Problem 1 (40 pts): Decide if each of the statements below is **true** or **false**. If it is true, give a complete **proof**; if it is false, give an explicit **counter-example**

a) (5 pts) The set $A = \{a + b\sqrt{2} + c\pi : a, b, c \in \mathbb{Q}\}$ is countable.

TRUE: There is a bijection $f: A \to \mathbb{Q}^3$, $f(a + b\sqrt{2} + c\pi) = (a, b, c)$, and \mathbb{Q}^3 is countable since it is a finite Cartesian product of the countable set \mathbb{Q}

b) (5 pts) The set
$$B = \bigcap_{n \in \mathbb{N}} \left(-\frac{1}{n}, 1 + \frac{1}{n} \right)$$
 is compact.

TRUE: B = [0, 1] is compact, by the Heine-Borel Theorem.

c) (5 pts) If a subset $E \subset \mathbb{R}$ is such that $\forall M > 0$ there exists $x \in E$ with $|x| \ge M$, then $\sup E$ does not exist.

FALSE: Let $E = (-\infty, 0]$. Clearly, $\forall M > 0$, $x = -M \in E$ and |x| = M, but $\sup E = 0$.

d) (5 pts)
$$\inf_{y \in \mathbb{R}} \left(\sup_{x \in \mathbb{R}} \frac{x^2}{x^2 + y^2 + 1} \right) = \sup_{x \in \mathbb{R}} \left(\inf_{y \in \mathbb{R}} \frac{x^2}{x^2 + y^2 + 1} \right)$$

FALSE:
$$\inf_{y \in \mathbb{R}} \underbrace{\left(\sup_{x \in \mathbb{R}} \frac{x^2}{x^2 + y^2 + 1} \right)}_{=1, \forall y \in \mathbb{R}} = 1, \text{ while } \sup_{x \in \mathbb{R}} \underbrace{\left(\inf_{y \in \mathbb{R}} \frac{x^2}{x^2 + y^2 + 1} \right)}_{=0, \forall x \in \mathbb{R}} = 0.$$

e) (5 pts) If $\{x_n\}$ is a Cauchy sequence in \mathbb{R} , then the sequence $\{\sin(x_n)\}$ is also Cauchy.

TRUE: Since \mathbb{R} is complete, a sequence is Cauchy if and only if it is convergent. Moreover, $f(x) = \sin x$ is continuous, so it takes convergent sequences to convergent sequences. Alternative proof: use that $|\sin(x_n) - \sin(x_m)| \le |x_n - x_m|$.

f) (5 pts) If $\{x_n\}$ is a sequence in \mathbb{R} such that $\{\sin(x_n)\}$ is Cauchy, then $\{x_n\}$ is also Cauchy.

FALSE: Take $x_n = 2\pi n$, and note that $\sin(x_n) = 0$ for all $n \in \mathbb{N}$ so $\{\sin(x_n)\}$ is clearly Cauchy, but x_n is not Cauchy since $|x_n - x_m| \ge 2\pi$ if $n \neq m$.

g) (5 pts) If $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ are uniformly continuous functions, then $(f \circ g) : \mathbb{R} \to \mathbb{R}$ is also uniformly continuous.

TRUE: Since f is uniformly continuous, $\forall \varepsilon > 0$, $\exists \delta_1 > 0$ such that $|x - y| < \delta_1$ implies $|f(x) - f(y)| < \varepsilon$. Now, since g is uniformly continuous, $\exists \delta_2 > 0$ such that $|t - s| < \delta_2$ implies $|g(t) - g(s)| < \delta_1$. Thus, if $t, s \in \mathbb{R}$ satisfy $|t - s| < \delta_2$, then $|f(g(t)) - f(g(s))| < \varepsilon$.

h) (5 pts) If $f_n: E \to \mathbb{R}$ is a sequence of differentiable functions that converges uniformly to $f_{\infty}: E \to \mathbb{R}$, then f_{∞} is also differentiable.

FALSE: As shown in HW7, the sequence $f_n(x) = \sqrt{x^2 + \frac{1}{n}}$ of differentiable functions converges uniformly on E = [-1, 1] to $f_{\infty}(x) = |x|$, which is not differentiable at x = 0. **Problem 2 (15 pts):** Let $\{x_k\}$ be a convergent sequence of real numbers, with $\lim_{k\to\infty} x_k = x_{\infty}$. Let

$$a_n = \frac{x_1 + \dots + x_n}{n}, \quad n \in \mathbb{N},$$

be the sequence of averages of $\{x_k\}$. Prove that $\lim_{n\to\infty} a_n = x_{\infty}$.

