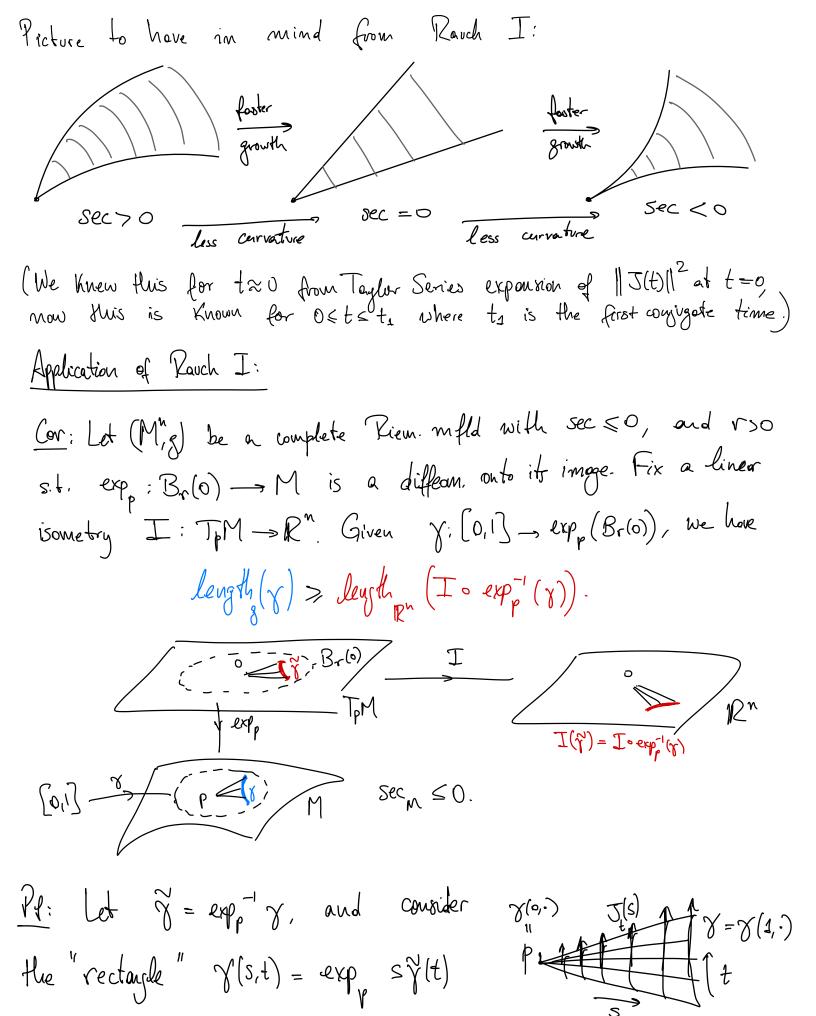
Lecture 20
$$4/12/2024$$

From last time: $J'' + R_{y}J = 0 \iff \begin{cases} J' = SJ \\ S' + S^{2} + R_{y} = 0 \end{cases} (S = \nabla V)$
Thus, $Ld R_{y}, R_{z}: R \rightarrow Sym^{2}E$ be smooth curves with $R_{y}(t) \Rightarrow R_{y}(t), \forall t$
Let $S_{1}: [t_{0}, t_{1}) \rightarrow Sym^{2}E$ be the waxional solutions to $S_{1}' + S_{1}^{2} + R_{1} = 0$
H $S_{1}(t_{0}) \leqslant S_{2}(t_{0})$, then $t_{0} \leq t_{z}$ and $S_{4}(t) \leqslant S_{2}(t)$ for all $t \in [t_{1}t_{1})$.
Next, we apply the above to get a composion of longth of Isobe fields:
Thus, Let $S_{y}, S_{2}: (t_{0}, t') \rightarrow Sym^{2}E$ be smooth curves with $S_{1}(t) \leqslant S_{2}(t)$.
Let $J_{1}: (t_{0}, t') \rightarrow E$ be nonzero set to $J'_{1} = S_{1}J_{1}$. Then $t_{1} \rightarrow \frac{15H01}{|J_{2}(0)|}$
is nonivereasing. Moreover, if find $||J_{2}(t)|| = 4$, then $||J_{1}(t)|| \leqslant |J_{2}(t)||$
for all $te(t_{0}, t')$. Equality helds for some the (t_{0}, t') if and only if
 $J_{1} = J_{1}$ vi on $[t_{0}, t']$ for some viet $u \in (t_{0}, t')$ if and only if
 $J_{1} = J_{1}$ vi on $[t_{0}, t']$ for some viet $S_{1} = \frac{S_{1}J_{1}}{||J_{1}||^{2}} = \frac{S_{1}J_{1}}{||J_{1}||^{2}}$
Thus $(t_{0} \parallel ||J_{1}||)' = \frac{||J_{1}|'}{||J_{1}||} \leq \lambda_{max}(S_{1}) \leq \lambda_{uin}(S_{2}) \leq \frac{|J_{1}|'}{||J_{1}||} = (t_{0} \parallel ||J_{2}||)'$
Thus $(t_{0} \parallel ||J_{2}||)' = \frac{||J_{1}|'}{||J_{1}||} \leq \lambda_{max}(S_{1}) \leq \lambda_{uin}(S_{2}) \leq \frac{|J_{1}|'}{||J_{1}||} = (t_{0} \parallel ||J_{2}||)'$
i.e. $(t_{0} \parallel \frac{||J_{1}||}{||J_{2}||})' \leq 0$ so $\frac{|J_{1}||}{||J_{2}||}$ is non-increasing.

By monotonicity, if
$$\|J\| = \|J\|$$
 at $t = t_0$, and $t = t_0$. then
 $\|J_1\| = \|J_0\|$, $\forall t \in (t_0, t_0)$ and here $J_1' = S_1 J_1 = \pi J_0$, from which
 $\|J_1\| = \|J_0\|$, $\forall t \in (t_0, t_0)$ and here $J_1' = S_1 J_1 = \pi J_0$, from which
 $\|J_0\| = \|J_0\|$. The following conductors dre originally
 $\|J_0\| = \|J_0\| = 0$. The following conductors dre originally
 $\|J_0\| = \|J_0\| = 0$. $\|J_0(0)\| = \|J_0(0)\|$. Then $\|J_0\| = \|J_0\|$
 $\|J_1\| = \|J_0\| = 0$. $\|J_0(0)\| = \|J_0(0)\| = \|J_0\| = 0$ and the
 $R_1 \ge R_2$ and $J_1(0) = 0$, $\|J_0(0)\| = \|J_0(0)\|$. Then $\|J_0\| = \|J_0\|$
 $\|J_0\| = \|J_0(0)\| = \|J_0(0)\| = \|J_0(0)\|$. Then $\|J_0\| = \|J_0\|$
 $\|J_1\| \ge R_2(t)$ and $J_1(0) = 0$, $\|J_0(0)\| = \|J_0(0)\|$. Then $\|J_0\| = \|J_0\|$
 $\|J_1(0)\| = \|J_0(0)\| = 0$ from comparison theorems down; noundy
 $R_1(t) \ge R_2(t)$ and $S_1(0) = S_2(0)$ give $S_1(t) \le S_2(t)$ for all $t \in (0, t_0)$. Then:
 $\|J_0\| = \|J_0(0)\| = \int J_0(0) = 0$.
 $\|J_1(0)\| = \|J_0(0)\| = \int J_0(0) = 0$.
 $\|J_1(0)\| = \|J_0(0)\| = 0$.
 $\|J_0(0)\| = \|J_0(0)\| = 0$.



