Problem 1 (40 pts): Decide if each of the statements below is true or false. If it is true, give a complete proof; if it is false, give an explicit counter-example
a) (5 pts) The set $A=\{a+b \sqrt{2}+c \pi: a, b, c \in \mathbb{Q}\}$ is countable.

TRUE: There is a bijection $f: A \rightarrow \mathbb{Q}^{3}, f(a+b \sqrt{2}+c \pi)=(a, b, c)$, and \mathbb{Q}^{3} is countable since it is a finite Cartesian product of the countable set \mathbb{Q}
b) (5 pts) The set $B=\bigcap_{n \in \mathbb{N}}\left(-\frac{1}{n}, 1+\frac{1}{n}\right)$ is compact.

TRUE: $B=[0,1]$ is compact, by the Heine-Borel Theorem.
c) (5 pts) If a subset $E \subset \mathbb{R}$ is such that $\forall M>0$ there exists $x \in E$ with $|x| \geq M$, then $\sup E$ does not exist.
FALSE: Let $E=(-\infty, 0]$. Clearly, $\forall M>0, x=-M \in E$ and $|x|=M$, but $\sup E=0$.
d) $(5$ pts $) \inf _{y \in \mathbb{R}}\left(\sup _{x \in \mathbb{R}} \frac{x^{2}}{x^{2}+y^{2}+1}\right)=\sup _{x \in \mathbb{R}}\left(\inf _{y \in \mathbb{R}} \frac{x^{2}}{x^{2}+y^{2}+1}\right)$

FALSE: $\inf _{y \in \mathbb{R}} \underbrace{\left(\sup _{x \in \mathbb{R}} \frac{x^{2}}{x^{2}+y^{2}+1}\right)}_{=1, \forall y \in \mathbb{R}}=1$, while $\sup _{x \in \mathbb{R}} \underbrace{\left(\inf _{y \in \mathbb{R}} \frac{x^{2}}{x^{2}+y^{2}+1}\right)}_{=0, \forall x \in \mathbb{R}}=0$.
e) ($5 \mathbf{p t s}$) If $\left\{x_{n}\right\}$ is a Cauchy sequence in \mathbb{R}, then the sequence $\left\{\sin \left(x_{n}\right)\right\}$ is also Cauchy.
TRUE: Since \mathbb{R} is complete, a sequence is Cauchy if and only if it is convergent. Moreover, $f(x)=\sin x$ is continuous, so it takes convergent sequences to convergent sequences. Alternative proof: use that $\left|\sin \left(x_{n}\right)-\sin \left(x_{m}\right)\right| \leq\left|x_{n}-x_{m}\right|$.
f) (5 pts) If $\left\{x_{n}\right\}$ is a sequence in \mathbb{R} such that $\left\{\sin \left(x_{n}\right)\right\}$ is Cauchy, then $\left\{x_{n}\right\}$ is also Cauchy.
FALSE: Take $x_{n}=2 \pi n$, and note that $\sin \left(x_{n}\right)=0$ for all $n \in \mathbb{N}$ so $\left\{\sin \left(x_{n}\right)\right\}$ is clearly Cauchy, but x_{n} is not Cauchy since $\left|x_{n}-x_{m}\right| \geq 2 \pi$ if $n \neq m$.
g) (5 pts) If $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are uniformly continuous functions, then $(f \circ g): \mathbb{R} \rightarrow \mathbb{R}$ is also uniformly continuous.
TRUE: Since f is uniformly continuous, $\forall \varepsilon>0, \exists \delta_{1}>0$ such that $|x-y|<\delta_{1}$ implies $|f(x)-f(y)|<\varepsilon$. Now, since g is uniformly continuous, $\exists \delta_{2}>0$ such that $|t-s|<\delta_{2}$ implies $|g(t)-g(s)|<\delta_{1}$. Thus, if $t, s \in \mathbb{R}$ satisfy $|t-s|<\delta_{2}$, then $|f(g(t))-f(g(s))|<\varepsilon$.
h) (5 pts) If $f_{n}: E \rightarrow \mathbb{R}$ is a sequence of differentiable functions that converges uniformly to $f_{\infty}: E \rightarrow \mathbb{R}$, then f_{∞} is also differentiable.
FALSE: As shown in $H W 7$, the sequence $f_{n}(x)=\sqrt{x^{2}+\frac{1}{n}}$ of differentiable functions converges uniformly on $E=[-1,1]$ to $f_{\infty}(x)=|x|$, which is not differentiable at $x=0$.