 $\text{Hint: Recall } \lim_{n \to \infty} a_n = x_{\infty} \text{ means } \forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ such that } |a_n - x_{\infty}| < \varepsilon \text{ if } n \ge N.$

Since x_n converges to x_∞ , given $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that $|x_n - x_\infty| < \varepsilon/2$ if $n \ge N$. Let $M = \max_{1 \le j \le N-1} |x_j - x_\infty|$, and $N' \in \mathbb{N}$ be such that $N' > 2(N-1)M/\varepsilon$. Then, if $n \ge \max\{N, N'\}$, we have:

$$\begin{aligned} |a_n - x_{\infty}| &= \left| \frac{x_1 + \dots + x_n}{n} - x_{\infty} \right| \\ &= \left| \frac{(x_1 - x_{\infty}) + \dots + (x_n - x_{\infty})}{n} \right| \\ &= \left| \frac{(x_1 - x_{\infty}) + \dots + (x_{N-1} - x_{\infty})}{n} + \frac{(x_N - x_{\infty}) + \dots + (x_n - x_{\infty})}{n} \right| \\ &\leq \left| \frac{(x_1 - x_{\infty}) + \dots + (x_{N-1} - x_{\infty})}{n} \right| + \left| \frac{(x_N - x_{\infty}) + \dots + (x_n - x_{\infty})}{n} \right| \\ &\leq \frac{(N-1)}{n} \max_{1 \le j \le N-1} |x_j - x_{\infty}| + \frac{|x_N - x_{\infty}| + \dots + |x_n - x_{\infty}|}{n} \\ &< \frac{(N-1)M}{n} + \frac{(n - N + 1)\varepsilon}{n} \frac{\varepsilon}{2} \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon, \end{aligned}$$

proving that $\lim_{n \to \infty} a_n = x_{\infty}$.

Problem 3 (10 pts): An isometry of a metric space (X, d) is a map $\varphi \colon X \to X$ that preserves distances, i.e., $d(\varphi(x), \varphi(y)) = d(x, y)$ for all $x, y \in X$. Suppose $f \colon X \to \mathbb{R}$ is a uniformly continuous function, and let G denote the set of all isometries of (X, d). Prove that the family $\mathcal{F} = \{(f \circ \varphi) \colon X \to \mathbb{R} : \varphi \in G\}$ is equicontinuous.

Since $f: X \to \mathbb{R}$ is uniformly continuous, given $\varepsilon > 0$, there exists $\delta > 0$ such that $d(x,y) < \delta$ implies $|f(x) - f(y)| < \varepsilon$. Let $\varphi \in G$ and consider the corresponding $(f \circ \varphi) \in \mathcal{F}$. If $x, y \in X$ are such that $d(x, y) < \delta$, then $d(\varphi(x), \varphi(y)) = d(x, y) < \delta$ and therefore $|f(\varphi(x)) - f(\varphi(y))| < \varepsilon$. Since this holds for arbitrary $\varphi \in G$, it follows that the family \mathcal{F} is equicontinuous.

Problem 4 (15 pts): For what values of $x \in \mathbb{R}$ is the following series absolutely convergent?

$$\frac{x}{5} + \frac{x}{7} + \frac{x^2}{5^2} + \frac{x^2}{7^2} + \frac{x^3}{5^3} + \frac{x^3}{7^3} + \frac{x^4}{5^4} + \frac{x^4}{7^4} + \dots$$

Let a_n be the nth element in the series, and note that:

$$\sqrt[n]{|a_n|} = \begin{cases} \sqrt[n]{\frac{|x|^k}{5^k}} = \left(\frac{|x|}{5}\right)^{\frac{k}{2k-1}} & \text{if } n = 2k-1 \text{ is odd,} \\ \sqrt[n]{\frac{|x|^k}{7^k}} = \left(\frac{|x|}{7}\right)^{\frac{k}{2k}} & \text{if } n = 2k \text{ is even.} \end{cases}$$

Therefore $\limsup \sqrt[n]{|a_n|} = \lim_{k \to \infty} \left(\frac{|x|}{5}\right)^{\frac{k}{2k-1}} = \left(\frac{|x|}{5}\right)^{\frac{1}{2}} < 1$ if and only if |x| < 5. Thus, by the Root Test, the above series is absolutely convergent if |x| < 5.

On the other hand, if $|x| \ge 5$, then the series diverges, since the sequence a_n does not converge to zero, because the subsequence a_{2k-1} of odd terms satisfies $|a_{2k-1}| \ge 1$.