For fixed t,
$$s \mapsto y(s,t)$$
 is a geodesic, and $J_{t}(s) = 2t y(s,t)$
is a Jackin field along $s \mapsto y(s,t)$; with $J_{t}(o) = 0$ and $J_{t}(1) = \dot{y}(t)$.
Since $sec_{ph} < 0$, by Rauch J_{r}
 $\|J_{t}(s)\| \ge s \|J_{t}'(o)\|$ so length, $y(s) = \int_{0}^{1} \|\tilde{g}(t)\| dt = \int_{0}^{1} \|J_{t}(s)\| dt$
 $\|J_{t}(s)\| \ge s \|J_{t}'(o)\|$ so length, $y(s) = \int_{0}^{1} \|\tilde{g}(t)\| dt = \int_{0}^{1} \|J_{t}(s)\| dt$
 $\|S_{accor}|_{contraison} \xrightarrow{s-1} \implies \int_{0}^{1} \|J_{t}'(o)\| dt = longth pn (Jo exp^{-1}g)$
Tenderd, $J_{t}'(o) = \frac{1}{ds} J_{t}(s)|_{s=0} = \frac{1}{ds} \underbrace{2}_{s=0} \exp_{p} \tilde{g}(t)|_{s=0}$
 $= \frac{1}{dt} \underbrace{2}_{s=0} \exp_{p} \tilde{g}(t)|_{s=0} = \frac{1}{dt} \frac{d}{d(orp_{0})} \tilde{g}(t) = \tilde{g}'(t)$
and so length $p(J \circ exp^{-1}g) = \int_{0}^{1} \|\underbrace{2}_{s=0} I \circ exp^{-1}(g)\| dt = \int_{0}^{1} \|J_{t}'(o)\| dt$.
 $[In R^{n}, the Jack equation $J^{n} = 0$ has solutions $J(s) = J(s) + sJ'(s)$
so Jackin fields with $J(s) = 0$ are given by $J(s) = sJ'(s)$.
 $[IJ(t)]| \ge t \|J'(o)\| > 0$
for Jackin fields with $J(s) = 0$ and more refined estimate
 $\|J(t)\| \ge t \|J'(o)\| > 0$
for solutor observation (a crucial step in the proof of Contar Hadamord Thun)
that $J(t) \ne 0$, $\forall t > 0$, cf . Remark in pZ of Lectures pdf.
 $J(s) = \frac{1}{2}$$

Cor: A geodesic triangle on a complete manifold with sec <0 satisfies
(i)
$$l(c)^2 > l(a|^2 + l(b)^2 - 2l(a)l(b) \cos \gamma$$
 ($l = length)$
(ii) $\alpha + \beta + \gamma \leq \pi$ If sec <0, then get strict inequalities.
Pl:
TM $o \neq \frac{1}{2}$ [$a = l \neq \gamma = \pi$, $b = exp = \pi$, $c = exp = \pi$
M/ $p \neq a$
Note that π and π are straight line sequents (exp is vodial isometry),
with $l(\pi) = l(a)$ and $l(\pi) = l(b)$. Let c_{a} be the straight line sequent
with some endpoints as π , so $l(\pi) > l(c_{a}) > l(c_{a}) = l(a)$. Thus, altopether:
 $los of cosino in TM $\cong \mathbb{R}^{n}$
 $l(c)^{2} > l(c_{a})^{2} = l(\pi)^{2} + l(b)^{2} - 2l(\pi) l(b) \cos \gamma$.
To compose aples, since $l(a)$, $l(b)$, $l(c)$ satisf the trangle inequalities
(b) $e^{2}(a) = e^{2}(a)^{2} + l(b)^{2} - 2l(a) l(b) \cos \gamma$.
To compose aples, since $l(a)$, $l(b)$, $l(c)$ satisf the trangle inequalities
(b) $e^{2}(a) = l(a)^{2} + l(b)^{2} - 2l(a) l(b) \cos \gamma$.
To compose aples, since $l(a)$, $l(b)$, $l(c)$ satisf the trangle inequalities
(b) $e^{2}(a) = l(a)^{2} + l(b)^{2} - 2l(a) l(b) \cos \gamma$.
To compose $aples$, since $l(a)$, $l(b)$, $l(b)$ satisf the trangle inequalities
(b) $e^{2}(a) = l(a)^{2} + l(b)^{2} - 2l(a) l(b) \cos \gamma$.
(b) $l(a) = l(a)^{2} + l(b)^{2} - 2l(a) l(b) b \approx \gamma = l(a)^{2} + l(b)^{2} - 2l(a) l(b) c \approx \gamma$.
We can build a comparison triangle to \mathbb{R}^{2} , with some side $a_{1}ple_{2}$
 $l(a)^{2} + l(b)^{2} - 2l(a) l(b) b \approx \gamma \leq l(c)^{2}$
 $l(a)^{2} + l(b)^{2} - 2l(a) l(b) b \approx \gamma \leq l(c)^{2}$
 $l(a)^{2} + l(b)^{2} - 2l(a) l(b) b \approx \gamma \leq l(c)^{2}$
 $l(a)^{2} + l(b)^{2} - 2l(a) l(b) \cos \gamma \leq l(c)^{2}$
 $l(a)^{2} + l(b)^{2} - 2l(a) l(b) \cos \gamma \leq l(c)^{2}$
 $l(a)^{2} + l(b)^{2} - 2l(a) l(b) b \approx \gamma \leq l(c)^{2}$
 $l(a)^{2} + l(b)^{2} - 2l(a) l(b) \cos \gamma \leq l(c)^{2}$
 $l(a)^{2} + l(b)^{2} - 2l(a) l(b) \cos \gamma \leq l(c)^{2}$
 $l(a)^{2} + l(b)^{2} - 2l(a) l(b) \cos \gamma \leq l(c)^{2}$
 $l(a)^{2} + l(b)^{2} - 2l(a) l(b) \cos \gamma \leq l(c)^{2}$
 $l(a)^{2} + l(b)^{2} - 2l(a) l(b) \cos \gamma \leq l(c)^{2}$
 $l(a)^{2} + l(b)^{2} - 2l(a) l(b) \cos \gamma \leq l(c)^{2}$
 $l(a)^{2} + l(b)^{2} - 2l(a) l(b) \cos \gamma \leq l(c)^{2} = l(a)^{2} + l(b)^{2} - 2l$$

Runk: If (M', g) is a complete Riem might with
$$\pi_{1}M = \{i\}$$
 and $\sec 0$
then by Cartan-Hadamord $\exp_{1}: T_{1}M \to M$ is a differ, so given any
 $g \in M$ there is a jungue geodesic joining β and g , which is hence
minimizing (b/c there exists some minimizing geodesic by the Rivow).
 $\int_{1}^{1} \pi_{1}^{1} f$
 \int_{1}^{1

Prop. Given a deck transformation
$$f: \widetilde{M} \rightarrow \widetilde{M}$$
, there exists a geodene $\widetilde{\gamma}$ in \widetilde{M}
st. f is a translation along \widetilde{S} . for however, then
 $\widetilde{M} = \widetilde{f} \times \widetilde{p}$ for some $\alpha \in \mathcal{T}_{4}(\widetilde{M}, p)$. Let $\gamma \wedge \alpha$ be a cloud geoderic. Then
 $\widetilde{M} = \widetilde{p} \times \widetilde{p}$ is a translation $\alpha \in \mathcal{T}_{4}(\widetilde{M}, p)$. Let $\gamma \wedge \alpha$ be a cloud geoderic. Then
 $\widetilde{M} = \widetilde{p} \times \widetilde{p}$ is a transformation.
 $\widetilde{M} = \widetilde{p} \times \widetilde{p} \in Aot(\widetilde{M})$ is $s. h. h(\widetilde{s}) = \widetilde{\gamma}$; by construction.
 $\widetilde{M} = \widetilde{p} \times \widetilde{p} \in Aot(\widetilde{M})$ is $s. h. h(\widetilde{s}) = \widetilde{\gamma}$; by construction.
 $\widetilde{M} = \widetilde{p} \times \widetilde{p} \otimes \widetilde{p} \otimes$

$$\begin{split} & \sum_{i=1}^{n} \Delta_{i} + \sum_{i=1}^{n} \Delta_{i} \geq 2\pi \\ & \text{int. anylos} \quad \text{int. anylos} \quad \text{int. anylos} \quad \text{form last} \\ & \text{supply} \quad \text{for } (i=1 \text{ or } 2; \text{ constructiving Con. form last} \\ & \text{lectrice first} \quad \sum_{i=1}^{n} \Delta_{i} < \pi \quad \text{for } \quad \text{sec} < 0. \\ & \text{D} \\ & \text{lectrice first} \quad \text{for } \Delta_{i} < \pi \quad \text{for } \quad \text{sec} < 0. \\ & \text{D} \\ & \text{lectrice first} \quad \text{int.} \quad \Delta_{i} < \pi \quad \text{for } \quad \text{sec} < 0. \\ & \text{lectrice first} \quad \text{for } \quad \text{order for all only first sec} < 0, \\ & \text{lectrice first} \quad \text{for } \Delta_{i} < \pi \quad \text{for } \quad \text{sec} < 0. \\ & \text{lectrice first} \quad \text{for } \Delta_{i} < \pi \quad \text{for } \quad \text{for } \quad \text{sec} < 0. \\ & \text{lectrice first} \quad \text{for } \Delta_{i} < \pi \quad \text{for } \quad \text{for } \quad \text{sec} < 0. \\ & \text{deck transformultures we translations along first source geodesic.} \\ & \text{for } \int_{i}^{i} f_{i} & f_{i} &$$

with sec >0 and fundamental group Zz @Zz.