Problem 2 (15 pts): Let $\left\{x_{k}\right\}$ be a convergent sequence of real numbers, with $\lim _{k \rightarrow \infty} x_{k}=x_{\infty}$. Let

$$
a_{n}=\frac{x_{1}+\cdots+x_{n}}{n}, \quad n \in \mathbb{N},
$$

be the sequence of averages of $\left\{x_{k}\right\}$. Prove that $\lim _{n \rightarrow \infty} a_{n}=x_{\infty}$.
Hint: Recall $\lim _{n \rightarrow \infty} a_{n}=x_{\infty}$ means $\forall \varepsilon>0, \exists N \in \mathbb{N}$ such that $\left|a_{n}-x_{\infty}\right|<\varepsilon$ if $n \geq N$.
Since x_{n} converges to x_{∞}, given $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that $\left|x_{n}-x_{\infty}\right|<\varepsilon / 2$ if $n \geq N$. Let $M=\max _{1 \leq j \leq N-1}\left|x_{j}-x_{\infty}\right|$, and $N^{\prime} \in \mathbb{N}$ be such that $N^{\prime}>2(N-1) M / \varepsilon$. Then, if $n \geq \max \left\{N, N^{\prime}\right\}$, we have:

$$
\begin{aligned}
\left|a_{n}-x_{\infty}\right| & =\left|\frac{x_{1}+\cdots+x_{n}}{n}-x_{\infty}\right| \\
& =\left|\frac{\left(x_{1}-x_{\infty}\right)+\cdots+\left(x_{n}-x_{\infty}\right)}{n}\right| \\
& =\left|\frac{\left(x_{1}-x_{\infty}\right)+\cdots+\left(x_{N-1}-x_{\infty}\right)}{n}+\frac{\left(x_{N}-x_{\infty}\right)+\cdots+\left(x_{n}-x_{\infty}\right)}{n}\right| \\
& \leq\left|\frac{\left(x_{1}-x_{\infty}\right)+\cdots+\left(x_{N-1}-x_{\infty}\right)}{n}\right|+\left|\frac{\left(x_{N}-x_{\infty}\right)+\cdots+\left(x_{n}-x_{\infty}\right)}{n}\right| \\
& \leq \frac{(N-1)}{n} \max _{1 \leq j \leq N-1}\left|x_{j}-x_{\infty}\right|+\frac{\left|x_{N}-x_{\infty}\right|+\cdots+\left|x_{n}-x_{\infty}\right|}{n} \\
& <\frac{(N-1) M}{n}+\frac{(n-N+1)}{n} \frac{\varepsilon}{2} \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon,
\end{aligned}
$$

proving that $\lim _{n \rightarrow \infty} a_{n}=x_{\infty}$.

Problem 3 (10 pts): An isometry of a metric space (X, d) is a map $\varphi: X \rightarrow X$ that preserves distances, i.e., $d(\varphi(x), \varphi(y))=d(x, y)$ for all $x, y \in X$. Suppose $f: X \rightarrow \mathbb{R}$ is a uniformly continuous function, and let G denote the set of all isometries of (X, d). Prove that the family $\mathcal{F}=\{(f \circ \varphi): X \rightarrow \mathbb{R}: \varphi \in G\}$ is equicontinuous.
Since $f: X \rightarrow \mathbb{R}$ is uniformly continuous, given $\varepsilon>0$, there exists $\delta>0$ such that $d(x, y)<\delta$ implies $|f(x)-f(y)|<\varepsilon$. Let $\varphi \in G$ and consider the corresponding $(f \circ \varphi) \in \mathcal{F}$. If $x, y \in X$ are such that $d(x, y)<\delta$, then $d(\varphi(x), \varphi(y))=d(x, y)<\delta$ and therefore $|f(\varphi(x))-f(\varphi(y))|<\varepsilon$. Since this holds for arbitrary $\varphi \in G$, it follows that the family \mathcal{F} is equicontinuous.

