Homework Set 12

Due: Dec 2, 2019 (at the beginning of class)

To be handed in:

Please write your solution to Problems 1 and 2 on a single sheet of paper!

1. Compute the line integral $\int_{\gamma} \vec{F} \mathrm{~d} \gamma$, where γ is the line segment from $(1,1)$ to $(3,4)$, and $\vec{F}(x, y)=\left(x y-1, x^{2}+3 y\right)$.
2. Compute the line integral $\int_{\gamma} \vec{F} \mathrm{~d} \gamma$, where $\gamma(t)=(t \cos t, t \sin t, t)$, with $t \in[0, \pi]$, and \vec{F} is the curl of the vector field $\vec{G}(x, y, z)=(-z, y+1, x)$, that is, $\vec{F}=\nabla \times \vec{G}$.

NOT to be handed in (but recommended for you to practice with):
2. Textbook (5th edition) Section 15.2, Exercises 2, 3, 39, 40, 45, 46, 77