Pt: Apply ODE comparison from Lectures 19-20:
Thus. Let
$$R_1, R_2: \mathbb{R} \to Sym^2 E$$
 be smooth curves with $R_1(t) \ge R_2(t)$, $\forall t$
Let $S_i: [t_0, t_1] \to Sym^2 E$ be the maximal solutions to $S_1' + S_1^2 + R_1 = O$
Let $S_4(t_0) \le S_2(t_0)$, then $t_A \le t_2$ and $S_4(t) \le S_2(t)$ for all $t \in [t_0, t_4)$.

Setting
$$E=R$$
, $R_1 = v$, $R_2 = K$, δo (i) $\Rightarrow v \ge K \Rightarrow P_1 \ge R_2$
 $S_1' + S_1^2 + R_1 = 0 \iff a' + a^2 + v = 0$
 $S_2' + S_2^2 + R_2 = 0 \iff a' + a^2 + K = 0$.

$$\frac{R_{\rm m}K_{\rm s}}{S|t} \sim \frac{4}{t-t_{\rm o}} \, \mathrm{Id} \,, \quad \overline{\alpha} = \frac{SN_{\rm K}'}{SN_{\rm K}} \quad \text{where} \quad \begin{cases} SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}S$$

Let
$$J_{1}, ..., J_{n-1}$$
 be Jacobi fields along χ
that form a basis of solutions to
 $J' = SJ$ (S: $V^{\perp} = V^{\perp}$)
and set $j = det(J_{1}, J_{2}, ..., J_{n-1})$. all
identified via
prollee transport

$$\begin{aligned} \dot{S}' &= \det \left(S_{1}', J_{2}, \ldots, J_{n-1} \right) + \det \left(J_{1}, J_{2}', J_{3}, \ldots, J_{n-1} \right) + \ldots + \det \left(J_{1}, \ldots, J_{n-1} \right) \\ &= \det \left(S_{2}, J_{2}, \ldots, J_{n-1} \right) + \det \left(J_{1}, S_{2}, J_{3}, \ldots, J_{n-1} \right) + \ldots + \det \left(J_{1}, \ldots, S_{n-1} \right) \\ &= \det \left(S_{2}, J_{2}, \ldots, J_{n-1} \right) + \det \left(J_{1}, S_{2}, J_{3}, \ldots, J_{n-1} \right) + \ldots + \det \left(J_{1}, \ldots, S_{n-1} \right) \\ &= \det \left(S_{2}, J_{2}, \ldots, J_{n-1} \right) + \det \left(J_{1}, S_{2}, J_{3}, \ldots, J_{n-1} \right) + \ldots + \det \left(J_{1}, \ldots, J_{n-1} \right) \\ &= \det \left(S_{2}, J_{2}, \ldots, J_{n-1} \right) + \det \left(J_{1}, S_{2}, J_{3}, \ldots, J_{n-1} \right) + \ldots + \det \left(J_{1}, \ldots, J_{n-1} \right) \\ &= \det \left(S_{2}, J_{2}, \ldots, J_{n-1} \right) + \det \left(J_{1}, \ldots, J_{n-1} \right) + \det \left(J_{1}, S_{2}, J_{3}, \ldots, J_{n-1} \right) + \ldots + \det \left(J_{1}, \ldots, J_{n-1} \right) \\ &= \det \left(S_{2}, J_{2}, \ldots, J_{n-1} \right) + \det \left(J_{1}, \ldots, J_{n-1} \right) + \det \left(J_{$$

$$= \operatorname{fr} S \cdot \operatorname{det} (J_{1}, \ldots, J_{N-1}) = (I \cdot S \cdot J_{N-1}) \quad \text{or:} \quad d(\operatorname{det})_{I} X = \operatorname{tr} X; \text{ more generally, if} \\ A \text{ is invertible,} \quad d(\operatorname{det})_{A} X = (\operatorname{det} A) + (A^{-1} X) \\ A \text{ is invertible,} \quad d(\operatorname{det})_{A} X = (\operatorname{det} A) + (A^{-1} X) \\ Let \quad j(t) = \operatorname{det} A(t), \text{ where } A(t) = (J_{1}(t), \ldots, J_{N-1}(t)). \\ j'(t) = d(\operatorname{det})_{A(t)} A'(t) = (\operatorname{det} A(t)) + r(A(t)^{-1} A^{2}(t)) \\ = j(t) \cdot \operatorname{tr} (A^{-1}(t) \cdot S(t) \cdot A(t)) = (\operatorname{tr} S) \cdot j \cdot M$$

Since
$$d(eqp)_{tv} c_{i} = \frac{1}{4} (d(eqp)_{tv} tc_{i}) = \frac{1}{4} J_{i}(t)$$
 is the Jacobi field
along $t_{1 \rightarrow 0}$ exp tv with $J_{i}(0) = 0$ and $J_{i}(0) = e_{i}$, t follows that
 $det(d(eqp)_{tv}) = \frac{1}{4^{tv-1}} det(J_{i}(t), ..., J_{n-1}(t))$ and hence:
 $Ve(Br(q)) = \int_{S^{n-1}(1)} \int_{0}^{r(1)} \frac{det(J_{i}(t), ..., J_{n-1}(t))}{(j_{1}(t))} dt dv$ as $j_{1}(t) = 0$ for
 $J_{i}(t)$.
By previous result, $J_{i}(t)/J_{i}(t)$ is maximereasing on $[0, -]$, where
 $J(t) = det(\overline{J}_{i}, ..., \overline{J}_{n-1})$, for corresponding Jacobi fields \overline{J}_{i} on \overline{M} .
 $J(t) = det(\overline{J}_{i}, ..., \overline{J}_{n-1})$, for corresponding Jacobi fields \overline{J}_{i} on \overline{M} .
Set $q(t) = \frac{1}{Vel(S^{n-1}(1))} \int_{S^{N-1}(1)} \frac{j_{i}(t)}{J_{i}(t)} dv_{1}$ which is also man-increasing
(because it is an everage of maximereasing quantities). As before,
 $Vel(Br(p)) = \int_{S^{N-1}(1)} \int_{0}^{r} J_{i}(t) dt dv = Vel(S^{n-1}) \int_{0}^{r} J_{i}(t) dt$
 $Vel(Br(p)) = \int_{S^{N-1}(1)} \int_{0}^{r} J_{i}(t) dt dv = Vel(S^{n-1}) \int_{0}^{r} J_{i}(t) dt$
 $Vel(Br(p)) = \int_{S^{N-1}(1)} \int_{0}^{r} J_{i}(t) dt dv = Vel(S^{n-1}) \int_{0}^{r} J_{i}(t) dt$
 $J_{i}(t) dt$
 $J_{i}(t) dt dv = Vel(S^{n-1}) \int_{0}^{r} J_{i}(t) dt$

the inequalities using Bidop We comp above are caulities. Thus,
from rigidity in the equality case of Bisdop Ve course, we have
$$B_r(p) \cong B_r$$
 and $B_{\overline{T}, r}(q) \cong B_{\overline{T}, r}$, thus $M \cong S^n(Ver)$.
 $P(p) \cong B_r$ and $B_{\overline{T}, r}(q) \cong B_{\overline{T}, r}$, thus $M \cong S^n(Ver)$.
 $P(p) \cong B_r$ and $B_{\overline{T}, r}(q) \cong B_{\overline{T}, r}$, thus $M \cong S^n(Ver)$.
 $P(p) \cong S^n(Ver)$ Indeed, there is no room for
only $M \setminus (B_r(p) \cup B_{\overline{T}, r}(q))$ because
that usual increase the diameter.
 $Dpen Problem:$ If (M^n, g) has $Ric \ge (n-4)K > 0$ and
 $Vel(H, g) > \frac{4}{2}$ Vel $(S^n(L/Ver))$, then $M \cong S^n$.
 $Upper Problem:$ If (M^n, g) has $Ric \ge (n-4)K > 0$ and
 $Vel(H, g) > \frac{4}{2}$ Vel $(S^n(L/Ver))$, then $M \cong S^n$.
 $Upper Problem:$ If (M^n, g) as above is simply connected.
Hint: $(P \cap S \cap s is not scouply connected, take is universal covering.$
Lecture $\frac{4}{23} = 5/(1/2024)$
A quick teste of Geometric Group Throop.
 $M_K = # \{g \in \Gamma : g = g_1 \cdots g_K, with g: \in G \}$ To the own of the own
with $c \in G$ and $C^+ a_G$. Then define growth function for $\Gamma : F = Coirs$
 $M_K^n = # \{g \in \Gamma : g = g_1 \cdots g_K, with g: \in G \}$ To the own of the own
here write as product of K quarters
in the first function of G .
 $M_K^n \ge N_{CK}^n$ and $N_K^n \ge N_{CK}^n$ for some contexts $C_i D > 0$,
so can ignore choice of gene set G for questions below

