Numbers: Natural numbers N: 1,2,3,4,...
• Integer numbers Z: ..., -3,-2,-1,0,1,2,3,...
• Rational numbers Q: numbers that can be
expressed as an irreducible fraction m/n;
where min EZ, n to.
?
• Real numbers R
Q: Can you find a rational number strictly between any two
given national numbers?
+ x,y EQ, 3z EQ, X < z < y, e.g., take
$$z = \frac{X+y}{2} \in Q$$
.

Q: Are "all numbers" between
$$x, y \in \mathbb{Q}$$
 also vational?
A: No; e.g., there exists no vational number $z \in \mathbb{Q}$
such that $z^2 = 2$.
PL: Suppose, by contradiction, that $\exists z \in \mathbb{Q}$, $z^2 = 2$.
Then $z = W/n$, where $m, n \in \mathbb{Z}$, $n \neq 0$ and
 m, n shore no common prime factors.
 $2 = z^2 = m^2/n^2 \implies m^2 = 2m^2$
 $\implies m^2$ is even. $\implies m$ is even $\implies m^2$ is divisible by 4.
 $\implies n^2$ is divisible by $2 \implies n$ is even. Contradiction.
D

Least upper bound/Largest lower bound might not exist in Q

$$A := \frac{2}{p} \times \epsilon Q : x^{2} < 2$$

$$B := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

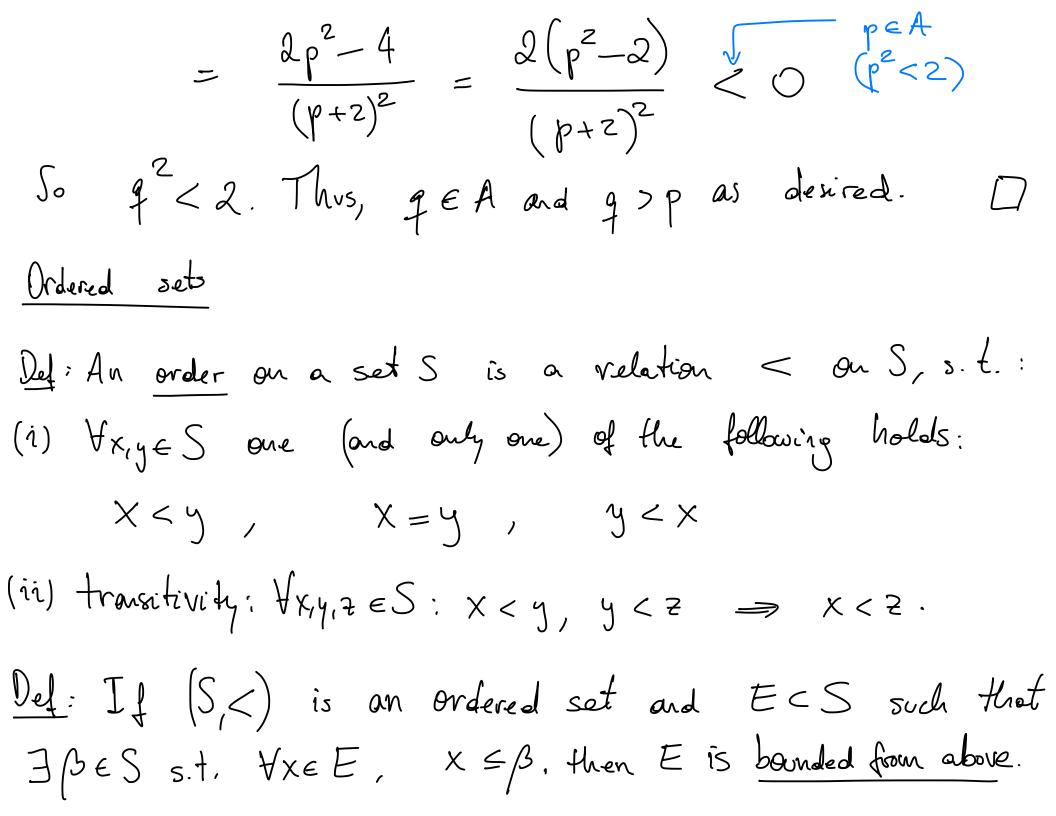
$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p} \times \epsilon Q : y^{2} > 2$$

