Lecture 1

Numbers: - Natural numbers \mathbb{N} : $1,2,3,4, \ldots$

- Integer numbers $\mathbb{Z}: \ldots,-3,-2,-1,0,1,2,3, \ldots$
- Rational numbers \mathbb{Q} : numbers that con be expressed as an irreducible fraction m / n; where $m, n \in \mathbb{Z}, n \neq 0$.
\}
- Real numbers \mathbb{R}

Q: Can you find a rational number strictly between any two
given rational numbers?

$\forall x, y \in \mathbb{Q}, \exists z \in \mathbb{Q}, \quad x<z<y$, egg., take $z=\frac{x+y}{2} \in \mathbb{Q}$.

Q: Are "all numbers" between $x, y \in \mathbb{Q}$ also rational?
A: No, e.g., there exists no rational number $z \in \mathbb{Q}$ such that $z^{2}=2$.
Pf: Suppose, by contradiction, that $\exists z \in \mathbb{Q}, z^{2}=2$. Then $z=m / n$, where $m, n \in \mathbb{Z}, n \neq 0$ and m, n shore no common prime factors.

$$
2=z^{2}=m^{2} / n^{2} \Rightarrow m^{2}=2 n^{2}
$$

$\Rightarrow m^{2}$ is even. $\Rightarrow m$ is even $\Rightarrow m^{2}$ is divisible by 4.
$\Rightarrow 2 n^{2}=m^{2}$ is also divisible by 4 .
$\Rightarrow n^{2}$ is divisible by $2 \Rightarrow n$ is even. Contradiction.

Least upper bound/Largeot lower bound might not exist in Q :

$$
\begin{aligned}
& A:=\left\{x \in \mathbb{Q}: x^{2}<2\right\} \\
& B:=\left\{y \in \mathbb{Q}: y^{2}>2\right\}
\end{aligned}
$$

Claim: A has no least upper bound in \$.
Il: Choose $p \in A$. We will find $q \in A$, sit. $q>p$.
Let $\underbrace{q=p-\frac{p^{2}-2}{p+2}}_{\Rightarrow q>p .}=\frac{p^{2}+2 p-p^{2}+2}{p+2}=\frac{2 p+2}{p+2} \in \mathbb{Q}$
Then $q^{2}-2=\frac{4 p^{2}+8 p+4}{p^{2}+4 p+4}-2=\frac{4 p^{2}+8 p+4-2 p^{2}-8 p-8}{p^{2}+4 p+4}=$

$$
=\frac{2 p^{2}-4}{(p+2)^{2}}=\frac{2\left(p^{2}-2\right)}{(p+2)^{2}} \stackrel{\sqrt{0} \quad\binom{p \in A}{\left(p^{2}<2\right)}}{<0}
$$

So $q^{2}<2$. Thus, $q \in A$ and $q>p$ as desired.
Ordered sets
Def: An order on a set S is a relation $<$ on S, s.t.:
(i) $\forall x, y \in S$ one (and only one) of the following holds:

$$
x<y, \quad x=y, \quad y<x
$$

(ii) transitivity: $\forall x, y, z \in S$: $x<y, y<z \Rightarrow x<z$.

Def: If $(S,<)$ is an ordered set and $E \subset S$ such that $\exists \beta \in S$ s.t. $\forall x \in E, \quad x \leq \beta$, then E is bounded from above.

Def: Suppose $(S,<)$ is ar ordered set, ECS bounded from above, if $\exists \alpha \in S$ s.t.
(i) α is an upper bound for E
(ii) If $\gamma<\alpha$, then γ is not an upper bound for E then α is called the least upper bound of E, also dented $\alpha=\sup E . \longleftarrow$ "spremum"
(Similarly, define largest lower bound for sets which are bounded from below, "infimum", $\alpha=\inf E$)

$$
\begin{aligned}
& \text { Examples: } E=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}=\left\{1, \frac{1}{2}, \frac{1}{3}, \cdots\right\} \subset \mathbb{Q} \\
& \text { inf } E=0 \notin E \\
& \sup E=1 \in E
\end{aligned}
$$

Example: The set $A=\left\{x \in \mathbb{Q}: x^{2}<2\right\}$ does not have a sup in $\mathbb{Q} ; B=\left\{y \in \mathbb{Q}: y^{2}>2\right\}$ does not have on inf in \mathbb{Q}.

Definition: An ordered $\operatorname{set}(S,<)$ has the least-upperbound property if $\forall E \subset S, E \neq \phi$, E bounded from above, the least upper bound sup E exists in S.
Q: Does the leest-upper-bound property (i.e., existence of sop) grorentee the analogous "largest-lower-bound property" (existence of inf)? A: Yes!
Thm: Suppose $(S,<)$ is an ordered set $w /$ least-upper-bound property, $B C S, B \neq \phi$, bounded from below. Let L be
the set of all lower bounds of $B ; \alpha:=\sup L \in S$. Then $\alpha=$ inf B.
Pf: B bounded from below $\Rightarrow L \neq \phi$
$\forall b \in B, b$ is an upper bound for L, so L is bounded from above, so $\exists \alpha=\sup L \in S$.
If $\gamma<\alpha$, then γ is not an viper bound for L; so $\gamma \notin B$. Thus, $\forall b \in B, \alpha \leq b$; that is $\alpha \in L$.
If $\alpha<\beta$, then $\beta \notin L$ since α is an upper bound for L.
Altogether, we shaved $\alpha=\sup L \in L$, but $\beta \notin L$ if $\beta>\alpha$; this means that $\alpha=$ inf B.

Fields
Def: A field is a set F with an addition $+: F \times F \rightarrow F$ and a muetiplication $x: F \times F \rightarrow F$ satistying the following axioms:
(A1) $x, y \in F, \quad x+y \in F$
(A2) $x+y=y+x, \quad \forall x, y \in F$
(A3) $(x+y)+z=x+(y+z), \forall x, y, z \in F$
(A4) $\exists 0 \in F$ s.t. $O+x=x, \quad \forall x \in F$
(A5) $\forall x \in F \quad \exists-x \in F$ s.t. $x+(-x)=0$
(M1) $\quad x, y \in F, \quad x \cdot y \in F$
(MI) $\quad x y=y x, \quad \forall x, y \in F$
(MB) $\quad(x y) z=x(y z), \quad \forall x, y, z \in F$
(MA) $\exists 1 \in F$ s.t. $1 \neq 0$ and $1 \cdot x=x, \forall x \in F$
(MS) $\forall x \in F, \quad x \neq 0 \quad \exists 1 / x \in F$ s.t. $x \cdot \frac{1}{x}=1$
(D) $\quad x(y+z)=x y+x z, \quad \forall x, y, z \in F$

Examples: \mathbb{Q} rational numbers
$\left.\begin{array}{ll}\mathbb{R} & \text { real numbers } \\ \mathbb{C} & \text { complex numbers }\end{array}\right\}\left(t_{0}\right.$ be defined soon)
Def: An ordered field is a field and an ordered set s.t. $x+y<x+z \quad \forall x, y, z \in F$ sit. $y<z$

$$
x y>0 \text { if } x, y \in F \text { s.t. } x>0, y>0 \text {. }
$$

Next lecture: \mathbb{R} will be defined as the (unique) ordered field that has the least-upper-bound prop.