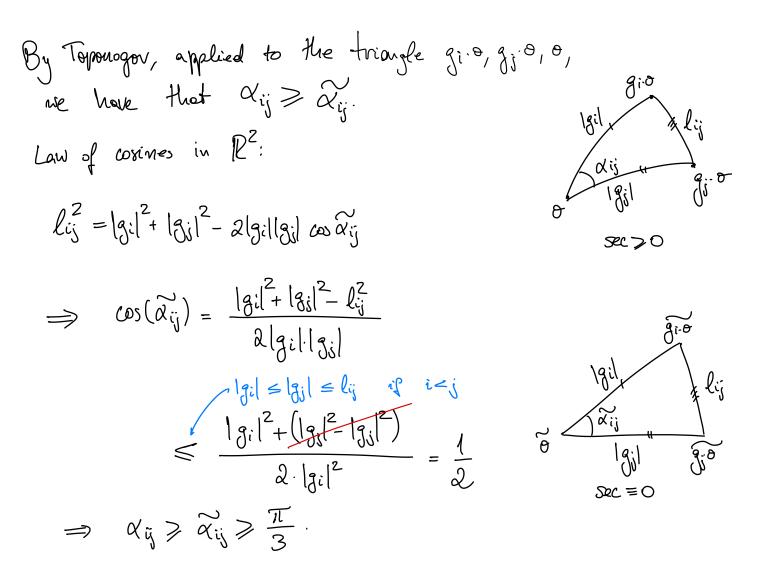
•
$$\underline{G}$$
: Hav doe Nx grow with X? Polynowedle? Exponentiall?
Then (Hilder '68). If (M'3) is complete and has $Re \ge 0$, then
any finitely generated subgrop $\Gamma < \tau_{5}M$ has $N_{k} \le C \cdot K^{n}$.
R: Choose $o \in M^{n}$, and lat $V(r) = Vol(Br(o))$. By Bishop Volume Comp,
 $V(r) \le Vol(B_{r(o)}^{(n)}) = \frac{\pi^{n/2}}{\Gamma(\frac{n}{2}+4)} r^{n}$. Let $G = \frac{1}{2}g_{1,\dots,g_{p}} S$ be the
fixed generating set for $\Gamma < \tau_{5}M$ and $\mu = \max dist(0, g; 0)$.
Then $B_{\mu,\kappa}(\sigma)$ has at least N_{k}^{G} distinct points
of the form $g \cdot \sigma_{1}$ with $g \in \Gamma$. Choose $E \ge 0$ s.t.
 $g \cdot B_{E}(\theta) \cap B_{E}(\theta) = \phi$ if $g \neq e$. Then $B_{\mu,\kappa_{12}}(\sigma)$ has at least
 N_{k}^{G} disjoint subjects of the form $g \cdot B_{E}(\sigma)$, so
 $N_{K}^{G} \cdot V(\epsilon) = Vk(\Pi, g, B_{E}(\sigma)) \le V(\mu K + \epsilon)$
Thus $N_{k}^{G} \le \frac{V(\mu K + \epsilon)}{V(\epsilon)} \le \frac{C}{V(\mu K + \epsilon)} = C \cdot K^{n}$.
Thus $N_{k}^{G} \le \frac{V(\mu K + \epsilon)}{V(\epsilon)} \le \frac{C}{V(\epsilon)} = C \cdot K^{n}$.
Thus $N_{k}^{G} \le \frac{V(\mu K + \epsilon)}{V(\epsilon)} = C \cdot K^{n}$.
Thus $N_{k}^{G} \le \frac{V(\mu K + \epsilon)}{V(\epsilon)} = C \cdot K^{n}$.
Thus $N_{k}^{G} \le \frac{V(\mu K + \epsilon)}{V(\epsilon)} = C \cdot K^{n}$.
Thus $N_{k}^{G} \le \frac{V(\mu K + \epsilon)}{V(\epsilon)} = C \cdot K^{n}$.
Thus $N_{k}^{G} \le \frac{V(\mu K + \epsilon)}{V(\epsilon)} = C \cdot K^{n}$.
Thus $N_{k}^{G} \le \frac{V(\mu K + \epsilon)}{V(\epsilon)} = C \cdot K^{n}$.
Thus $N_{k}^{G} \le \frac{V(\mu K + \epsilon)}{V(\epsilon)} = C \cdot K^{n}$.
Thus $N_{k}^{G} \le \frac{V(\mu K + \epsilon)}{V(\epsilon)} = C \cdot K^{n}$.
Thus $N_{k}^{G} \le \frac{V(\mu K + \epsilon)}{V(\epsilon)} = C \cdot K^{n}$.
Thus $N_{k}^{G} \le \frac{V(\mu K + \epsilon)}{V(\epsilon)} = C \cdot K^{n}$.
Thus $N_{k}^{G} \le \frac{V(\mu K + \epsilon)}{V(\epsilon)} = C \cdot K^{n}$.
Thus $N_{k}^{G} \le \frac{V(\mu K + \epsilon)}{V(\epsilon)} = C \cdot K^{n}$.
Thus $N_{k}^{G} \le \frac{V(\mu K + \epsilon)}{V(\epsilon)} = C \cdot K^{n}$.
Thus $N_{k}^{G} \le \frac{V(\mu K + \epsilon)}{V(\epsilon)} = C \cdot K^{n}$.
Thus $N_{k}^{G} \le \frac{V(\mu K + \epsilon)}{V(\epsilon)} = C \cdot K^{n}$.
Thus $N_{k}^{G} \le \frac{V(\mu K + \epsilon)}{V(\epsilon)} = C \cdot K^{n}$.
Thus $N_{k}^{G} \le \frac{V(\mu K + \epsilon)}{V(\epsilon)} = C \cdot K^{n}$.
Exc. Fundamental growth, thus, cannot be π_{1} of model and $N_{k}^{G} \ge 0$.
 $G \cdot C \cdot C \cdot C^{n}$ is a sode T in the sode T is a sode T .
Exc. Fundamental growth, thus, cannot be π_{1} of more $\pi < C \cdot C^{n}$.
Exc. Fundamental generation

.

<

.

Lo



Let ViETOM be the unit vector tangent to the min. geod. from o to give. By the above, the distance (on the unit sphere on ToM) between V_i and V_j is $\alpha_{ij} \ge \frac{\pi}{3}$, so the balls of radius $\frac{\pi}{6}$ centered at vi and vi must be disjoint. (This already proves i there can be only finitely many vi's, hence finitely many gis マちろ So $\Gamma = \pi_1 M$ is finitely generated.) Moreover, as $|g_i^{-1}| = |g_i|$, we must also have that distance from $-V_i$ to V_j is $\exists \pi_3 v_j^{-1} i < j$, therefore the number of V_i 's is: īζ ΤσÃ $\# \{g_i\} = \# \{v_i\} \leq \frac{\operatorname{Vol}(\mathbb{RP}^{n-1}(1))}{\operatorname{Vol}(\mathbb{B}_{\pi/6}^{n-1}(v))} = \operatorname{Volume}_{\substack{t \in S^{n-1} \subset T_0 : H_i}}^{\operatorname{Volume}} disjoint}_{\substack{t \in S^{n-1} \\ ball around \pm v_i \in S^{n-1}}}$

Standard Computations give:
When it spherical hold of radios it is (
$$0 < r < \pi/s$$
)
When it is produce to be it is a construction of r .
Well $(B_{2k}^{n-1}(1)) \ge \sqrt{kl} (B_{\frac{N+1}{2k}}^{n-1}(0)) = \frac{\pi}{\Gamma(\frac{N+1}{2})} e^{N-1}$ ($\Gamma(\frac{N+1}{2}) e^{N-1}$
Well $(RP^{n-1}(1)) = \frac{1}{2} \sqrt{kl} (S^{n-1}(1)) = \frac{\pi}{\Gamma(\frac{N}{2})} e^{N-1}$ ($\Gamma(\frac{N+1}{2}) e^{N-1}$
So $\# \{g_i\} = \# \{V_i\} \le \frac{\pi}{\Gamma(\frac{N+1}{2})} e^{N-1}$ $\Gamma(\frac{N+1}{2}) e^{N-1}$
So $\# \{g_i\} = \# \{V_i\} \le \frac{\pi}{\Gamma(\frac{N+1}{2})} e^{N-1}$ $\Gamma(\frac{N+1}{2}) e^{N-1}$
For (are sec > -k², see Escheching's mater.
Using Bidup Volume Comparison, Toponoger Triangle Comparison, Critical Point
theory for distance functions and topological constructions, Grown proved the fellowing:
Thus, Grownov '1981).
1) If (M'',g) is a complete winfield with sec > 0, then $\sum_{k=0}^{n} k_k(m) \le C(n)$.
Will $(Sha-Yang'9(a), \forall l \in N), \# S^2 \times S^2$ and $\#' (TP^2 + fP^2)$ have $Rx > 0$.
Thus, since $b_2(\#^2 S_n S^2) = 2\ell$ and $b_2(\#^k OP^2 + FP^2) = K+\ell$, or of $M=1$ $M=1$ $e^{N+1} e^{N+1} e$