$$A := \frac{2}{p}$$



Def: Suppose
$$(S, L)$$
 is an ordered set, ECS bounded from
above, if $\exists x \in S$ s.t.
(i) α is an upper bound for E
(ii) If $\chi \leq \alpha$, then χ is mot an upper bound for E
then α is called the least upper bound of E , also densed
 $\chi = \sup E$. \leq "aprecum"
(Similarly, define largest lower bound for sets which are bounded
from below, "infimm", $\alpha = \inf E$)
Examples: $E = \frac{1}{2} \frac{1}{2}$: $n \in \mathbb{N} = \frac{1}{2} \frac{1}{2}, \frac{1}{2}, \dots \leq \mathbb{C}$
inf $E = 0 \notin E$
sup $E = 1 \in E$

Example: The set
$$A = \{x \in \mathbb{Q} : x^2 < 2\}$$
 does not have
a sup in \mathbb{Q} ; $B = \{y \in \mathbb{Q} : y^2 > 2\}$ does not have an
inf in \mathbb{Q} .
Definition: An ordered set $(S, <)$ has the least upper-
bound property if $\forall E \subset S$, $E \neq \emptyset$, E bounded from
above, the least upper bound sup E exists in S .
 $\underline{\mathbb{Q}}$: Does the least upper bound property (i.e., existence of sup)
guarantee the analogous "largest-lower-bound property" (existence of inf)?
 \underline{A} : Yes!
Thim: Suppose $(S, <)$ is an ordered set ψ / least-upper-bound

Inm: Suppose (D, <) is an ordered set W/least-upper-bound property, BCS, $B \neq \phi$, bounded from below. Let L be

the set of all lower bounds of B,
$$\alpha := \sup L \in S$$
.
Then $\alpha = \inf B$.
PE: B bounded from below $\Rightarrow L \neq \phi$
Yoe B, b is an upper bound for L, so L is bounded
from above, so $\exists \alpha = \sup L \in S$.
If $\gamma < \alpha$, then γ is not an upper bound for L.
So $\gamma \notin B$. Thus, $\forall b \in B$, $\alpha \leq b$; that is $\alpha \in L$.
If $\alpha < \beta$, then $\beta \notin L$ since α is an upper bound
for L.
Altogether, we shaved $\alpha = \sup L \in L$, but $\beta \notin L$ if
 $\beta > \alpha$; this means that $\alpha = \inf B$.

Fields

Def: A field is a set F with an addition +: FXF -> F and a multiplication x: FXF->F Satisfying the following axioms; (A1) $x, y \in F$, $X+y \in F$ (A2) X+y = y+x, $\forall x,y \in F$ (A3) $(X+y)+z = X+(y+z), \forall X,y, z \in F$ YXEF (A4) $\exists 0 \in F \quad s.t. \quad 0 + x = x,$ $\forall x \in F \exists -x \in F \text{ s.t. } x + (-x) = 0$ (A5)

(M1) xy \in F, x \in F

(M2)
$$Xy = yX$$
, $\forall x,y \in F$
(M3) $(Xy)^2 = x(y^2)$, $\forall x,y,z \in F$
(M4) $\exists 1 \in F$ s.t. $1 \neq 0$ and $1 \cdot x = x$, $\forall x \in F$
(M5) $\forall x \in F$, $x \neq 0$ $\exists \frac{1}{x} \in F$ s.t. $x \cdot \frac{1}{x} = 1$
(D) $x(y+z) = xy + xz$, $\forall x,y,z \in F$
Examples: Q vational numbers
[R veal numbers] (to be defined soon)
 \underline{Def} : An ordered field is a field and an ordered set
s.t. $x + y < x + z$ $\forall x,y,z \in F \leq t. y \leq z$

Xy >0 if X,yEF s.t. X>0, y>0. Next lecture: R will be defined as the (unique) ordered field that has the least upper-bound prop.