
MAT320/640, Fall 2020 Renato Ghini Bettiol

Solutions to Homework Set 1

1. Use the Archimedean property of R to rigorously prove that

inf

{
1

n
: n ∈ N

}
= 0.

Remember that this entails proving 2 things:

• 0 is a lower bound for the set E =
{

1
n : n ∈ N

}
;

• no real number larger than 0 is a lower bound for E, i.e., 0 is the largest possible
lower bound.

Hint: I “argued” the above in Lecture 1 (Video 6), but, if you pay close attention, you
will note that the Archimedean property must be used to make that rigorous.

Solution:

Claim 1: 0 is a lower bound for the set E =
{

1
n : n ∈ N

}
.

Proof of Claim 1: For all n ∈ N, we clearly have that 1
n > 0.

Claim 2: No real number larger than 0 is a lower bound for E.

Proof of Claim 2: Suppose, by contradiction, that x > 0 is a lower bound for E. By the
Archimedean property, there exists n ∈ N such that nx > 1. Thus, x > 1

n ∈ E, which
contradicts the assertion that x is a lower bound for E.

From the above Claims 1 and 2, it follows that inf
{

1
n : n ∈ N

}
= 0.

2. Let A,B ⊂ R be subsets bounded from below and from above, such that A ⊂ B. Prove
that

inf B ≤ inf A ≤ supA ≤ supB.

Give examples to show that some (which?) inequalities above might be equalities even
if A and B do not coincide.

Solution: First of all, all the quantities in the desired chain of inequalities exist because
A and B are bounded from below and from above. Since A ⊂ B, every lower bound
for B is also a lower bound for A. Indeed, if α ∈ R is such that α ≤ b for all b ∈ B,
then also clearly α ≤ a for all a ∈ A. In particular, the largest lower bound, inf B, for
the set B is also a lower bound for A. Since inf A is the largest lower bound for A, it
follows that inf B ≤ inf A. Analogously, every upper bound for B is an upper bound for
A, and so is the least such upper bound, supB. Since supA is the smallest among the
upper bounds for A, it follows that supA ≤ supB. The middle inequality is obvious,
since inf A is a lower bound for A while supA is an upper bound for A.

Finally, each one of the above inequalities may (individually) be an equality even if the
sets do not coincide; e.g., consider the intervals A = (0, 1) and B = [0, 1]. Clearly,
inf A = inf B = 0 and supA = supB = 1, but A 6= B, since 0 ∈ B but 0 /∈ A.
The middle inequality can obviously be an equality without having A = B, e.g., take
A = {1/2}, B = [0, 1].
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3. A function f : X → R, X ⊂ R, is called bounded if its image {f(x) : x ∈ X} is a
bounded set. In that case, we define sup f as its supremum, that is:

sup f := sup
x∈X

f(x) = sup {f(x) : x ∈ X}.

Prove each the following statements:

1. If f, g : X → R are bounded functions, then so is their sum (f + g) : X → R;

2. sup(f + g) ≤ sup f + sup g;

Solution:

1. From the hypothesis that f and g are bounded, there exist M,N ∈ R such that
|f(x)| ≤M and |g(x)| ≤ N , for all x ∈ X. In particular, |(f + g)(x)| = |f(x) + g(x)| ≤
|f(x)|+ |g(x)| ≤M +N for all x ∈ X. Thus, (f + g) : X → R is a bounded function.

2. By the above item, the image A = {f(x) + g(x) : x ∈ X} of (f + g) : X → R is
bounded (and it is nonempty since X 6= ∅). Thus, sup(f + g) = supA exists. Define

B = {f(x) + g(y) : x, y ∈ X},

and note that A ⊂ B, so, by the previous exercise, supA ≤ supB. It remains only to
prove that supB = sup f + sup g. First, sup f + sup g is an upper bound for B, since
given x, y ∈ X, f(x) + g(y) ≤ sup f + sup g because sup f is an upper bound for all
numbers of the form f(x), x ∈ X, and sup g is an upper bound for all numbers g(y),
y ∈ X. Second, sup f+sup g is the least such upper bound. If not, then there would exist
β < sup f + sup g with β ≥ f(x) + g(y) for all x, y ∈ X. Let r := sup f + sup g−β > 0,
and observe that (sup f) − r

2 < sup f is smaller than the smallest upper bound for
the image of f(x), so there exists x0 ∈ X such that f(x0) > (sup f) − r

2 . Similarly,
(sup g)− r

2 < sup g hence there exists y0 ∈ X such that g(y0) > (sup g)− r
2 . Altogether,

f(x0) + g(y0) > sup f + sup g − r = β,

which contradicts the above assertion that β ≥ f(x)+g(y) for all x, y ∈ X. This implies
that sup f + sup g is the least upper bound of B, so it is equal to supB, as desired.

4. Give an example of functions f and g as in the previous exercise, such that only the
strict inequality holds, i.e., sup(f + g) < sup f + sup g.

Solution: Let X = [−1, 1], f(x) = x, g(x) = −x. Clearly, sup f = sup g = 1 but
sup(f + g) = 0.
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