Thm. If G is a connected Lie gp, there is a variable simply
connected Lie group
$$\overline{G}$$
 and a Lie gp homomorphism $\pi:\overline{G} \to \overline{G}$
which is a covering map.
E.g., $\mathbb{R}^{M} \to \overline{T}^{M}$, $SU(2) \longrightarrow SO(3)$, $SU(2) \times SU(2) \longrightarrow SO(4)$
 $Sp(2) \longrightarrow SO(5)$, $SU(4) \longrightarrow SO(6)$

Prop. A Lie gp homomorphism
$$\pi: G_1 \rightarrow G_2$$
 between convicted
groups is a overng wap if $d\pi_2: q_1 \rightarrow q_2$ is an isomorphism.
Pl. A convering map is a local diffeo, so \Rightarrow is clear.
Conversely, if $d\pi_2$ is an isour, by Inv. Fund. Thun, $\exists U \subset G_1$ and
 $V \subset G_2$ neighborhoods of the identity, s.t $\pi(v: U \rightarrow V)$ is
a diffeo. By Lemma, given $h \in G_2$, $h = h_1^{\pm 1} \cdots h_n^{\pm 1} = h$, so
and $\exists g_1 \in V$ s.t. $\pi(g_1) = h_1$ so $\pi(g_1^{\pm 1} - g_n^{\pm 1}) = h_1^{\pm 1} \cdots h_n^{\pm 1} = h$, so
 π is a surjective homomorphism. One three correly checks it
is a covering map with deck transf. gp. Ker π . \Box
Lemma. If $\varphi_1 \varphi_1 \subseteq G_1 \longrightarrow G_2$ are lie gp homomorphisms, G_1 connected
and $\Theta: q_1 \longrightarrow q_2$ a Lie algebra homomorphism, $d\varrho = d\forall e = 0$, then
 $\varphi = \varphi^2$.
Pl. Consider the graph of Θ , $h := \xi(X, \Theta(K)) : X \in g_1 \xi$, which
is a Lie subalgebra of $g_1 \oplus g_2$. By a Theorem drave, there exists a
anyor convected Lie subgroup H of $G_1 \times G_2$ with Lie algebra h.

$$\begin{cases} G_{2} & \text{Then } \mathcal{T}: G_{1} \rightarrow G_{1} \times G_{2} \\ g \mapsto (g, \varphi(s)) \\ \text{is a Lie } g_{2} \cdot homon, with $d\sigma(X) = (X, \theta(s)) \\ f \sigma & \text{is a Lie } ag_{2} \cdot homon, and $\sigma(G_{1}) \subset G_{1} \times G_{2} \\ \text{Lie above a sith Lie algebra } h. By uniquenos, $\sigma(G_{1}) = H. \\ So veplacing & \phi \text{ with } \mathcal{T}, \text{ if } dg_{2} = d\mathcal{F}_{2} = 0, we would obtain \\ \text{the source subgroup of } G_{1} \times G_{2}, which is the graph of the homomorphism } g = \mathcal{F}. \\ \hline \\ \hline \\ Imm \cdot J_{4} \Theta: g_{1} \rightarrow g_{2} \quad \text{is a Lie algebra homomorphism, and } G_{1} \\ \text{the proph of and simply connected, then } \exists f: G_{1} \rightarrow G_{2} \text{ unique } f \\ \text{the group homomorphism } u \end{pmatrix} d f = \Theta \quad \text{the unspaces of our } \mathcal{F} \\ \hline \\ f_{1} \text{ to } f_{1} \rightarrow g_{2} \quad \text{is a Lie algebra homomorphism, and } G_{1} \\ \hline \\ f_{2} \text{ proph homomorphism } u \end{pmatrix} d f = \Theta \quad \text{the unspaces of unique } f \\ \hline \\ f_{1} \text{ to } f_{1} \rightarrow g_{2} \quad \text{is a Lie algebra homomorphism, and } G_{2} \\ \hline \\ f_{1} \text{ to } f_{1} \rightarrow g_{2} \quad \text{is a lie algebra homomorphism, and } G_{1} \\ \hline \\ f_{1} \text{ the graph } \Theta \quad \text{ad } H \subset G_{1} \times G_{2} \quad \text{the unspaces of unique } f \\ \hline \\ f_{2} \text{ the } f_{1} \rightarrow g_{2} \quad \text{the unorphism, } u \end{pmatrix} d f = \Theta \quad \text{the index if all } f = g_{2} \\ \hline \\ f_{1} \text{ the following plus } f \\ \hline \\ f_{1} \text{ the is locally invertible mean the identify: } \\ \hline \\ f_{1} \text{ out} \quad f_{2} \text{$$$$$

Since
$$d(\pi, oi)$$
 is an isom, $(\pi, oi): H \longrightarrow G$, is a covering
Map. As G, is simply connected, $\pi, oi : = differences plusen
so can be globally inverted, here $f: G_1 \longrightarrow G_2$ can be
globally defined a $f=\pi_2 \circ (\pi_1 \circ i)^{-1}$. Unqueues fillows for Lema
 $f=\pi_2 \circ (\pi_1 \circ i)^{-1}$. Unqueues fillows for Lema
 $f=\pi_2 \circ (\pi_1 \circ i)^{-1}$. Unqueues fillows for Lema
 $f=\pi_1 \circ (G_1 \circ G_2 \circ (\pi_1 \circ i))^{-1}$. Unqueues fillows for Lema
 $f=\pi_1 \circ (G_1 \circ G_2 \circ (\pi_1 \circ i))^{-1}$. Unqueues fillows for Lema
 $f=\pi_1 \circ (G_1 \circ G_2 \circ (\pi_1 \circ i))^{-1}$. Unqueues fillows for Lema
 $f=\pi_1 \circ (G_1 \circ G_2 \circ (\pi_1 \circ i))^{-1}$. Unqueues fillows for Lema
 $f=\pi_1 \circ (G_1 \circ G_2 \circ (\pi_1 \circ i))^{-1}$. Unqueues fillows for Lema
 $f=\pi_1 \circ (G_1 \circ G_2 \circ (\pi_1 \circ i))^{-1}$. Unqueues fillows for Lema
 $G_1 \circ (G_1 \circ G_1 \circ G_1 \circ (\pi_1 \circ i))^{-1}$. Unqueues fillows for Lema
 $globally$ defined a fillow of $G_1 \circ (G_1 \circ G_1 \circ (G_1 \circ G_1 \circ (G_1 \circ G_1 \circ G_1 \circ (G_1 \circ G_1 \circ (G_1 \circ G_1 \circ G_1 \circ (G_1 \circ (G_1 \circ G_1 \circ (G_1 \circ (G_1 \circ (G_1 \circ G_1 \circ (G_1 \circ (G_1 \circ G_1 \circ (G_1 \circ (G$$

Lecture 25
$$5/8/2024$$

Recap last lecture.
Resp: exp:g-=> G stables the following properties
(i) exp(tX) = $\lambda_X(t)$
(ii) $exp(t,X + t_X) = exp t_X \cdot exp t_X$
(iii) $exp(t,X + t_X) = exp t_X \cdot exp t_X$
(iv) $exp: T_G \rightarrow G$ is smooth and $d(exp)_0 = id$, hence $exp \Rightarrow a$ -local
differs from neighborhood of $O \in T_G G$ to merghborhood of $e \in G$.
R: Let $\lambda(s) = \lambda_X(st)$. Differentiating at $s=0$, we have
 $\lambda'(o) = \frac{d}{ds} \lambda_X(st)|_{s=0} = \lambda_X'(o) t = t_X$.
Thus, by uniqueness of the 1-parameter subgraph with initial
value $d_X(st)|_{s=0} = \lambda_X(s) + \frac{d}{ds} \lambda_X(st)|_{s=0} = \frac{d}{ds} \lambda_X(st) = \frac{d}{ds} \lambda_X(st)$

So, setting
$$b=1$$
, $exp(Ad(g)X) = g \cdot exp X \cdot g^{-1}$
Differentiating equation, we have: $ad(X) : g \rightarrow g$, $ad(X) Y = dAd_e(X) Y$
which is a lie algebra representation $ad: g \rightarrow End(g)$.
By the Chown Rule,
 $ad(X)Y = \frac{d}{dt} Ad(exp tX)Y|_{t=0}$
State exp and he gp/ag, homomorphisms commute,
 $Ad(exp(tX)) = exp(tod(X))$
BD, setting $t=1$, we see that the fillowing diagram commutes
 $q \xrightarrow{ad} End(g)$ inder $Aut(g)$ is the discrete the private the insurphisms
 $exp[]_{dad} = End(g)$ inder $Aut(g) \subset GL(g)$ is the discrete the private the private the insurphisms
 $exp[]_{dad} = End(g)$ inder $Aut(g) \subset GL(g)$, in the discrete the private the private the insurphisms
 $exp[]_{dad} = Aut(g)$ is the algebra end to the discrete the private the insurphisms discrete the private the private the insurphisms
 $exp[]_{dad} = Aut(g)$ is $exp(tY) exp(tX) = exp(tY + t^2(X,Y] + 0t^2)$,
 $gr with g = exp(tX)$,
 $exp(Ad(g) tY) = g \cdot exp(tY) \cdot g^{-1} = exp(tY + t^2(X,Y] + 0t^2)$,
 $for with g = exp(tX)$,
 $exp(Ad(g) tY) = tY + t^2[X,Y] + 0t^2$
so dividing by t and differentiating at $t=0$, he have
 $ad(X)Y = \frac{d}{dt} Ad(exp(X)Y|_{t=0} - \frac{d}{dt} Y + t[X,Y] + 0t^2]_{t=0} = [X,Y]$.

