Homework Set 1

Due: Sep 13, 2021 (via Blackboard, by 11.59pm)

To be handed in:

Please remember that all problems will be graded!

1. [Ross, Exercise 1.5] Prove (by induction) that, for any $n \in \mathbb{N}$,

$$
1+\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2^{n}}=2-\frac{1}{2^{n}}
$$

2. Prove that $\sqrt{23}$ is not a rational number.
3. Is $\sqrt{18+2 \sqrt{17}}-\sqrt{17}$ a rational number or not? Justify.

Hint: Don't jump to any conclusions too fast here.
Note that $(\sqrt{18+2 \sqrt{17}})^{2}=18+2 \sqrt{17}=17+2 \sqrt{17}+1=\ldots$

Solutions

Text in blue represents side comments that are not integral parts of proofs, but address issues that some students might have had difficulties with in their attempted solutions.

1. Proof. For each $n \in \mathbb{N}$, let P_{n} be the following statement:

$$
\left(P_{n}\right) \quad 1+\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2^{n}}=2-\frac{1}{2^{n}} .
$$

Basis. Statement $\left(P_{1}\right)$ is $1+\frac{1}{2^{\perp}}=2-\frac{1}{2^{\text {I }}}$, which is trivially true, since both sides evaluate to $\frac{3}{2}$.
Step. Assuming that statement (P_{n}) holds, we now prove that statement (P_{n+1}) holds:

$$
\begin{aligned}
\left(1+\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2^{n}}\right)+\frac{1}{2^{n+1}} & \stackrel{\left(P_{n}\right)}{=} \\
& \left(2-\frac{1}{2^{n}}\right)+\frac{1}{2^{n+1}} \\
& 2-\frac{2}{2^{n+1}}+\frac{1}{2^{n+1}} \\
& =2-\frac{1}{2^{n+1}} .
\end{aligned}
$$

2. Proof. Consider the polynomial $p(x)=x^{2}-23$, and note that $\sqrt{23}$ is, by definition, the only positive root of $p(x)$. By the Rational Zeros Theorem (Lecture 2), since $p(x)$ is monic and has constant coefficient $a_{0}=23$, any rational root of $p(x)$ must be among the divisors of 23 . As 23 is a prime number, its divisors are ± 1 and ± 23. By direct inspection, $p(\pm 1) \neq 0$ and $p(\pm 23) \neq 0$, therefore $\sqrt{23} \notin \mathbb{Q}$ is not rational.
3. Following the hint, and "completing the square", we find:

$$
(\sqrt{18+2 \sqrt{17}})^{2}=18+2 \sqrt{17}=17+2 \sqrt{17}+1=(\sqrt{17}+1)^{2}
$$

therefore $\sqrt{18+2 \sqrt{17}}=\sqrt{17}+1$, since both are positive numbers with the same square, and hence the following number is clearly rational (actually, an integer!):

$$
\sqrt{18+2 \sqrt{17}}-\sqrt{17}=1 \in \mathbb{Q}
$$

