Homework Set 1

DUE: SEP 13, 2021 (VIA BLACKBOARD, BY 11.59PM)

To be handed in:

Please remember that all problems will be graded! 1. [Ross, Exercise 1.5] Prove (by induction) that, for any $n \in \mathbb{N}$,

$$1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n} = 2 - \frac{1}{2^n}$$

2. Prove that $\sqrt{23}$ is not a rational number.

3. Is $\sqrt{18 + 2\sqrt{17}} - \sqrt{17}$ a rational number or not? Justify. *Hint: Don't jump to any conclusions too fast here. Note that* $\left(\sqrt{18 + 2\sqrt{17}}\right)^2 = 18 + 2\sqrt{17} = 17 + 2\sqrt{17} + 1 = \dots$

Solutions

Text in blue represents side comments that are not integral parts of proofs, but address issues that some students might have had difficulties with in their attempted solutions.

1. *Proof.* For each $n \in \mathbb{N}$, let P_n be the following statement:

$$(P_n) 1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n} = 2 - \frac{1}{2^n}.$$

Basis. Statement (P_1) is $1 + \frac{1}{2^1} = 2 - \frac{1}{2^1}$, which is trivially true, since both sides evaluate to $\frac{3}{2}$.

Step. Assuming that statement (P_n) holds, we now prove that statement (P_{n+1}) holds:

$$\left(1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n}\right) + \frac{1}{2^{n+1}} \stackrel{(P_n)}{=} \left(2 - \frac{1}{2^n}\right) + \frac{1}{2^{n+1}}$$
$$= 2 - \frac{2}{2^{n+1}} + \frac{1}{2^{n+1}}$$
$$= 2 - \frac{1}{2^{n+1}}.$$

- 2. *Proof.* Consider the polynomial $p(x) = x^2 23$, and note that $\sqrt{23}$ is, by definition, the only positive root of p(x). By the Rational Zeros Theorem (Lecture 2), since p(x) is monic and has constant coefficient $a_0 = 23$, any rational root of p(x) must be among the divisors of 23. As 23 is a prime number, its divisors are ± 1 and ± 23 . By direct inspection, $p(\pm 1) \neq 0$ and $p(\pm 23) \neq 0$, therefore $\sqrt{23} \notin \mathbb{Q}$ is not rational.
- 3. Following the hint, and "completing the square", we find:

$$\left(\sqrt{18+2\sqrt{17}}\right)^2 = 18+2\sqrt{17} = 17+2\sqrt{17}+1 = (\sqrt{17}+1)^2,$$

therefore $\sqrt{18 + 2\sqrt{17}} = \sqrt{17} + 1$, since both are positive numbers with the same square, and hence the following number is clearly rational (actually, an integer!):

$$\sqrt{18 + 2\sqrt{17}} - \sqrt{17} = 1 \in \mathbb{Q}.$$