Problem 4 (15 pts): For what values of $x \in \mathbb{R}$ is the following series absolutely convergent?

$$
\frac{x}{5}+\frac{x}{7}+\frac{x^{2}}{5^{2}}+\frac{x^{2}}{7^{2}}+\frac{x^{3}}{5^{3}}+\frac{x^{3}}{7^{3}}+\frac{x^{4}}{5^{4}}+\frac{x^{4}}{7^{4}}+\ldots
$$

Let a_{n} be the nth element in the series, and note that:

$$
\sqrt[n]{\left|a_{n}\right|}= \begin{cases}\sqrt[n]{\frac{|x|^{k}}{5^{k}}}=\left(\frac{|x|}{5}\right)^{\frac{k}{2 k-1}} & \text { if } n=2 k-1 \text { is odd } \\ \sqrt[n]{\frac{|x|^{k}}{7^{k}}}=\left(\frac{|x|}{7}\right)^{\frac{k}{2 k}} & \text { if } n=2 k \text { is even }\end{cases}
$$

Therefore limsup $\sqrt[n]{\left|a_{n}\right|}=\lim _{k \rightarrow \infty}\left(\frac{|x|}{5}\right)^{\frac{k}{2 k-1}}=\left(\frac{|x|}{5}\right)^{\frac{1}{2}}<1$ if and only if $|x|<5$. Thus, by the Root Test, the above series is absolutely convergent if $|x|<5$.
On the other hand, if $|x| \geq 5$, then the series diverges, since the sequence a_{n} does not converge to zero, because the subsequence $a_{2 k-1}$ of odd terms satisfies $\left|a_{2 k-1}\right| \geq 1$.

Problem 5 (20 pts): Consider the function $f:[0,1] \rightarrow \mathbb{R}$ given by

$$
f(x)= \begin{cases}0, & \text { if } x \notin \mathbb{Q}, \\ \frac{1}{q^{2}}, & \text { if } x=\frac{p}{q} \in \mathbb{Q}, \text { with } \operatorname{gcd}(p, q)=1\end{cases}
$$

(a) Given $\varepsilon>0$, prove that the set $F=\{x \in[0,1]: f(x) \geq \varepsilon\}$ is finite.
(b) Find a partition $P=\left\{0=x_{0}<x_{1}<\cdots<x_{n-1}<x_{n}=1\right\}$ such that F is covered by intervals $\left[x_{i-1}, x_{i}\right]$ whose combined length does not exceed ε. Compute the upper and lower Riemann sums $U(f, P)$ and $L(f, P)$ with this partition.
(c) Use the above to conclude whether or not $f(x)$ is Riemann-integrable on $[0,1]$. If it is Riemann-integrable, then compute $\int_{0}^{1} f(x) \mathrm{d} x$.
(a) Given $\varepsilon>0$, we have that

$$
F=\left\{x \in[0,1] \cap \mathbb{Q}: x=\frac{p}{q}, \operatorname{gcd}(p, q)=1, q^{2} \leq \frac{1}{\varepsilon}\right\}
$$

so there is a natural bijection between F and the set

$$
\bigcup_{\substack{q \leq \frac{1}{\sqrt{\varepsilon}} \\ q \in \mathbb{N}}}\{p \in \mathbb{Z}:|p| \leq q, \operatorname{gcd}(p, q)=1\}
$$

