Homework Set 7

Due: Dec 6, 2021 (via Blackboard, by 11.59pm)

To be handed in:

Please remember that all problems will be graded!

1. Prove that $|\ln x-\ln y| \leq 5|x-y|$ for all $x, y \in\left[\frac{1}{5}, 5\right]$.
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a smooth function such that $f(0)=3$ and all derivatives of $f(x)$ vanish at $x=0$, that is, $f^{\prime}(0)=f^{\prime \prime}(0)=\cdots=f^{(n)}(0)=\cdots=0$ for all $n \in \mathbb{N}$. Does there exist $\varepsilon>0$ such that $f(x)=3$ for all $x \in(-\varepsilon, \varepsilon)$?
3. Consider the function $f:[0,1] \rightarrow \mathbb{R}$ given by

$$
f(x)= \begin{cases}x, & \text { if } x \in \mathbb{Q} \\ 0, & \text { if } x \notin \mathbb{Q}\end{cases}
$$

(a) Compute explicitly the lower and upper (Darboux) integrals of $f(x)$ on the interval $[0,1]$, that is, find the values of $U(f)$ and $L(f)$.
(b) Is $f(x)$ integrable on $[0,1]$?