Def. The cuter of a Lie of G is
$$Z(G) = \{g \in G: ghg^{-1} = h, the G\}$$

and the cuter of a Lie of g is $Z(g) = \{X \in g : [X, Y] = 0 \forall \forall \notin g\}$.
Prog: If G is connected, then $Z(G) = Ker$ Ad is a
mormal Lie subgroup of G, with Lie algebra $Z(g) = Ker$ ad.
Pf. If $g \in Z(G)$, then $ag = id$ so $Ad(g) = rd$. Conversely, if
getter Ad, then $g(\exp tX)g^{-1} = \exp(tX)$ for all $X \in g$,
so g commutes with all elements in a meighterhood
of $e \in G$, hence with all elements in G = G. Since
 $Z(G) \neq G$ is aboved, it is an embedded Lie subgroup. Since
 $dAd|_{g} = ad$, it follows that its Lie algebra is Ker od. []
Runk: If $\pi: G = G$ is a covering of connected Lie gps,
then Ker π is a discrete subgroup of $Z(G)$.
Ledvice $dG = S/so(2024)$
Def. A Recun metric (:,?) on a Lie group G is left -invorcent
 $(d(L_{g})_{h}X, d(L_{g})_{h}Y)_{gh} = \langle X_{i}Y \rangle_{h}$
Similarly, it is right - invariant if $R_{2}: G = G$ is an isometry by G .
Note that an inver groudoct (:,?) on TeG defines a unique
left invariant metric on G: $(X,Y)_{g} = (d(L_{g})_{g}X, d(L_{g})_{g}Y)_{g}$

A metric on G is bi-invariant if H is lift and right-invariant.
Prop. Compart Lie groups advant bi-invariant metrics.
Prop. Compart Lie groups advant bi-invariant metrics.
Prop. Let westing when
$$R_{1}^{+}$$
 we a right-invariant volume form we is it. The site is invariant metrics, R_{1}^{+} we a given volume form we is it. The site is invariant metrics, R_{1}^{+} we (digrig X, ..., digrig X,). Let (r) be a right-invariant metric, R_{2}^{+} , R_{1}^{+} we (digrig X, ..., digrig X, digrig V) for an orbitrary inverse product (r) on Tell. Define $\forall X, \forall E T \times G$
Q: TriGXTXG $\rightarrow \mathbb{R}$, $Q(X,Y)_{X} = \int_{G} \langle dl_{g}X, dl_{g}Y \rangle_{X} \omega$.
Thus Q is left-twornet because, setting $f(g) := \langle dl_{g}X, dl_{g}Y \rangle_{gX}$,
 $Q(dL_{X}X, dL_{Y}Y)_{X} = \int_{G} \langle dl_{g}dL_{Y}X, dl_{g}dL_{Y}Y \rangle_{gX} \omega$
 $= \int_{G} f(g^{th}) \omega = \int_{G} \mathbb{R}_{X}^{*} (fw) = \int_{R_{1}} fw = Q(X,Y)_{X}$
and Q is replit-invariant because.
 $Q(dR_{Y}X, dR_{Y}Y)_{XY} = \int_{G} \langle dl_{g}dR_{Y}X, dl_{g}dR_{Y}Y \rangle_{gX} \omega = Q(X,Y)_{X}$
 $R_{1}c_{1}c_{1}c_{1}c_{1}$
 $= \int_{G} \langle dR_{1}dL_{2}X, dR_{2}dL_{3}Y \rangle_{gX} \omega = Q(X,Y)_{X}$
 $R_{2}c_{1}c_{1}c_{1}c_{1}$
 $R_{3}c_{3}c_{4}dR_{4}X, dL_{4}Y \rangle_{gX} = \int_{G} \langle dl_{g}dR_{1}X, dl_{g}dR_{2}Y \rangle_{gX} \omega = Q(X,Y)_{X}$
 $R_{2}c_{1}c_{1}c_{1}c_{1}$
 $R_{3}c_{4}dR_{4}U_{2}Y \rangle_{gX} = \int_{G} \langle dL_{3}dR_{4}X, dL_{3}dR_{4}Y \rangle_{gX} \omega = Q(X,Y)_{X}$
 $R_{3}c_{1}c_{1}c_{1}c_{1}c_{2}c_{3}$
 $R_{3}c_{4}dR_{4}U_{4}Y \rangle_{gX} = \int_{G} \langle dL_{3}dR_{4}X, dL_{3}dR_{4}Y \rangle_{gX} \omega = Q(X,Y)_{X}$
 $R_{3}c_{4}c_{4}dR_{4}Y \rangle_{gX} = \int_{G} \langle dL_{3}dR_{4}X, dL_{3}dR_{4}Y \rangle_{gX} \omega = Q(X,Y)_{X}$
 $R_{3}c_{4}c_{4}dR_{4}Y \rangle_{gX} = \int_{G} \langle dL_{3}dR_{4}X, dL_{3}dR_{4}Y \rangle_{gX} \omega = Q(X,Y)_{X}$
 $R_{3}c_{4}c_{4}dR_{4}Y \rangle_{gX} = \int_{G} \langle dL_{3}dR_{4}Y \rangle_{gX} \omega = \int_{G} \langle dL_{3}X, dL_{3}Y \rangle_{gX} \omega = Q(X,Y)_{X}$
 $R_{3}c_{4}c_{4}dR_{4}Y \rangle_{gX} \otimes Q_{4}Z \rangle_{gX} \otimes Q$

(onversely, the geodesic
$$\chi: (-\xi, \xi) \rightarrow G$$
 with $\chi(b) = e$, $\chi(b) = \chi$ is
 $\chi(H) = \exp(i\chi)$, so can be extended to $\chi: R \rightarrow G$. Thus,
exp and \exp_{e} connect Lie χ_{P} , then it has a bi-invariant
 Π_{P} G is a compact Lie χ_{P} , then it has a bi-invariant
matric, and $\exp_{e} = \exp_{P}$, so $\exp_{e}: TeG \rightarrow G$ is globally defined
matric, and $\exp_{e} = \exp_{P}$, so $\exp_{e}: TeG \rightarrow G$ is globally defined
 $M_{e} \exp_{P}: \chi \rightarrow G$ is, hence G is complete by Hapf-Rimon.
 $Thus, \exp_{e}: TeG \rightarrow G$ is surjective, so $\exp_{P}: \chi \rightarrow G$ is sorjective.
 $Thus, \exp_{e}: \chi_{e} = G$ is surjective, so $\exp_{P}: \chi \rightarrow G$ is sorjective.
 $Thus, \exp_{e}: \xi(2, \mathbb{R}) \rightarrow SL(2, \mathbb{R})$ is met sorjective, so $SL(2, \mathbb{R})$
 $dves and admit a bi-invariant metric.$
 M_{e} the Villing form of g' is $B: g' \times g' \rightarrow \mathbb{R}$ given by
 $B(\chi, Y) = tr (ad(\chi) - ad(Y))$. Symmetric be trades that
 $The Lie group is called semissimple if B is mondegenerate.$
 $Pop. B is Ad-invariant$
 $PI = I(-\varphi, ad(\chi) \circ \varphi^{-1} = Thus,$
 $B(\varphi(\chi), \varphi(\chi)) = (\varphi \circ d(\chi) \circ \varphi^{-1} = Thus,$
 $B(\varphi(\chi), \varphi(\chi)) = tr (ad(\varphi \otimes \varphi^{-1} \varphi \ ad(\varphi) \varphi^{-1})$
 $= tr (-\varphi \ ad(\chi) - \varphi^{-1} \varphi \ ad(\chi) \varphi^{-1})$
 $= tr (-\varphi \ ad(\chi) - \varphi^{-1} = B(X,Y).$
 $Apply, the done to - \varphi = Ad(g)$. \square

