Homework Set 6

DUE: NOV 22, 2021 (VIA BLACKBOARD, BY 11.59PM)

To be handed in:

Please remember that all problems will be graded!

1. Consider the sequence of functions $f_n(x) = \frac{n + \cos x}{3n + \sin^2 x}$ for all $x \in \mathbb{R}$.

(a) Find an explicit function $f \colon \mathbb{R} \to \mathbb{R}$ such that $(f_n)_{n \in \mathbb{N}}$ converges uniformly on \mathbb{R} to f. You must justify why the convergence is uniform by verifying the definition of uniform convergence.

(b) Use the function f(x) to compute $\lim_{n \to +\infty} \int_{1}^{5} f_{n}(x) dx$.

2. (a) Use differentiation term-by-term and an example from class (Lectures 15/18) to prove that ∑^{+∞}_{n=1} nxⁿ = x/(1-x)² for all |x| < 1.
(b) Compute ∑^{+∞}_{n=1} n/2ⁿ.