
Problem 1 (10 pts): The largest currently known Mersenne prime is 282,589,933 − 1.
Prove that: √

282,589,933 − 1 is not a rational number.

Hint: Let p(x) = x2−(282,589,933 − 1) and use the above fact that 282,589,933−1 is prime.

Solution (following HW1 Problem 2):
Consider the polynomial p(x) = x2 − (282,589,933 − 1), and note that

√
282,589,933 − 1 is,

by definition, the only positive root of p(x). Since p(x) is monic, all its coefficients
are integers, and its constant coefficient is a0 = 282,589,933 − 1, the Rational Zeros
Theorem (Lecture 2) implies that any rational root of p(x) must be among the divisors
of 282,589,933−1. As 282,589,933−1 is a prime number, its divisors are±1 and±282,589,933−1.
By direct inspection, p(±1) 6= 0 and p(±282,589,933 − 1) 6= 0, thus

√
282,589,933 − 1 6∈ Q.



Problem 2 (10 pts): Let sn be a sequence of numbers in the closed interval [−10, 10].

(a) Does sn have to be Cauchy? Justify.

(b) Does sn have to admit a Cauchy subsequence? Justify.

Hint: “Justify” means “give a proof” if you answer YES,
and it means “give a counter-example” if you answer NO.

Solution:

(a) No. The fact that sn is bounded, more precisely |sn| ≤ 10, is not enough to ensure
that sn is Cauchy. As a counter-example, take the sequence sn = (−1)n. Clearly,
|sn| = 1 < 10 for all n ∈ N, but sn does not converge, so it is not Cauchy.1

(b) Yes. By the Bolzano–Weierstrass Theorem (Lecture 8), every bounded sequence of
real numbers admits a convergent subsequence. Thus, since sn is bounded, it admits
a convergent subsequence, and this subsequence is Cauchy because it converges.

1Recall that a sequence of real numbers is Cauchy if and only if it converges.



Problem 3 (15 pts): Recall from Lecture 21 that

ex =
∞∑
n=0

xn

n!
, for all x ∈ R.

Starting from the above fact, justify every step of the way to prove that:∫ 1

0

e−x
2

3
dx =

∞∑
n=0

(−1)n

3(2n+ 1)(n!)
.

Solution:
First, we perform the substitution x 7→ −x2, and obtain

e−x
2

=
∞∑
n=0

(−x2)n

n!
, for all x ∈ R.

Next, we divide by 3 on both sides and use (−x2)n = ((−1)(x2))n = (−1)nx2n to obtain:

e−x
2

3
=
∞∑
n=0

(−1)nx2n

3n!
, for all x ∈ R.

Note that the radius of convergence R = +∞ is unchanged by both of these operations.
Now, integrating term-by-term (see Lecture 18) from x = 0 to x = 1 we find:∫ 1

0

e−x
2

3
dx =

∫ 1

0

∞∑
n=0

(−1)nx2n

3n!
dx =

∞∑
n=0

(−1)n

3

∫ 1

0

x2n

n!
dx =

∞∑
n=0

(−1)n

3(2n+ 1)(n!)
.



Problem 4 (15 pts): For what values of x ∈ R is the following series absolutely
convergent?

x

5
+
x2

10
+
x3

52
+

x4

102
+
x5

53
+

x6

103
+
x7

54
+

x8

104
+ . . .

Solution:
By an analysis similar to the last exercise in Lecture 11 and HW4 Problem 1(f), we
have that the above series can be written as

∑+∞
n=1 anx

n, where an are given by

an =


1

5m
if n = 2m− 1 is odd

1

10m
if n = 2m is even

and, hence,

|an|1/n =



(
1

5m

) 1
2m−1

=
1

5m/(2m−1)
if n = 2m− 1 is odd

(
1

10m

) 1
2m

=
1√
10

if n = 2m is even

Therefore, the largest subsequential limit is clearly

β = lim sup
n→+∞

|an|1/n = lim
m→+∞

1

5m/(2m−1)
=

1√
5
,

and so the radius of convergence for the series is R = 1
β

=
√

5.

Regarding the endpoints x = ±
√

5, we see that the sum of just the odd terms in the
above series already diverges if x =

√
5, since

51/2

5
+

53/2

52
+

55/2

53
+

57/2

54
+ · · · =

∞∑
m=1

5(2m−1)/2

5m
=

∞∑
m=1

1√
5

= +∞,

so the series does not converge absolutely at neither endpoint x = ±
√

5.

In conclusion, the above series converges absolutely if and only if |x| <
√

5.



Problem 5 (15 pts): Suppose that f : R→ R is a function that satisfies

|f(x)− f(y)| ≤ C |x− y|α

for all x, y ∈ R, where C > 0 and α > 0 are constants.

(a) Prove that f is uniformly continuous on R.

(b) Give an example of f(x) that satisfies the above with α = 1 but is not differentiable
at x = 0.

(c) Prove that if α > 1, then f is constant.

Solution:

(a) Let ε > 0 be given, and let δ =
( ε
C

)1/α
. If x, y ∈ R satisfy |x− y| < δ, then

|f(x)− f(y)| ≤ C |x− y|α < C δα = ε,

so f is uniformly continuous.

