Homework Set 4

Due: Оct 25, 2021 (via Blackboard, by 11.59pm)

To be handed in:

Please remember that all problems will be graded!

1. Use one of the convergence tests we discussed during lectures to justify whether each of the following series converges (and, if so, absolutely?) or diverges.
(a) $\sum_{n=1}^{\infty} 3 n^{2} e^{-n^{3}}$
(b) $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{2^{n}}{n^{2}}$
(c) $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n^{2}}{2^{n}}$
(d) $\sum_{n=1}^{\infty}\left[\sin \left(\frac{n \pi}{7}\right)\right]^{n}$
(e) $\sum_{n=1}^{\infty}\left[\sin \left(\frac{n \pi}{8}\right)\right]^{n}$
(f) $\frac{1}{\pi}+\frac{1}{5}+\frac{1}{\pi^{2}}+\frac{1}{5^{2}}+\frac{1}{\pi^{3}}+\frac{1}{5^{3}}+\frac{1}{\pi^{4}}+\frac{1}{5^{4}}+\ldots$

Solutions

Text in blue represents side comments that are not integral parts of proofs, but address issues that some students might have had difficulties with in their attempted solutions.
(a) $\sum_{n=1}^{\infty} 3 n^{2} e^{-n^{3}}<+\infty$ converges absolutely

Let $f:[1,+\infty) \rightarrow \mathbb{R}$ be given by $f(x)=3 x^{2} e^{-x^{3}}$. Then $f(x)$ is continuous, $f(x)>0$, and decreasing, since $f^{\prime}(x)=\left(6 x-9 x^{4}\right) e^{-x^{3}}<0$ for all $x \geq 1$. Moreover,

$$
\int_{1}^{+\infty} f(x) \mathrm{d} x=\lim _{b \rightarrow+\infty} \int_{1}^{b} f(x) \mathrm{d} x=\lim _{b \rightarrow+\infty}-e^{-b^{3}}+e^{-1}=\frac{1}{e}<+\infty
$$

so the series $\sum_{n=1}^{\infty} f(n)$ converges, by the Integral Test (Lecture 11). Moreover, the series converges absolutely since $a_{n} \geq 0$, so $\sum\left|a_{n}\right|=\sum a_{n}$.
Another possible solution: use the Ratio Test.
(b) $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{2^{n}}{n^{2}}$ diverges

The sequence $\left|a_{n}\right|=\left|(-1)^{n+1} \frac{2^{n}}{n^{2}}\right|=\frac{2^{n}}{n^{2}}$ diverges to $+\infty$ as $n \rightarrow+\infty$, therefore the series $\sum_{n=1}^{+\infty} a_{n}$ diverges by the " n-th term test", since $\lim _{n \rightarrow+\infty} a_{n}=0$ is a necessary condition for convergence of the series (Lecture 9).
(c) $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n^{2}}{2^{n}}$ converges absolutely

The sequence $a_{n}=(-1)^{n+1} \frac{n^{2}}{2^{n}}$ is such that $\left|a_{n}\right|^{1 / n}=\frac{n^{2 / n}}{2}$, so

$$
\limsup _{n \rightarrow+\infty}\left|a_{n}\right|^{1 / n}=\lim _{n \rightarrow+\infty} \frac{n^{2 / n}}{2}=\frac{1}{2}<1,
$$

so the series $\sum a_{n}$ converges absolutely by the Root Test.
Another possible (but more complicated) solution:
The sequence $a_{n}=\frac{n^{2}}{2^{n}}$ satisfies $a_{n} \geq 0$, is decreasing (for $n \geq 3$), and $\lim _{n \rightarrow+\infty} a_{n}=0$. Thus, $\sum_{n=1}^{+\infty}(-1)^{n+1} a_{n}$ converges by the Alternating Series Test (Lecture 11). Moreover, the above series converges absolutely by the Integral Test, since the function $f:[1,+\infty) \rightarrow \mathbb{R}$ given by $f(x)=\frac{x^{2}}{2^{x}}$ is continuous, $f(x)>0$, and decreasing (for $\left.x \geq \frac{2}{\ln 2}\right)$, because $f^{\prime}(x)=-2^{x} x(x \ln 2-2)<0$ if $x \geq \frac{2}{\ln 2} \cong 2.89$, and $\int_{1}^{+\infty} f(x) \mathrm{d} x=$ $\frac{\ln 4+\ln ^{2} 2+2}{2 \ln ^{3} 2}<+\infty$, so $\sum_{n=1}^{+\infty} f(n)<+\infty$ by the Integral Test (Lecture 11).
(d) $\sum_{n=1}^{\infty}\left[\sin \left(\frac{n \pi}{7}\right)\right]^{n}$ converges absolutely