Clearly, the set of denominators $\left\{q \in \mathbb{N}: q \leq \frac{1}{\sqrt{\varepsilon}}\right\}$ is finite, and, for each such q, there are only finitely many $p \in \mathbb{Z}$ such that $|p| \leq q$ and $\operatorname{gcd}(p, q)=1$. Thus, the above is a finite union of finite sets, hence finite.
(b) Since F is finite, let us write $F=\left\{t_{1}<t_{2}<\cdots<t_{k}\right\}$, and then define ${ }^{1}$
$P=\left(\{0,1\} \cup\left\{t_{j} \pm \frac{\varepsilon}{2 k}: 1 \leq j \leq k\right\}\right) \cap[0,1]=\left\{0=x_{0}<x_{1}<\cdots<x_{n-1}<x_{n}=1\right\}$.
Up to making $\varepsilon>0$ even smaller, we implicitly assume that $\varepsilon<k\left(t_{j+1}-t_{j}\right)$ for all $j=1, \ldots, k-1$, so that the intervals $\left[t_{j}-\frac{\varepsilon}{2 k}, t_{j}+\frac{\varepsilon}{2 k}\right]$ are disjoint. Clearly, the combined length of intervals $\left[x_{i-1}, x_{i}\right]$ that contain a point of F, i.e., intervals of the form $\left[t_{j}-\frac{\varepsilon}{2 k}, t_{j}+\frac{\varepsilon}{2 k}\right] \cap[0,1], j=1, \ldots, k$ does not exceed $\varepsilon ;$ in other words, $\sum_{F \cap\left[x_{i-1}, x_{i}\right] \neq \emptyset} \Delta x_{i} \leq \varepsilon$. Now, observe that:

- If $F \cap\left[x_{i-1}, x_{i}\right] \neq \emptyset$, then $\varepsilon \leq M_{i} \leq 1$ and $\Delta x_{i} \leq \frac{\varepsilon}{k}$.
- If $F \cap\left[x_{i-1}, x_{i}\right]=\emptyset$, then $M_{i}<\varepsilon$.

In both cases, $m_{i}=0$ since $f(x)=0$ on the dense set $[0,1] \backslash \mathbb{Q}$. Therefore, altogether,

$$
U(f, P)=\sum_{i=1}^{n} M_{i} \Delta x_{i}=\sum_{F \cap\left[x_{i-1}, x_{i}\right] \neq \emptyset} M_{i} \Delta x_{i}+\sum_{F \cap\left[x_{i-1}, x_{i}\right]=\emptyset} M_{i} \Delta x_{i}
$$

[^0]\[

$$
\begin{aligned}
& <\sum_{F \cap\left[x_{i-1}, x_{i}\right] \neq \emptyset} \Delta x_{i}+\sum_{F \cap\left[x_{i-1}, x_{i}\right]=\emptyset} \varepsilon \Delta x_{i} \\
& \leq \varepsilon+\varepsilon \sum_{F \cap\left[x_{i-1}, x_{i}\right]=\emptyset} \Delta x_{i} \\
& <\varepsilon+\varepsilon=2 \varepsilon . \\
L(f, P)=\sum_{i=1}^{n} m_{i} \Delta x_{i} & =0 .
\end{aligned}
$$
\]

(c) By the above, for all $\varepsilon>0$, there exists a partition P of $[0,1]$ such that

$$
U(f, P)-L(f, P)<2 \varepsilon
$$

Therefore, $f(x)$ is Riemann-integrable on $[0,1]$, and

$$
\int_{0}^{1} f(x) \mathrm{d} x=\bar{\int}_{a}^{b} f(x) \mathrm{d} x=\int_{a}^{b} f(x) \mathrm{d} x=0 .
$$

[^0]: ${ }^{1}$ Note that $0,1 \in F$ if $0<\varepsilon<1$, so the points $t_{1}-\frac{\varepsilon}{2 k}$ and $t_{k}+\frac{\varepsilon}{2 k}$ are outside the interval $[0,1]$, hence the need to intersect with $[0,1]$.