Rink. I is semisimple iff
$$\mathcal{Y} = \mathcal{Y}_{4} \oplus \cdots \oplus \mathcal{Y}_{k}$$
, where $\mathcal{Y}_{i} \bigtriangleup \mathcal{Y}_{i}$ ore
Simple Lie elgebros, i.e., non commutative simple ideals of \mathcal{Y}_{i} .
Thun. If \mathcal{Y}_{i} has a bi-invariant metric Q , then $\mathcal{Y} = \mathcal{Y}_{4} \oplus \cdots \oplus \mathcal{Y}_{k}$ is
the orthogonal direct sum of simple ideals (some may be thelian).
The connected simply-connected Lie $\mathcal{Y}_{p} \oplus with$ Lie algebre \mathcal{Y}_{i}
is the product of normal Lie subgroups $\widetilde{G} = G_{1} \times \cdots \times G_{k}$, s.t.
 $G_{i} = \mathbb{R}$ if \mathcal{Y}_{i} is Abalian, and G_{i} is compact if \mathcal{Y}_{i} is most Abalian.
PL Sie back.
 \mathcal{Or} : If \mathcal{Y}_{i} has a bi-invariant metric, then $\mathcal{Y} \cong Z(\mathcal{Y}) \oplus [\mathcal{Y}_{i}\mathcal{Y}]$.
 $\mathcal{Or}(Weyl)$. If G is a compact Lie \mathcal{Y}_{i} with functe center, then
 $\pi_{i}G$ is finite and hence every Lie \mathcal{Y}_{i} with Lie algebre \mathcal{Y}_{i} is
Compact.

Pl. 6 compact
$$\Rightarrow$$
 4 has bi-inv. matrix.
 $|Z(G)| < \infty \Rightarrow Z(q) = 20$ $\Rightarrow 2(q) = 20$ $\Rightarrow q$ is semisimple.
 (G_1-B) is Einstein $w/R_{ic} \ge \frac{1}{4}$, so $|\pi_1G| < +\infty$ by Myers.
Thus, G is compact, and any Lie gp. with Lie algebra
Q is a quotient of G, hence also compact.
 g is a quotient of G, hence also compact.
by the above, the classification of compact Lie groups reduces
to the classification of simple Lie groups. Killing +
the classification of simple Lie groups. Simple 39

Lecture 27
$$5/15/2024$$

From last time: if G is a compact Lie gp, if admits a bi-inv metric
Q and (G,Q) has $R \ge 0$; in particular sec ≥ 0 .
Homogeneous Space
Def: (Mⁿ,g) is a homogeneous space if R has a transitive ection
by isometrico: $\exists G < Isom(Mn,g) = t$. $G(p)=M$.
If $H = G_p = \{g \in G : g, p = p\}$, then $M = G(p) = G/H$.
Ex: $S^n = \frac{O(n+1)}{O(n)} = \frac{SO(n+3)}{SO(n)}$, $RP^n = \frac{SO(n+1)}{SO(n)O(1)} = \{A : \{A = 1\}\}, A = O(n)\}$
 P O(n+1) $\land S^n \subset R^{n+2}$
 $\Rightarrow SO(n) Ale$.
 $P^n = \frac{U(n+1)}{U(n)U(1)} = \frac{SU(n+1)}{gU(n)U(1)}$
 $(M^n) \cap A \subseteq S^n = O(n)$
 $P^n = \frac{U(n+1)}{U(n)U(1)} = \frac{SU(n+1)}{gU(n)U(1)}$
 $(M^n) \cap A \subseteq S^n = O(n)$
 $P^n = \frac{U(n+1)}{U(n)U(1)} = \frac{SU(n+1)}{gU(n)U(1)}$
 $(M^n) \cap A \subseteq S^n = O(n)$
 $HP^n = \frac{Sp(n+1)}{g(n)}$
 $Sp(n+1) \cap S^{dn+2} \subset H^{n+1}$
 $(M^n) \cap A \in S^n$
 $(F^2 = \frac{F_q}{goul(7)})$
 $(The above comprise the compact rank one)$
 $Pop: If G is a cpcd Lie gp and H < G have Lie algebone $h < f_1$.
 $In = \frac{h^2 O}{h^2}$, $Sp(n) \cap S^n = H \cap T_{eh} G/H \cong n$ and
 $How is Ad(m)$, iv. $N \mapsto dh(eh)$$

Cor. In the doore situation:
$$\begin{cases} G-inv. metrics \ (i) \ (indices on M) \\ Modules on M \end{cases}$$

Def. The discen bi-inv. metric Q on G is Ad(H)-inv. time-
induces a G-inv. metric on G/H , colled merrial homogeneous,
and $G \rightarrow G/H$ is a Ricen submerrian us totally geodesic fibers.
Prof. If π : $(M,g) \rightarrow (N,g)$ is a Ricen aboversion, then
 $\operatorname{Secy}(XnY) = \operatorname{Sec}(XnY) + \frac{3}{4} \|[XY]^{V}\|^{2}$. X is the base left of X,
as $\operatorname{dis}(XnY) = \operatorname{Sec}(XnY) + \frac{3}{4} \|[XY]^{V}\|^{2}$. X is the base left of X,
 $\operatorname{secy}(XnY) = \operatorname{Sec}(XnY) + \frac{3}{4} \|[XY]^{V}\|^{2}$. The last base left of X,
 $\operatorname{secy}(XnY) = \operatorname{Sec}(XnY) + \frac{3}{4} \|[XY]^{V}\|^{2}$.
In particular, if $\operatorname{Sec}(YnY) + \operatorname{Sec}(YnY) = \operatorname{Sec}(YnY) = \operatorname{Sec}(YnY) + \operatorname{Sec}(YnY) = \operatorname{$

Spring 2017 #3
Prove that area of hyperbolic polygon w/n geoderic

$$Area(R) = (q_1-2)\pi - \sum_{i=1}^{n} \beta_i$$

 $\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \beta_i$
 $\int_{R} \sec dt + \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \beta_i$
 $\int_{R} \sec dt + \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \beta_i$
 $\int_{R} \sec dt + \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \beta_i$
 $\int_{R} \sec dt + \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \beta_i$
 $= -Area(R)$
Foll 2022 that
 $R = Area(R)$
Foll 2022 that
 $\int_{R} \sec dt = \sum_{i=1}^{n} \sum_{i=1}^{n} \beta_i$
 $\int_{R} \sec dt = \sum_{i=1}^{n} \sum_{i=1}^{n} \beta_i$
 $\int_{R} \sec dt = \sum_{i=1}^{n} \sum_{i=1}^{n} \beta_i$
 $\int_{R} \frac{1}{2} CR^3 = 2\pi N(2_1^2) = 2\pi (2-2_1) < 0$ so $\exists V \in \mathbb{Z}_2^2 = V$ drea(U) >0 st. $\int_{R} \sec dt = 2\pi N(2_1^2) = 2\pi (2-2_1) < 0$ so $\exists V \in \mathbb{Z}_2^2 = V$ drea(U) >0 st. $\int_{R} \sec dt = 2\pi N(2_1^2) = 2\pi (2-2_1) < 0$ so $\exists V \in \mathbb{Z}_2^2 = V$ drea(U) >0 st. $\int_{R} \sec dt = 2\pi N(2_1^2) = 2\pi (2-2_1) < 0$ so $\exists V \in \mathbb{Z}_2^2 = V$ drea(U) >0 st. $\int_{R} \sec dt = 2\pi N(2_1^2) = 2\pi (2-2_1) < 0$ so $\exists V \in \mathbb{Z}_2^2 = V$ drea(U) >0 st. $\int_{R} \sec dt = 2\pi N(2_1^2) = 2\pi (2-2_1) < 0$ so $\exists V \in \mathbb{Z}_2^2 = V$ drea(U) >0 st. $\int_{R} \sec dt = 2\pi N(2_1^2) = 2\pi (2-2_1) < 0$ so $\exists V \in \mathbb{Z}_2^2 = V$ drea(U) >0 st. $\int_{R} \sec dt = 2\pi N(2_1^2) = 2\pi (2-2_1) < 0$ so $\exists V \in \mathbb{Z}_2^2 = V$ drea(U) >0 st. $\int_{R} \sec dt = 2\pi N(2_1^2) = 2\pi (2-2_1) < 0$ so $\exists V \in \mathbb{Z}_2^2 = V$ drea(U) >0 st. $\int_{R} \sec dt = 2\pi N(2_1^2) = 2\pi (2-2_1) < 0$ so $\exists V \in \mathbb{Z}_2^2 = V$ drea(U) >0 st. $\int_{R} \sec dt = 2\pi N(2_1^2) = 2\pi (2-2_1) < 0$ so $\exists V \in \mathbb{Z}_2^2 = V$ drea(U) >0 st. $\int_{R} \sec dt = 2\pi N(2_1^2) = 2\pi (2-2_1) < 0$ so $dt = 2\pi P = 2\pi (2-2\pi)$
Since completered guestons:
Full 2022 #1. Complete evelocities:
Full 2022 #1 = 2\pi (2-2\pi) = 2\pi (

$$= e^{-2t} \left(\frac{\partial g}{\partial 1} \frac{\partial}{\partial x} - \frac{\partial g}{\partial x} \frac{\partial}{\partial y} \right) \phi = e^{t} \left(\frac{\partial g}{\partial 1} \times - \frac{\partial g}{\partial x} \times \right) \phi$$
So $[X,Y] = e^{-t} \left(\frac{\partial g}{\partial 1} \times - \frac{\partial g}{\partial x} \times \right)$.

