

Solution:

First, we perform the substitution $x \mapsto-x^{2}$, and obtain

$$
e^{-x^{2}}=\sum_{n=0}^{\infty} \frac{\left(-x^{2}\right)^{n}}{n!}, \quad \text { for all } x \in \mathbb{R}
$$

Next, we divide by 3 on both sides and use $\left(-x^{2}\right)^{n}=\left((-1)\left(x^{2}\right)\right)^{n}=(-1)^{n} x^{2 n}$ to obtain:

$$
\frac{e^{-x^{2}}}{3}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{3 n!}, \quad \text { for all } x \in \mathbb{R}
$$

Note that the radius of convergence $R=+\infty$ is unchanged by both of these operations.
Now, integrating term-by-term (see Lecture 18) from $x=0$ to $x=1$ we find:

$$
\int_{0}^{1} \frac{e^{-x^{2}}}{3} \mathrm{~d} x=\int_{0}^{1} \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{3 n!} \mathrm{d} x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{3} \int_{0}^{1} \frac{x^{2 n}}{n!} \mathrm{d} x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{3(2 n+1)(n!)}
$$

Problem 4 (15 pts): For what values of $x \in \mathbb{R}$ is the following series absolutely convergent?

$$
\frac{x}{5}+\frac{x^{2}}{10}+\frac{x^{3}}{5^{2}}+\frac{x^{4}}{10^{2}}+\frac{x^{5}}{5^{3}}+\frac{x^{6}}{10^{3}}+\frac{x^{7}}{5^{4}}+\frac{x^{8}}{10^{4}}+\ldots
$$

Solution:

By an analysis similar to the last exercise in Lecture 11 and HW4 Problem 1(f), we have that the above series can be written as $\sum_{n=1}^{+\infty} a_{n} x^{n}$, where a_{n} are given by

$$
a_{n}= \begin{cases}\frac{1}{5^{m}} & \text { if } n=2 m-1 \text { is odd } \\ \frac{1}{10^{m}} & \text { if } n=2 m \text { is even }\end{cases}
$$

and, hence,

$$
\left|a_{n}\right|^{1 / n}= \begin{cases}\left(\frac{1}{5^{m}}\right)^{\frac{1}{2 m-1}}=\frac{1}{5^{m /(2 m-1)}} & \text { if } n=2 m-1 \text { is odd } \\ \left(\frac{1}{10^{m}}\right)^{\frac{1}{2 m}}=\frac{1}{\sqrt{10}} & \text { if } n=2 m \text { is even }\end{cases}
$$

Therefore, the largest subsequential limit is clearly

$$
\beta=\limsup _{n \rightarrow+\infty}\left|a_{n}\right|^{1 / n}=\lim _{m \rightarrow+\infty} \frac{1}{5^{m /(2 m-1)}}=\frac{1}{\sqrt{5}},
$$

and so the radius of convergence for the series is $R=\frac{1}{\beta}=\sqrt{5}$.
Regarding the endpoints $x= \pm \sqrt{5}$, we see that the sum of just the odd terms in the above series already diverges if $x=\sqrt{5}$, since

$$
\frac{5^{1 / 2}}{5}+\frac{5^{3 / 2}}{5^{2}}+\frac{5^{5 / 2}}{5^{3}}+\frac{5^{7 / 2}}{5^{4}}+\cdots=\sum_{m=1}^{\infty} \frac{5^{(2 m-1) / 2}}{5^{m}}=\sum_{m=1}^{\infty} \frac{1}{\sqrt{5}}=+\infty
$$

so the series does not converge absolutely at neither endpoint $x= \pm \sqrt{5}$.
In conclusion, the above series converges absolutely if and only if $|x|<\sqrt{5}$.

Problem 5 (15 pts): Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function that satisfies

$$
|f(x)-f(y)| \leq C|x-y|^{\alpha}
$$

for all $x, y \in \mathbb{R}$, where $C>0$ and $\alpha>0$ are constants.
(a) Prove that f is uniformly continuous on \mathbb{R}.
(b) Give an example of $f(x)$ that satisfies the above with $\alpha=1$ but is not differentiable at $x=0$.
(c) Prove that if $\alpha>1$, then f is constant.

