Problem 1 (10 pts): The largest currently known Mersenne prime is 28%589933 _ 1.

Prove that:
4/282,589,933 _ 1 g not a rational number.

Hint: Let p(x) = x? — (282589933 — 1) and use the above fact that 282739933 —1 is prime.

Solution (following HW1 Problem 2):

Consider the polynomial p(z) = x? — (282589933 _ 1) and note that /252589933 — 1 ig
by definition, the only positive root of p(x). Since p(z) is monic, all its coefficients
are integers, and its constant coefficient is ag = 282589933 _ 1 the Rational Zeros

Theorem (Lecture 2) implies that any rational root of p(z) must be among the divisors
of 282589933 __1 = Ag 982:589.933__1 ig 4 prime number, its divisors are £1 and £282:589:933 _1

By direct inspection, p(£1) # 0 and p(£28%589933 _ 1) =£ (), thus /282589933 — 1 & Q.



Problem 2 (10 pts): Let s, be a sequence of numbers in the closed interval [—10, 10].
(a) Does s, have to be Cauchy? Justify.
(b) Does s, have to admit a Cauchy subsequence? Justify.

Hint: “Justify” means “give a proof” if you answer YES,
and it means “give a counter-example” if you answer NO.

Solution:

(a) No. The fact that s, is bounded, more precisely |s,,| < 10, is not enough to ensure
that s, is Cauchy. As a counter-example, take the sequence s, = (—1)". Clearly,
|s,| =1 < 10 for all n € IN, but s,, does not converge, so it is not Cauchy.!

(b) Yes. By the Bolzano—Weierstrass Theorem (Lecture 8), every bounded sequence of
real numbers admits a convergent subsequence. Thus, since s,, is bounded, it admits
a convergent subsequence, and this subsequence is Cauchy because it converges.

'Recall that a sequence of real numbers is Cauchy if and only if it converges.



Problem 3 (15 pts): Recall from Lecture 21 that
o feallzeR
e’ = Z ok or all z € R.
n=0

Starting from the above fact, justify every step of the way to prove that:
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n=0

Solution:
First, we perform the substitution x + —22, and obtain

X 2\n
e—fzz( x!> . forallz €R.

n
n=0

Next, we divide by 3 on both sides and use (—2?)" = ((—1)(2?))" = (—1)"z*" to obtain:

—x2

3

0 —1)p2n
¢ :Zﬁ, for all z € R.
3n!

n=0

Note that the radius of convergence R = 400 is unchanged by both of these operations.
Now, integrating term-by-term (see Lecture 18) from z = 0 to x = 1 we find:
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Problem 4 (15 pts): For what values of x € R is the following series absolutely

convergent?
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Solution:
By an analysis similar to the last exercise in Lecture 11 and HW4 Problem 1(f), we
have that the above series can be written as ZZS& a,x", where a,, are given by

5% ifn=2m—11is odd

ap =
1
Tom if n = 2m is even

and, hence,

1 2m—1 1

‘ n|1/n —
)
— = — if n = 2m is even
10m 10

Therefore, the largest subsequential limit is clearly

Ly ooy L1
p=tmewplen™ = I forens = U5
and so the radius of convergence for the series is R = % = /5.

Regarding the endpoints z = £+1/5, we see that the sum of just the odd terms in the
above series already diverges if z = /5, since

51/2 53/2 55/2 57/2 > 5(2m—1)/2 o 1
=ttt +..._;5—m_;ﬁ_+m,

so the series does not converge absolutely at neither endpoint z = £+/5.

In conclusion, the above series converges absolutely if and only if |z| < v/5.



Problem 5 (15 pts): Suppose that f: R — R is a function that satisfies

[f(2) = f)l < Clz —y|”
for all x,y € R, where C' > 0 and a > 0 are constants.

(a) Prove that f is uniformly continuous on R.

(b) Give an example of f(x) that satisfies the above with o = 1 but is not differentiable
at x = 0.

(c) Prove that if & > 1, then f is constant.

Solution:
1/a
a) Let € > 0 be given, and let § = = . If x,y € R satisfy |z — y| < 6, then
C

[f(@) = fy)| < Clz —y|" <C* =¢,
so f is uniformly continuous.