Problem 5 (20 pts): Consider the function $f: [0,1] \to \mathbb{R}$ given by

$$f(x) = \begin{cases} 0, & \text{if } x \notin \mathbb{Q}, \\ \frac{1}{q^2}, & \text{if } x = \frac{p}{q} \in \mathbb{Q}, \text{ with } \gcd(p,q) = 1. \end{cases}$$

- (a) Given $\varepsilon > 0$, prove that the set $F = \{x \in [0, 1] : f(x) \ge \varepsilon\}$ is finite.
- (b) Find a partition $P = \{0 = x_0 < x_1 < \cdots < x_{n-1} < x_n = 1\}$ such that F is covered by intervals $[x_{i-1}, x_i]$ whose combined length does not exceed ε . Compute the upper and lower Riemann sums U(f, P) and L(f, P) with this partition.
- (c) Use the above to conclude whether or not f(x) is Riemann-integrable on [0, 1]. If it is Riemann-integrable, then compute $\int_0^1 f(x) \, dx$.
- (a) Given $\varepsilon > 0$, we have that

$$F = \left\{ x \in [0,1] \cap \mathbb{Q} : x = \frac{p}{q}, \operatorname{gcd}(p,q) = 1, q^2 \le \frac{1}{\varepsilon} \right\},\$$

so there is a natural bijection between F and the set

$$\bigcup_{\substack{q \leq \frac{1}{\sqrt{\varepsilon}} \\ q \in \mathbb{N}}} \left\{ p \in \mathbb{Z} : |p| \leq q, \ \gcd(p,q) = 1 \right\}.$$

Clearly, the set of denominators $\{q \in \mathbb{N} : q \leq \frac{1}{\sqrt{\varepsilon}}\}$ is finite, and, for each such q, there are only finitely many $p \in \mathbb{Z}$ such that $|p| \leq q$ and gcd(p,q) = 1. Thus, the above is a finite union of finite sets, hence finite.

(b) Since F is finite, let us write $F = \{t_1 < t_2 < \cdots < t_k\}$, and then define¹

$$P = \left(\{0,1\} \cup \left\{t_j \pm \frac{\varepsilon}{2k} : 1 \le j \le k\right\}\right) \cap [0,1] = \{0 = x_0 < x_1 < \dots < x_{n-1} < x_n = 1\}.$$

Up to making $\varepsilon > 0$ even smaller, we implicitly assume that $\varepsilon < k(t_{j+1} - t_j)$ for all $j = 1, \ldots, k - 1$, so that the intervals $[t_j - \frac{\varepsilon}{2k}, t_j + \frac{\varepsilon}{2k}]$ are disjoint. Clearly, the combined length of intervals $[x_{i-1}, x_i]$ that contain a point of F, i.e., intervals of the form $[t_j - \frac{\varepsilon}{2k}, t_j + \frac{\varepsilon}{2k}] \cap [0, 1], j = 1, \ldots, k$ does not exceed ε ; in other words, $\sum_{F \cap [x_{i-1}, x_i] \neq \emptyset} \Delta x_i \leq \varepsilon$.

Now, observe that:

- If $F \cap [x_{i-1}, x_i] \neq \emptyset$, then $\varepsilon \leq M_i \leq 1$ and $\Delta x_i \leq \frac{\varepsilon}{k}$.
- If $F \cap [x_{i-1}, x_i] = \emptyset$, then $M_i < \varepsilon$.

In both cases, $m_i = 0$ since f(x) = 0 on the dense set $[0,1] \setminus \mathbb{Q}$. Therefore, altogether,

$$U(f,P) = \sum_{i=1}^{n} M_i \,\Delta x_i = \sum_{F \cap [x_{i-1},x_i] \neq \emptyset} M_i \,\Delta x_i + \sum_{F \cap [x_{i-1},x_i] = \emptyset} M_i \,\Delta x_i$$

¹Note that $0, 1 \in F$ if $0 < \varepsilon < 1$, so the points $t_1 - \frac{\varepsilon}{2k}$ and $t_k + \frac{\varepsilon}{2k}$ are outside the interval [0, 1], hence the need to intersect with [0, 1].

$$< \sum_{F \cap [x_{i-1}, x_i] \neq \emptyset} \Delta x_i + \sum_{F \cap [x_{i-1}, x_i] = \emptyset} \varepsilon \, \Delta x_i$$
$$\leq \varepsilon + \varepsilon \sum_{F \cap [x_{i-1}, x_i] = \emptyset} \Delta x_i$$
$$< \varepsilon + \varepsilon = 2\varepsilon.$$
$$L(f, P) = \sum_{i=1}^n m_i \, \Delta x_i = 0.$$

(c) By the above, for all $\varepsilon > 0$, there exists a partition P of [0, 1] such that

$$U(f,P) - L(f,P) < 2\varepsilon.$$

Therefore, f(x) is Riemann-integrable on [0, 1], and

$$\int_0^1 f(x) \, \mathrm{d}x = \int_a^b f(x) \, \mathrm{d}x = \underline{\int}_a^b f(x) \, \mathrm{d}x = 0.$$