Solution:

(a) Let $\varepsilon>0$ be given, and let $\delta=\left(\frac{\varepsilon}{C}\right)^{1 / \alpha}$. If $x, y \in \mathbb{R}$ satisfy $|x-y|<\delta$, then

$$
|f(x)-f(y)| \leq C|x-y|^{\alpha}<C \delta^{\alpha}=\varepsilon
$$

so f is uniformly continuous.
(b) Let $f(x)=|x|$. Then $f(x)$ is not differentiable at $x=0$; however, by the triangle inequality, $|f(x)-f(y)|=||x|-|y|| \leq|x-y|$ for all $x, y \in \mathbb{R}$, so f satisfies the required property with $C=1$ and $\alpha=1$.
(c) If $\alpha>1$, then setting $y=x_{0}$ and using the above inequality we can compute

$$
\left|f^{\prime}\left(x_{0}\right)\right|=\lim _{x \rightarrow x_{0}}\left|\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}\right| \leq \lim _{x \rightarrow x_{0}} \frac{C\left|x-x_{0}\right|^{\alpha}}{\left|x-x_{0}\right|}=C \lim _{x \rightarrow x_{0}}\left|x-x_{0}\right|^{\alpha-1}=0
$$

so $f^{\prime}\left(x_{0}\right)=0$ for all $x_{0} \in \mathbb{R}$, which implies that f is constant.

Problem 6 (15 pts): Compute the following limit of definite integrals:

$$
\lim _{n \rightarrow+\infty} \int_{0}^{\pi} \frac{n^{2}-\sin ^{3} x}{4 n^{2}+\cos ^{2} x} \mathrm{~d} x
$$

Hint: Show that $f_{n}(x)=\frac{n^{2}-\sin ^{3} x}{4 n^{2}+\cos ^{2} x}$ converge uniformly to some $f(x)$ as $n \rightarrow+\infty$.
You must justify why the convergence is uniform if you later use that fact.

Solution (following HW6 Problem 1):

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the constant function given by $f(x)=\frac{1}{4}$. In order to show that

$$
f_{n}(x)=\frac{n^{2}-\sin ^{3} x}{4 n^{2}+\cos ^{2} x}
$$

converge uniformly to $f(x)$, we must prove that, given $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that $\left|f_{n}(x)-f(x)\right|<\varepsilon$ for all $n \geq N$ and $x \in \mathbb{R}$. So, we compute:

$$
\begin{aligned}
\left|f_{n}(x)-f(x)\right|=\left|\frac{n^{2}-\sin ^{3} x}{4 n^{2}+\cos ^{2} x}-\frac{1}{4}\right| & =\left|\frac{4\left(n^{2}-\sin ^{3} x\right)-\left(4 n^{2}+\cos ^{2} x\right)}{4\left(4 n^{2}+\cos ^{2} x\right)}\right|= \\
& =\left|\frac{4 \sin ^{3} x+\cos ^{2} x}{4\left(4 n^{2}+\cos ^{2} x\right)}\right| \leq \frac{\left|4 \sin ^{3} x+\cos ^{2} x\right|}{16 n^{2}} \leq \frac{5}{16 n^{2}},
\end{aligned}
$$

where the first inequality follows from $4 n^{2}+\cos ^{2} x \geq 4 n^{2}$ for all $x \in \mathbb{R}$, and the second inequality follows from the triangle inequality:

$$
\left|4 \sin ^{3} x+\cos ^{2} x\right| \leq 4\left|\sin ^{3} x\right|+\left|\cos ^{2} x\right| \leq 4+1=5
$$

