Homework Set 6

Due: Nov 22, 2021 (via Blackboard, by 11.59Pm)

To be handed in:

Please remember that all problems will be graded!

1. Consider the sequence of functions $f_{n}(x)=\frac{n+\cos x}{3 n+\sin ^{2} x}$ for all $x \in \mathbb{R}$.
(a) Find an explicit function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges uniformly on \mathbb{R} to f. You must justify why the convergence is uniform by verifying the definition of uniform convergence.
(b) Use the function $f(x)$ to compute $\lim _{n \rightarrow+\infty} \int_{1}^{5} f_{n}(x) \mathrm{d} x$.
2. (a) Use differentiation term-by-term and an example from class (Lectures 15/18) to prove that $\sum_{n=1}^{+\infty} n x^{n}=\frac{x}{(1-x)^{2}}$ for all $|x|<1$.
(b) Compute $\sum_{n=1}^{+\infty} \frac{n}{2^{n}}$.
