Simulating a random variable with prescribed pdf:


Q: How to create a round. var $X$ with p.d.f. given by $f(x)$; using as input
Note: This is very important in computer science \& $U \sim \operatorname{Uniform}((0,1))$. date science.
Prop: Given $f(x)$, let $F(x)=\int_{-\infty}^{x} f(t) d t$. Define $X=F^{-1}(U)$, where $U \sim U_{\text {niform }}((0,1))$. Then $X$ is a roudom variable with $p d f f(x)$.
Pl: $F_{X}(x)=P(X \leq x)=P\left(F^{-1}(0) \leq x\right) \stackrel{F \text { is mono. }}{=}$ increasing

$$
=P\left(F\left(F^{-1}(U)\right) \leq F(x)\right)=P(U \leq F(x))
$$


D $F(x)$. Differentiating both sides in $x$ : $f_{x}(x)=f(x)$; as desired.

Example: Simulate an exponential random veritable with $\lambda=1$; using as input $U \sim \operatorname{Un}_{\mathrm{nf}}(| |,| |)$.

$$
\begin{aligned}
& f(x)=e^{-x} \leftarrow \text { prescribed p.d.f. } \\
& F(x)=\int_{-\infty}^{x} e^{-t} d t=\cdots=1-e^{-x} \leftarrow \text { prexribed cf.d. } \\
& y=F(x)=1-e^{-x} \Rightarrow e^{-x}=1-y \Rightarrow x=-\log (1-y) \\
& F^{-1}(y)=-\log (1-y)=\log \frac{1}{1-y} . \\
& X=F^{-1}(U)=\log \left(\frac{1}{1-U}\right) \text { has the desired p.d.f. } f x(x)=e^{-x}
\end{aligned}
$$

Markov Chains:

"Transition Diogram"

Convenient to display Pip's in "Transition matrix" $\begin{aligned} & \text { current } \\ & \text { state 1 } \\ & \text { arrsent } \\ & \text { state 2 }\end{aligned} \rightarrow\left(\begin{array}{ccccc}P_{11} & P_{12} & P_{13} & \cdots & P_{\text {In }} \\ P_{21} & P_{22} & P_{23} & \cdots & P_{2 n} \\ \vdots & \vdots & 1 & & \\ \begin{array}{l}\text { current } \\ \text { state } n \\ P_{n 1}\end{array} & P_{n 2} & P_{n 3} & \cdots & P_{n n}\end{array}\right) \stackrel{\begin{array}{c}\text { Adding the } \\ \text { numbers in } \\ \text { inch of }\end{array}}{\text { these lines }} \begin{gathered}\text { gases 1. } \\ \text { gives } \\ \text { "Stochastic } \\ \text { Matrix" }\end{gathered}$
More rigerevsly: A Markov chain is a sequence of random variables $\left\{X_{k}\right\}$ taking values on $\{1,2, \ldots, n\}$ that
 satisfies the "Markov hypothesis" n'ritten above.
Basic questions:
Q: What is the probability of going from state $i$ to state $j$ after $N$ steps?

$$
\begin{aligned}
P_{i j}^{(2)}= & P_{i 1} P_{1 j}+P_{i 2} P_{2 j}+\cdots+P_{1 n} P_{n j} \\
= & \sum_{l=1}^{n} P_{i l} P_{l j} \leftarrow \begin{array}{c}
\text { This is } \\
\begin{array}{l}
\text { exactly the } \\
\\
i, j) \text { entry of } \\
\text { the matrix }
\end{array}
\end{array}
\end{aligned}
$$

Chapman- Kolmogerver Equation:

$$
P_{i j}^{(N)}=\sum_{l=1}^{M} P_{i l}^{(r)} P_{l j}^{(N-r)} \quad \text { for any } 0<r<N
$$

transition prob.
from state $i$ to
state $j$ in $N$ steps
( $\mathrm{i}, \mathrm{j}$ ) entry in

$$
\left(\begin{array}{lll}
\text { e.g. } & \text { setting } & r=N-1: \\
P_{i j}^{(N)}= & \sum_{l=1}^{n} P_{i l}^{(N-1)} P_{l j}
\end{array}\right)
$$

Q2: With what frequency is the system in a given state? (As number of steps goes to $+\infty$, in which state is the system most/least likely to be?)
(to) $\pi_{j}=\lim _{N \rightarrow \infty} P_{i j}^{(N)} \longleftarrow \frac{\text { Note: "Initial state" i }}{\text { does not matter here. }}$
From Linear Blebera, we know how to compute powers $P^{(N)}$ of a matrix $P$ for all $N$ if we know the eigenvalues and eigenvectors of $P$. ie. st $P_{i j}^{(N)}>0$ for all $i$ is
for some $N>0$.
Thy. For an ergodic Markov chain, the limits ( $\boldsymbol{H}^{\prime}$ ) exist for all $1 \leq j \leq n$, and the resulting $\bar{n}_{j}$ are the unique non-negative solutions of $\pi_{j}=\sum_{l=1}^{n} \pi_{l} P_{l j i} \sum_{j=1}^{n} \pi_{j}=1$