Therefore, if we take $N \in \mathbb{N}$ to be the smallest integer larger than $\sqrt{\frac{5}{16 \varepsilon}}=\frac{1}{4} \sqrt{\frac{5}{\varepsilon}}$, then for all $n \geq N$ it follows from the above that $\left|f_{n}(x)-f(x)\right| \leq \frac{5}{16 n^{2}}<\varepsilon$, as desired.
Now, since $f_{n}(x)$ are continuous for all $n \in \mathbb{N}$ and converge uniformly to $f(x)=\frac{1}{4}$, we may exchange the order of limit and integration (see Video 1 of Lecture 17):

$$
\lim _{n \rightarrow+\infty} \int_{0}^{\pi} f_{n}(x) \mathrm{d} x=\int_{0}^{\pi} \lim _{n \rightarrow+\infty} f_{n}(x) \mathrm{d} x=\int_{0}^{\pi} \frac{1}{4} \mathrm{~d} x=\frac{\pi}{4} .
$$

Problem 7 (20 pts): Consider the sequence of functions $f_{n}:[0,1] \rightarrow \mathbb{R}$ given by

$$
f_{n}(x)=\frac{3 x^{2}}{x^{2}+(1-n x)^{2}}
$$

(a) Prove that there exists a function $f:[0,1] \rightarrow \mathbb{R}$ such that the sequence f_{n} converges pointwise to f on $[0,1]$. Hint: First, find $f(x)$. Then prove $f_{n} \rightarrow f$ pointwise.
(b) Does f_{n} converge to f uniformly? Hint: Compute $f_{n}\left(\frac{1}{n}\right)$.
(c) Is the sequence f_{n} uniformly bounded? Hint: $a^{2} \leq a^{2}+b^{2}$ for all $a, b \in \mathbb{R}$.
(d) Is the family $\mathcal{F}=\left\{f_{n}: n \in \mathbb{N}\right\}$ equicontinuous? Hint: Arzelà-Ascoli Theorem.

Solution:

(a) Let f : $[0,1] \rightarrow \mathbb{R}$ be the constant function $f(x)=0$. For any $0<x \leq 1$, we have:

$$
\lim _{n \rightarrow+\infty} \frac{3 x^{2}}{x^{2}+(1-n x)^{2}}=\lim _{n \rightarrow+\infty} \frac{3}{1+\left(\frac{1}{x}-n\right)^{2}}=0
$$

because $\left(\frac{1}{x}-n\right)^{2} \rightarrow+\infty$ as $n \rightarrow+\infty$. Moreover, at $x=0$, we have $f_{n}(0)=0$ for all $n \in \mathbb{N}$. Thus, $f_{n} \rightarrow f$ pointwise for all $x \in[0,1]$.
(b) No. If $f_{n} \rightarrow f$ uniformly, then we would have that for all $\varepsilon>0$, there would exist $N \in \mathbb{N}$ such that if $n \geq N$ then $\left|f_{n}(x)\right|<\varepsilon$ for all $x \in[0,1]$. However, this does not hold for any $\varepsilon<3$, because $f_{n}\left(\frac{1}{n}\right)=3$ for all $n \in \mathbb{N}$.
(c) Yes. For all $n \in \mathbb{N}$ and $0<x \leq 1$, we have $x^{2}+(1-n x)^{2} \geq x^{2}>0$ and hence

$$
\left|f_{n}(x)\right|=\left|\frac{3 x^{2}}{x^{2}+(1-n x)^{2}}\right| \leq 3
$$

Moreover, $\left|f_{n}(0)\right|=0 \leq 3$ as well. So f_{n} are uniformly bounded by $M=3$.
(d) No. Since f_{n} is uniformly bounded by (c), if $\mathcal{F}=\left\{f_{n}: n \in \mathbb{N}\right\}$ was equicontinuous, then the Arzelà-Ascoli Theorem would imply that f_{n} has a uniformly convergent subsequence $f_{n_{k}}$. Such a subsequence $f_{n_{k}}$ would also converge to the (pointwise) limit f of the sequence f_{n}. However, by the same argument in (b), we know that $f_{n_{k}}\left(\frac{1}{n_{k}}\right)=3$ for all $k \in \mathbb{N}$, so this subsequence cannot converge uniformly to f.

Figure 1: The graphs of $f_{n}(x)$ for $1 \leq n \leq 15$.

[^0]: ${ }^{1}$ Recall that a sequence of real numbers is Cauchy if and only if it converges.