(b) Let f(x) = |x|. Then f(x) is not differentiable at x = 0; however, by the triangle
inequality,

∣∣f(x) − f(y)
∣∣ =

∣∣|x| − |y|∣∣ ≤ |x − y| for all x, y ∈ R, so f satisfies the
required property with C = 1 and α = 1.

(c) If α > 1, then setting y = x0 and using the above inequality we can compute

|f ′(x0)| = lim
x→x0

∣∣∣∣f(x)− f(x0)

x− x0

∣∣∣∣ ≤ lim
x→x0

C|x− x0|α

|x− x0|
= C lim

x→x0
|x− x0|α−1 = 0,

so f ′(x0) = 0 for all x0 ∈ R, which implies that f is constant.



Problem 6 (15 pts): Compute the following limit of definite integrals:

lim
n→+∞

∫ π

0

n2 − sin3 x

4n2 + cos2 x
dx

Hint: Show that fn(x) =
n2 − sin3 x

4n2 + cos2 x
converge uniformly to some f(x) as n→ +∞.

You must justify why the convergence is uniform if you later use that fact.

Solution (following HW6 Problem 1):
Let f : R→ R be the constant function given by f(x) = 1

4
. In order to show that

fn(x) =
n2 − sin3 x

4n2 + cos2 x

converge uniformly to f(x), we must prove that, given ε > 0, there exists N ∈ N such
that |fn(x)− f(x)| < ε for all n ≥ N and x ∈ R. So, we compute:

|fn(x)− f(x)| =
∣∣∣∣ n2 − sin3 x

4n2 + cos2 x
− 1

4

∣∣∣∣ =

∣∣∣∣4(n2 − sin3 x)− (4n2 + cos2 x)

4(4n2 + cos2 x)

∣∣∣∣ =

=

∣∣∣∣4 sin3 x+ cos2 x

4(4n2 + cos2 x)

∣∣∣∣ ≤
∣∣4 sin3 x+ cos2 x

∣∣
16n2

≤ 5

16n2
,

where the first inequality follows from 4n2 + cos2 x ≥ 4n2 for all x ∈ R, and the second
inequality follows from the triangle inequality:∣∣4 sin3 x+ cos2 x

∣∣ ≤ 4
∣∣sin3 x

∣∣+
∣∣cos2 x

∣∣ ≤ 4 + 1 = 5.

Therefore, if we take N ∈ N to be the smallest integer larger than
√

5
16ε

= 1
4

√
5
ε
, then

for all n ≥ N it follows from the above that |fn(x)− f(x)| ≤ 5
16n2 < ε, as desired.

Now, since fn(x) are continuous for all n ∈ N and converge uniformly to f(x) = 1
4
, we

may exchange the order of limit and integration (see Video 1 of Lecture 17):

lim
n→+∞

∫ π

0

fn(x) dx =

∫ π

0

lim
n→+∞

fn(x) dx =

∫ π

0

1
4

dx = π
4
.



Problem 7 (20 pts): Consider the sequence of functions fn : [0, 1]→ R given by

fn(x) =
3x2

x2 +
(
1− nx

)2
(a) Prove that there exists a function f : [0, 1]→ R such that the sequence fn converges

pointwise to f on [0, 1]. Hint: First, find f(x). Then prove fn → f pointwise.

(b) Does fn converge to f uniformly? Hint: Compute fn
(
1
n

)
.

(c) Is the sequence fn uniformly bounded? Hint: a2 ≤ a2 + b2 for all a, b ∈ R.

(d) Is the family F = {fn : n ∈ N} equicontinuous? Hint: Arzelà-Ascoli Theorem.

Solution:

(a) Let f : [0, 1]→ R be the constant function f(x) = 0. For any 0 < x ≤ 1, we have:

lim
n→+∞

3x2

x2 +
(
1− nx

)2 = lim
n→+∞

3

1 +
(
1
x
− n

)2 = 0,

because
(
1
x
− n

)2 → +∞ as n → +∞. Moreover, at x = 0, we have fn(0) = 0 for
all n ∈ N. Thus, fn → f pointwise for all x ∈ [0, 1].

(b) No. If fn → f uniformly, then we would have that for all ε > 0, there would exist
N ∈ N such that if n ≥ N then |fn(x)| < ε for all x ∈ [0, 1]. However, this does
not hold for any ε < 3, because fn

(
1
n

)
= 3 for all n ∈ N.

(c) Yes. For all n ∈ N and 0 < x ≤ 1, we have x2 +
(
1− nx

)2 ≥ x2 > 0 and hence

|fn(x)| =

∣∣∣∣∣ 3x2

x2 +
(
1− nx

)2
∣∣∣∣∣ ≤ 3.

Moreover, |fn(0)| = 0 ≤ 3 as well. So fn are uniformly bounded by M = 3.

(d) No. Since fn is uniformly bounded by (c), if F = {fn : n ∈ N} was equicontinuous,
then the Arzelà-Ascoli Theorem would imply that fn has a uniformly convergent
subsequence fnk

. Such a subsequence fnk
would also converge to the (pointwise)

limit f of the sequence fn. However, by the same argument in (b), we know that
fnk

(
1
nk

)
= 3 for all k ∈ N, so this subsequence cannot converge uniformly to f .
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Figure 1: The graphs of fn(x) for 1 ≤ n ≤ 15.