Mud
$$Sec (X \cap Y) = \langle \nabla_X \nabla_Y Y - \nabla_Y \nabla_X Y - \nabla_{[X,Y]} Y \times X \rangle$$
By Kassel: $(\nabla_Y X, Z) = \frac{1}{2} \left(X \left(g(Y,Z) + Y \left(g(Z,X) \right) - Z \left(g(KY) \right) \right) \right)$

$$\frac{1}{10 \text{ converts}} \quad 0 \text{ and} \quad - g([X,Z],Y) - g([Y,Z],X) - g([X,Y],Z))$$
Before computing a lat---
$$g(X,X) = 4 \text{ so } 0 = X g(X,X) = 4 g(\nabla_X X, X) \quad g(\nabla_X X,Y) = - \frac{1}{2} \left(g(Y,Y) + 2 g(\nabla_Y X, X) \right) \quad 0 = Y g(Y,Y) = 2 g(\nabla_Y X, X) \quad 0 = Y g(Y,Y) = 2 g(\nabla_Y Y, Y) = 2 g(\nabla_Y Y, Y) = 2 g(\nabla_Y Y, Y) \quad 0 = Y g(Y,Y) = 2 g(\nabla_Y Y, Y) = 2 g(\nabla_Y Y, Y) \quad 0 = Y g(Y,Y) = 2 g(\nabla_Y Y, Y) = 2 g(\nabla_Y Y, Y) \quad 0 = Y g(Y,Y) = 2 g(\nabla_Y Y, Y) = 2 g(\nabla_Y Y, Y) \quad 0 = Y g(Y,Y) = 2 g(\nabla_Y Y, Y) = 2 g(\nabla_Y Y, Y) \quad 0 = Y g(Y,Y) = 2 g(\nabla_Y Y, Y) \quad 0 = Y g(Y,Y) \quad 0 = Y g(Y,Y) = 2 g(\nabla_Y Y, Y) \quad 0 = Y g(Y,Y) = 2 g(\nabla_Y Y, Y) \quad 0 = Y g(Y,Y) \quad 0 = Y g(Y,Y) = 2 g(\nabla_Y Y, Y) \quad 0 = Y g(Y,Y) = 2 g(\nabla_Y Y, Y) \quad 0 = Y g(Y,Y) \quad 0 = Y g(Y,Y) = 2 g(\nabla_Y Y, Y) \quad 0 = Y g(Y,Y) \quad 0 = Y g(Y,Y) = 2 g(\nabla_Y Y, Y) \quad 0 = Y g(Y,Y) \quad 0 = Y g($$

$$\begin{split} \nabla_{\chi} \chi &= \langle \nabla_{\chi} \chi, Y \rangle Y = \frac{1}{2} \Big(-g([\chi,Y], \chi) - g([\chi,Y], \chi) \Big) Y \\ &= -g \left(e^{-f} \left(\frac{\partial f}{\partial \gamma} \chi - \frac{\partial f}{\partial \chi} Y \right), \chi \right) Y = -e^{-f} \frac{\partial f}{\partial \gamma} Y \\ \nabla_{\chi} Y &= \langle \nabla_{\chi} Y, \chi \rangle \chi = \frac{1}{2} \left(-g([\gamma,\chi], \chi) - g([\gamma,\chi], \chi) \right) \chi \\ &= g \Big(e^{-f} \left(\frac{\partial f}{\partial \gamma} \chi - \frac{\partial f}{\partial \chi} Y \right), \chi \Big) \chi = e^{-f} \frac{\partial f}{\partial \gamma} \chi. \\ \nabla_{\chi} \chi &= \nabla_{\chi} Y + [\gamma,\chi] = e^{-f} \frac{\partial f}{\partial \gamma} \chi - e^{-f} \left(\frac{\partial f}{\partial \gamma} \chi - \frac{\partial f}{\partial \chi} \chi \right) = e^{-f} \frac{\partial f}{\partial \chi} \chi. \end{split}$$

$$sec(\chi \land \gamma) = \frac{\langle \mathcal{R}(\chi, \gamma) \gamma, \chi \rangle}{\|\chi\|^2 \|\gamma\|^2 - \langle \chi \gamma \rangle^2} = \langle \nabla_{\chi} \nabla_{\gamma} \gamma - \nabla_{\gamma} \nabla_{\chi} \gamma - \nabla_{[\chi, \gamma]} \gamma, \chi \rangle$$

$$= \langle \nabla_{\chi} \left(-e^{-\frac{1}{2}} \frac{\partial f}{\partial \chi} \chi \right) - \nabla_{\gamma} \left(e^{-\frac{1}{2}} \frac{\partial f}{\partial \gamma} \chi \right) - \nabla_{e^{-\frac{1}{2}}} \frac{\partial f}{\partial \gamma} \chi - e^{-\frac{1}{2}} \frac{\partial f}{\partial \gamma} \chi \rangle$$

$$= \langle -\chi \left(e^{-\frac{1}{2}} \frac{\partial f}{\partial \chi} \chi \right) - e^{-\frac{1}{2}} \frac{\partial f}{\partial \chi} \nabla_{\chi} \chi - \gamma \left(e^{-\frac{1}{2}} \frac{\partial f}{\partial \gamma} \chi \right) \chi - e^{-\frac{1}{2}} \frac{\partial f}{\partial \chi} \nabla_{\chi} \chi \right)$$

$$- e^{-\frac{1}{2}} \frac{\partial f}{\partial \chi} \nabla_{\chi} \chi + e^{-\frac{1}{2}} \frac{\partial f}{\partial \chi} \nabla_{\gamma} \chi , \chi \rangle$$

$$= -e^{-\frac{1}{2}} \frac{2}{3x} \left(e^{-\frac{1}{2}} \frac{3t}{3x} \right) - e^{-\frac{1}{2}} \frac{2}{3y} \left(e^{-\frac{1}{2}} \frac{3t}{3y} \right) - \left(e^{-\frac{1}{2}} \frac{3t}{3y} \right)^2 - \left(e^{-\frac{1}{2}} \frac{3t}{3x} \right)^2$$

$$= e^{-f} \left(e^{-f} \left(\frac{\partial f}{\partial x} \right)^{2} - e^{-f} \frac{\partial f}{\partial x} + e^{-f} \left(\frac{\partial f}{\partial y} \right)^{2} - e^{-f} \frac{\partial f}{\partial y} \right) - e^{-f} \left(\frac{\partial f}{\partial y} \right)^{2} + \frac{\partial f}{\partial x} \right)^{2}$$

$$= e^{-2f} \left(-\frac{\partial f}{\partial x} - \frac{\partial f}{\partial y} \right)^{2} = -e^{-2f} \Delta f.$$
The above is "faster" with a answing frames formulian, but also double with unal Riem geom. techniques.
Full 2022 #7 Compute see of $(R^{2}, dx^{2} + e^{-2} dy^{2})$, show x-court are geodesics
Recall $g = dr^{2} + f(r)^{2} d\theta^{2}$ his sec $= -\frac{f''}{f}$. In the dowe, we can we an orcleight personator $ds^{2} = e^{T} dy^{2}$, so $\frac{ds}{dy} = e^{-2}$ and
 $S(y) = e^{-3}$. Thus, $(R^{2}, dx^{2} + e^{-2} dy^{2})$ is isometric to the flat
upper half - plane $(R \times (0, +\infty), dx^{2} + ds^{2})$, in forticular,
sec =0. The curves $\chi = \operatorname{const.}$ are geodesics
in the flat upper half plane, aduch are geodesics
 $\int (x_{1} + e^{-2} dy^{2}) + e^{-2} dr^{2} dr^{2}$