MAT320/640, Fall 2020 Renato Ghini Bettiol

Solutions to Homework Set 3

1. Decide if each of the statements below is true or false. If it is true, give a complete
proof; if it is false, give an explicit counter-example.

(a) If {z,,} is a convergent sequence of real (or complex) numbers, then {|x,|} is also
convergent.

(b) If {|x,|} is a convergent sequence of real (or complex) numbers, then {z,} is also
convergent.

(c) If {xy} is a sequence of real (or complex) numbers that converges to 0, and {y,}
is a sequence of real numbers that diverges to 400, then the sequence {z, y,}
converges to 1.

(d) If {x,} is a sequence of real numbers that diverges to 400 and a € R, then

lim /log (z, + a) — \/logz, = 0

n—-+o0o

Solution:

(a) TRUE: First, for all a,b € C, using the triangle inequality, we have that:
la] =la+(b—=b)=[(a—b)+b[ <|a—bl+[b] = la|—b] <|a—0b]
and, similarly,
bl =+ (a—a)l=|-(a=b)+al <|a—b[+la| = o] - |a| <|a—b|
la| —|b]| < |a—b| for all a,b € C.

Now, suppose {x,} converges to x, i.e., for all € > 0 there exists N € N such that
|z — x| < e. Applying the inequality ||a| — |b|| < |a — b| proved above, we have:

so, altogether, we have +(|a| — |b]) < |a —b|, that is,

||@n| — |2|| < |2n — 2| <€,
for alln > N, that is, {|x,|} converges to |z|. O

(b) FALSE: Take x, = (—1)", so that |x,| = 1. Then {|x,|} converges to 1, but x,
does not converge.

(c) FALSE: Tuke x, = 2 and y, = n. Then {z,} converges to 0, {y,} diverges to
+oo, but {xnyn} does not converge to 1.

(d) TRUE: Using the fact that (VA —/B)(VA++B) = A — B, we have:

1 Tn +a
0
log (zn, +a) —logz, & Ty

V1og (zy, + a) + log x, ~ log (xn + a) + V1og x,

Since {x,} diverges to +00, we have that {$n + a} converges to 1, so {log (xn i a) }

Tn In

converges to 0. Moreover, the denominators {\/log (xn + a) ++/log xn} diverge to
+00. Thus, the sequence {\/log (xn + a) — +/log wn} converge to 0. 0

Vlog (n + a) = v/log an =




2. Suppose {z,} is a Cauchy sequence in a metric space (X, d), with a subsequence {zy, }
that converges to x € X, i.e., = is a subsequential limit of {z,}. Prove that {z,}
converges to x.

Solution:

Since the subsequence {xy, } converges to x € X, we know tht for all € > 0, there exists
Ny € N such that if ngy > Ny then d(xy,,x) < 5. Moreover, since {x,} is Cauchy, for
all € > 0, there exists No € IN such that if n,m > Na, then d(x,,rm) < 5. Choose
¢ € N such that ny > max{Ny, No}. Then, if n > max{Nj, No}, we have that

d(zp,x) < d(zp, xpn,) + d(xp,, ) <

that is, x,, converges to x.

1
3. Given a > 0, define a sequence {x,} of real numbers inductively by setting x; = —,
a

1
d = , Le.,
and Tp41 P ie
1
Ty = i
a—+ 1
a—+
a—+..
(a) Is {z,} monotonic?
1
(b) Prove that {z,} converges to the unique real number L such that L = I ie.,

the positive root of the equation 2% 4+ ax — 1 = 0.

Side note: Setting a = 1 in the above, the limit of the corresponding sequence {x,} is
L= %, where ¢ = % = 1.618... is the so-called golden ratio.

Solution:

(a) No. The sequence {x,} is not monotonic. In fact, for all n € N, we have that:
Lo <Ly < <Xy < <L <<y 1 <+ <y <21,
i.e., the subsequence {x2,} is monotonically increasing, the subsequence {xo,—1} is

monotonically decreasing, and xo, < L < xon_1 for all n € IN.

Proof. Let us first prove that the subsequence {x2,—1} is monotonically decreasing, by
induction on n. The base case n =1, i.e., x3 < x1 follows from:

1 - -
a—kail a+0

a

T3 = xI1.




Now, assume by induction that ron,—1 < xr2,—3. Then

1 1 1 1 1
Ton+1 = = T — a4+ ——>a+
a + Ton a—+ Ea—— L2n+1 a + Ton—1 a+ Top—3
1
= Topt1 < 71 — = T2n-1,
a+T2n-3

that is, Tont+1 < Tan—1, which is the next case. This establishes the claim for alln € IN.

Similarly, we prove by induction that the subsequence {xayn} is monotonically increasing.
The base case n =1, i.e., xo < x4 follows from:

1 1 1 1 1
—=a+-=a+——>a+—7 = —.
T a a+0 a+a+l T4

a

Now, assume by induction that ron,—o < x2,. Then

1 1 1 1 1
Tont+2 = = 1 =a+ <a+—
a + Ton+t1 a+ P Ton+2 a+ Top a+ xonp—2
1
=  Topy2 > ———1 — = T2p,
a+ a+22n—2

that is, Top < Topt2, which is the next case. This establishes the claim for all n € IN.

Finally, let us show that o, < L < x9,—1 for all n € N, also by induction. The base
case follows from:

and, using the above inequality,

1 < r
a—+ x a+L

L.

Tro —

Now, assume by induction that ro, < L < xon,_1. Then

1 1 1 1
x2n+1:a+m<a+a+L:a+L — L:a+L<x2n+1
and, similarly,
=a+ >a+ =a+L = zTopy2< L =1L,
Ton+2 a+ Top a+ L a+ L
that is, xopt+o < L < Ton41, which is the next case. This concludes the proof. ]

(b) By what we showed in (a), since {x2,} is monotonically increasing and bounded
from above by L, it follows that {x2,} is convergent, say xo, — L, with L < L.
Similarly, since {xo,_1} is monotonically decreasing and bounded from below by L, it
18 convergent, say Top—1 — L, with L > L. We claim that L =L = L.



Letting n — 400 in the equations

1 1
Top+l = ————71 > and Topnt2 = ————71
a+ a+xon—1

we find that both L and L are solutions of the equation
1

z = -
1

a+a+

z

The above equation is equivalent to 2> + az — 1 = 0, which has a unique positive real
solution z = L. Therefore, L = L = L, and hence {x,} also converges to L because
{zn, :n € N} ={z2, : n € N} U{xo,—1:n € N} and L is its unique limit point.



