
MAT320/640, Fall 2020 Renato Ghini Bettiol

Solutions to Homework Set 4

1. Decide if each of the statements below is true or false. If it is true, give a complete
proof; if it is false, give an explicit counter-example.

(a) If

∞∑
n=1

an converges and an ≥ 0 for all n ∈ N, then

∞∑
n=1

√
an converges.

(b) If
∞∑
n=1

an converges and an ≥ 0 for all n ∈ N, then
∞∑
n=1

a2n converges.

(c) If
∞∑
n=1

an converges and an ≥ 0 for all n ∈ N, then
∞∑
n=1

√
an
n

converges.

(d) If

∞∑
n=1

an converges and an ≥ 0 for all n ∈ N, then the power series

∞∑
n=1

anx
n

converges absolutely for all x ∈ [−1, 1].

Solution:

(a) FALSE: Take an =
1

n2
, so that

√
an =

1

n
, and recall that

∞∑
n=1

1

n2
< +∞ and

∞∑
n=1

1

n
= +∞

since these are p-series, but the first has p > 1 while the second has p ≤ 1.

(b) TRUE: Recall that

(a1 + · · ·+ an)2 = a21 + · · ·+ a2n + 2
(
a1a2 + · · ·+ an−1an

)
,

therefore, since aj ≥ 0 for all j ∈ N, the partial sums satisfy

0 ≤
n∑

k=1

a2k ≤

(
n∑

k=1

ak

)2

.

As n↗ +∞, the right-hand side converges to S2, where S =

∞∑
n=1

an < +∞. Therefore

the partial sums in the left-hand side are bounded. Since they form a monotonically

increasing (and bounded) sequence, they converge; i.e.,

∞∑
n=1

a2n converges.

(c) TRUE: Recall that for all A,B ∈ R,

0 ≤ (A−B)2 = A2 − 2AB + B2 =⇒ AB ≤ 1

2
(A2 + B2).



Using the above with A =
√
ak and B = 1/k, we have the following inequalities:

0 ≤
n∑

k=1

√
ak
k
≤

n∑
k=1

1

2

(
ak +

1

k2

)
=

1

2

n∑
k=1

ak +
1

2

n∑
k=1

1

k2
.

Since

∞∑
n=1

an converges, and so does the p-series

∞∑
n=1

1

n2
, it follows that the right-hand

side in the above converges to a finite quantity. Thus, the partial sums
n∑

k=1

√
ak
k

form a

monotonic increasing sequence which is bounded from above, and is hence convergent.

(d) TRUE: Since aj ≥ 0 for all j ∈ N, the partial sums satisfy, for any x ∈ [−1, 1]:

n∑
k=1

|akxk| =
n∑

k=1

ak|x|k ≤
n∑

k=1

ak.

Since the right-hand side are partial sums of the convergent series
∞∑
n=1

an, it follows that

the partial sums in the left-hand side also converge for any x ∈ [−1, 1], i.e., the power

series
∞∑
n=1

anx
n converges absolutely for all x ∈ [−1, 1].

2. Use either the Root or Ratio test to find the radius of convergence of the following
power series:

(a)

∞∑
n=1

5n

n!
zn

(b)
∞∑
n=1

7

4n
zn

(c)
∞∑
n=1

2n√
n
zn

Solution:

(a) Applying the Ratio test with an =
5n

n!
, we have:

lim sup
n→+∞

∣∣∣∣an+1

an

∣∣∣∣ = lim sup
n→+∞

∣∣∣∣∣ 5(n+1)

(n + 1)!

n!

5n

∣∣∣∣∣ = lim
n→+∞

5

n + 1
= 0.
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Recall that the radius of convergence 0 ≤ R ≤ +∞ of the power series
∞∑
n=1

anz
n satisfies

1

R
= lim sup

n→+∞
n
√
|an| ≤ lim sup

n→+∞

∣∣∣∣an+1

an

∣∣∣∣ ,
and, since the right-hand side vanishes, it follows that the radius of convergence for the
above power series is R = +∞.

Note: This is the power series of the (analytic) function f(z) = e5z.

(b) Directly applying the Root test with an =
7

4n
, we have that the radius of convergence

0 ≤ R ≤ +∞ of this power series satisfies:

1

R
= lim sup

n→+∞
n
√
|an| = lim sup

n→+∞
n

√∣∣∣∣ 7

4n

∣∣∣∣ = lim
n→+∞

n
√

7

4
=

1

4
,

hence R = 4.

(c) Directly applying the Root test with an =
2n√
n

, we have that the radius of convergence

0 ≤ R ≤ +∞ of this power series satisfies:

1

R
= lim sup

n→+∞
n
√
|an| = lim sup

n→+∞
n

√∣∣∣∣ 2n√
n

∣∣∣∣ = lim
n→+∞

2
2n
√
n

= 2,

hence R =
1

2
.
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