The sequence $a_{n}=\left[\sin \left(\frac{n \pi}{7}\right)\right]^{n}$ is such that $\left|a_{n}\right|^{1 / n}=\left|\sin \left(\frac{n \pi}{7}\right)\right|$, which is periodic, and repeats itself each time n grows by 7; namely, $\left|a_{n+7}\right|^{1 /(n+7)}=\left|a_{n}\right|^{1 / n}$ for all $n \in \mathbb{N}$. Thus, the list of all possible values that $\left|a_{n}\right|^{1 / n}$ assumes is the following: $0, \sin \left(\frac{\pi}{7}\right), \cos \left(\frac{3 \pi}{14}\right), \cos \left(\frac{\pi}{14}\right)$; and it follows that the largest subsequential limit is

$$
\limsup _{n \rightarrow+\infty}\left|a_{n}\right|^{1 / n}=\cos \left(\frac{\pi}{14}\right) \cong 0.97<1 .
$$

Thus, $\sum_{n=1}^{+\infty} a_{n}$ converges absolutely by the Root Test (Lecture 9).
(e) $\sum_{n=1}^{\infty}\left[\sin \left(\frac{n \pi}{8}\right)\right]^{n}$ diverges

The sequence $a_{n}=\left[\sin \left(\frac{n \pi}{8}\right)\right]^{n}$ is such that $\left|a_{n}\right|^{1 / n}=\left|\sin \left(\frac{n \pi}{8}\right)\right|$, which is periodic, and repeats itself each time n grows by 8 ; namely, $\left|a_{n+8}\right|^{1 /(n+8)}=\left|a_{n}\right|^{1 / n}$ for all
$n \in \mathbb{N}$. Thus, the list of all possible values that $\left|a_{n}\right|^{1 / n}$ assumes is the following: $\sin \left(\frac{\pi}{8}\right), \frac{1}{\sqrt{2}}, \cos \left(\frac{\pi}{8}\right), 1$; and it follows that the largest subsequential limit is:

$$
\limsup _{n \rightarrow+\infty}\left|a_{n}\right|^{1 / n}=1 .
$$

Even though the Root Test is inconclusive in this case, by the above analysis, we can infer that $a_{n}=1$ for infinitely many values of $n \in \mathbb{N}$, namely all integers of the form $n=16 k+4$ for some $k \in \mathbb{N}$. Therefore, a_{n} does not converge to 0 as $n \rightarrow+\infty$, so $\sum_{n=1}^{+\infty} a_{n}$ diverges by the " n-th term test" (Lecture 9).
(f) $\frac{1}{\pi}+\frac{1}{5}+\frac{1}{\pi^{2}}+\frac{1}{5^{2}}+\frac{1}{\pi^{3}}+\frac{1}{5^{3}}+\frac{1}{\pi^{4}}+\frac{1}{5^{4}}+\ldots$ converges absolutely

By an analysis similar to the last exercise in Lecture 11, we have that the coefficients a_{n} in the above series $\sum_{n=1}^{+\infty} a_{n}$ satisfy:

$$
\left|a_{n}\right|^{1 / n}= \begin{cases}\left(\frac{1}{\pi^{m}}\right)^{\frac{1}{2 m-1}} & \text { if } n=2 m-1 \text { is odd } \\ \left(\frac{1}{5^{m}}\right)^{\frac{1}{2 m}}=\frac{1}{\sqrt{5}} & \text { if } n=2 m \text { is even }\end{cases}
$$

Therefore, we compute:

$$
\limsup _{n \rightarrow+\infty}\left|a_{n}\right|^{1 / n}=\lim _{m \rightarrow+\infty}\left(\frac{1}{\pi^{m}}\right)^{\frac{1}{2 m-1}}=\frac{1}{\sqrt{\pi}}<1,
$$

so the series converges absolutely by the Root Test.