(b) Let f(x) = |z|. Then f(x) is not differentiable at = = 0; however, by the triangle
inequality, |f(z) — f(y)| = [|lz] = ly|| < |z — y| for all z,y € R, so [ satisfies the
required property with C' =1 and a = 1.

(¢) If a > 1, then setting y = o and using the above inequality we can compute

f(x) _f<CUO) S hm C'|'Z‘_m0| :C hm ‘x_‘r0|a71 :0,
T — 2o

T—T0 |{L‘ — Qj‘()’ T—T0

/()| = lim

T—T0

so f'(xg) = 0 for all zy € R, which implies that f is constant.



Problem 6 (15 pts): Compute the following limit of definite integrals:

n? —sin®z

™
lim ———dx
n—+too Jo 4n? + cos? x

n? —sin®z

4n2? 4 cos? ¢

You must justify why the convergence is uniform if you later use that fact.

Hint: Show that f,(z)

converge uniformly to some f(x) as n — +o00.

Solution (following HW6 Problem 1):
Let f: R — R be the constant function given by f(z) = 1. In order to show that

n? —sin’z

4n? + cos? x

converge uniformly to f(z), we must prove that, given € > 0, there exists N € IN such
that |f,(z) — f(z)] < e for alln > N and = € R. So, we compute:

n? —sin®x 1 4(n? —sin® ) — (4n? + cos® )
[ful2) = f@O) = |75 —a — 7| = ; 5
4n? + cos?z 4 4(4n? + cos? )
 |4sin’z +cos? x| _ |4sin® z + cos® z 5
4(4n? 4 cos? ) 16n? ~ 16n?’

where the first inequality follows from 4n? + cos? x > 4n? for all x € R, and the second
inequality follows from the triangle inequality:

|4sin3x + cos2x| <4 ‘sin3x| + ‘COSQ$| <4+41=05.
16e ~ 4

for all n > N it follows from the above that | f,(z) — f(z)] < 127 <€, as desired.

Now, since f,(x) are continuous for all n € IN and converge uniformly to f(z) = i, we
may exchange the order of limit and integration (see Video 1 of Lecture 17):

: " — Y - 7rl _
nl_{gloo/o fn(x)dx—/onl_lffoofn(:v)dx—/o jdr =17

Therefore, if we take N € IN to be the smallest integer larger than /2= = 1 g, then



Problem 7 (20 pts): Consider the sequence of functions f,: [0,1] — R given by

32

2 + (1 —nx)z

fulz) =

(a) Prove that there exists a function f: [0, 1] — R such that the sequence f,, converges

pointwise to f on [0,1].  Hint: First, find f(x). Then prove f, — [ pointwise.
(b) Does f, converge to f uniformly?  Hint: Compute fn(%)
(c) Is the sequence f, uniformly bounded? Hint: a®> < a® + b* for all a,b € R.
(d) Is the family F = {f, : n € N} equicontinuous? Hint: Arzela-Ascoli Theorem.
Solution:
(a) Let f:]0,1] = R be the constant function f(z) = 0. For any 0 < z < 1, we have:

. 3a2 . 3
lim 5= lim ——— =0,
notee g2 4 (1 —na) noteo 14 (1 —n)

because (% — n)2 — 400 as n — +00. Moreover, at x = 0, we have f,(0) = 0 for

all n € N. Thus, f, — f pointwise for all z € [0, 1].

(b) No. If f, — f uniformly, then we would have that for all £ > 0, there would exist
N € N such that if n > N then |f,(z)|] < ¢ for all € [0,1]. However, this does
not hold for any € < 3, because fn(%) = 3 for all n € IN.

(c) Yes. Foralln € N and 0 < 2 < 1, we have 22 + (1 — n:v)2 > 22 > 0 and hence

32

x? + (1 —nm)g

()] =

'§3.

Moreover, |f,(0)] =0 < 3 as well. So f,, are uniformly bounded by M = 3.

(d) No. Since f,, is uniformly bounded by (c), if F = {f, : n € N} was equicontinuous,
then the Arzela-Ascoli Theorem would imply that f,, has a uniformly convergent
subsequence f,,. Such a subsequence f,, would also converge to the (pointwise)
limit f of the sequence f,,. However, by the same argument in (b), we know that
e (é) = 3 for all £ € N, so this subsequence cannot converge uniformly to f.

Figure 1: The graphs of f,(z) for 1 <n < 15.



