•
$$X g(Y,Z) = g(\overline{V_XY,Z}) + g(Y,\overline{V_XZ})$$

• $Y g(Z,X) = g(\overline{V_YZ,X}) + g(Z,\overline{V_YX})$
• $Z g(Y,Y) = g(\overline{V_2X,Y}) + g(X,\overline{V_2Y})$
• $Z g(X,Y) = g(\overline{V_2X,Y}) + g(X,\overline{V_2Y})$

so
$$X g(Y,Z) + Y g(Z,X) - Z g(X,Y) = g([X,Z],Y) + g([Y,Z],X) + g([Y,Z],X) + g([Y,Z],X)$$

Use $\nabla_X Y = \nabla_Y X + [X,Y]$ to replace last term with $g([X,Y],Z) + 2g(\nabla_Y X,Z)$. Solving for $g(\nabla_Y X,Z)$, one obtains the Koszul formula. This proves uniqueness of D, and, for existence, simply define it by the Koszul formula. To compute Christofful symbols, set $Y = \frac{2}{2K_i}$, $X = \frac{2}{3K_i}$, 30, as [X,Y] = [X,Z] = [Y,Z] = 0,

$$g\left(\nabla_{\underline{\partial}}, \frac{\partial}{\partial x_{j}}, \frac{\partial}{\partial e}\right) = g\left(\nabla_{Y}, \chi, Z\right) = \frac{1}{2}\left(Xg\left(Y, Z\right) + Yg\left(Z, \chi\right) - Zg\left(Y, Y\right)\right)$$
$$= \frac{1}{2}\left(\frac{\partial}{\partial x_{j}}g_{ie} + \frac{\partial}{\partial x_{i}}g_{ej} - \frac{\partial}{\partial x_{e}}g_{ij}\right)$$

Prop: If y is a gradience in (M.S), then its speed
$$g(\mathfrak{F},\mathfrak{F})^{\mathbb{Z}}$$
 is constant.
Prop: If y is a gradience in (M.S), then its speed $g(\mathfrak{F},\mathfrak{F})^{\mathbb{Z}}$ is constant along y. []
Prop: If $\mathfrak{F}(\mathfrak{F},\mathfrak{F}) = \mathfrak{L}_g(\nabla_{\mathfrak{F}}\mathfrak{F},\mathfrak{F}) = 0 \implies g(\mathfrak{F},\mathfrak{F})$ is constant along \mathfrak{F} . []
Prop: If $\chi \in \mathfrak{X}(M)$ is a Killing field of (M.g), i.e., $\mathfrak{K}(\mathfrak{F}) = 0$, then $g(\mathfrak{K},\mathfrak{F})$
is constant along any production Y.
Prop: If $\chi \in \mathfrak{X}(M)$ is a Killing field of (M.g), i.e., $\mathfrak{K}(\mathfrak{F}) = 0$, then $g(\mathfrak{K},\mathfrak{F})$
is constant along any production Y.
Prop: If $\chi \in \mathfrak{K}(M)$ is a Killing field of $(\mathfrak{M},\mathfrak{F})$, i.e., $\mathfrak{K}(\mathfrak{F}) = 0$, then $g(\mathfrak{K},\mathfrak{F})$
is constant along any production Y.
Prop: If $\chi = \mathfrak{K}(\mathfrak{K},\mathfrak{F}) = \mathfrak{K}(\mathfrak{K},\mathfrak{K}) + \mathfrak{g}(\mathfrak{K}, \nabla_{\mathfrak{F}}\mathfrak{f}) = 0 = \mathfrak{K}(\mathfrak{K} \otimes \mathfrak{K} \otimes$

Note: If
$$\gamma(t) \otimes a$$
 produces, here so $\alpha(t) = \gamma(at+b)$ for any $a \neq 0$, $b \in \mathbb{R}$.
R: $\alpha(t) = a \gamma(a+b)$ so $\nabla_{\alpha} \alpha = \nabla_{a}\gamma(a+b) = \alpha^{b} \gamma(a+b) = \alpha^{b} \nabla_{a}\gamma(a+b) = 0$
R: $\alpha(t) = a \gamma(a+b)$ so $\nabla_{\alpha} \alpha = \nabla_{a}\gamma(a+b) = \alpha^{b} \gamma(a+b) = \alpha^{b} \nabla_{a}\gamma(a+b) = 0$
Here: $\{\gamma(b) = \gamma \}$ $\{\alpha(t_{2}) = p \}$ $\{t_{2} = ab+b\}$ for the conditions are the conditions one of the conditions of the conditions one of the conditions o

Lecture 7 2/16/2024
Recall: Levi-Civita connection of g is the unique torsion-free connection
compatible with g.
EX: Let
$$\phi: M \longrightarrow \mathbb{R}^N$$
 be an isom embedding, i.e., $g = \phi^*(g_{\text{Eve}})$. Then
 $(\nabla_X Y)_p := \operatorname{proj}_{T_pM} (X(Y)_p)$ to a vector field on
 $(\nabla_X Y)_p := \operatorname{proj}_{T_pM} (X(Y)_p)$ to a vector field on
 $(\nabla_X Y)_p := \operatorname{proj}_{T_pM} (X(Y)_p)$ to a vector field on
is torsion-free and compatible with g, have
it is the Levi-Civita connection on (Mg) .
Recall: $\exp_p(Y) = Y_v(1)$
 $\exists U \ni 0$ in TpM and $\exists V \ni p$ in M s.l. $(exp_p)|_U: U \to V$ is a differ
Properties of Normal coordinates. $X = (x_1, \dots, x_n): V \xrightarrow{\sim}_{M} U$ at $x^{-4} = (exp_p)|_U$
 $(\nabla_X Y)_p = 0$
 $(\nabla_X Y)_p = 0$
 $(\nabla_X Y)_p = (\nabla_Y f) = Y_v(f)$
 $(\nabla_X Y)_p = 0$
 $(\nabla_X Y)_p = (\nabla_Y f) = (\nabla_Y f) = (\nabla_X f) = (\nabla_Y f) =$

Questions of "Naturality":
Prop: If
$$p: (M,g) \rightarrow (N,h)$$
 is an isometry, i.e., $g = p^*h$, then $\nabla \delta = p^* \nabla_{-}^{h}$
 $\underline{Prop:} f^* \nabla_{-}^{h}$ is torsion-free and competible with g , hence equal to ∇_{-}^{δ}
by uniqueness of LC connection.
Checking fluss is a good exercise,
see e.g. [Lee] Prop 5.8, 5.9 for solution. 5

So
$$S(x) = x$$
 for all $x \in \bigcup O(x, p_{1}O_{1})$, i.e., $\phi = \psi$ near perm.
Propagate this to the connected component of permission of the main product of permission of the pe

So we must show
$$\langle d\xi_{HP} \rangle_{V} v$$
, $d(epp)_{V} w_{L} \rangle = 0$.

$$\int \frac{v}{v(t_{0})} v_{L} = \frac{v}{v(t_{0})} v_{L} = \frac{v}{v(t_{0})} v_{L} = 0$$

$$\int \frac{v}{v(t_{0})} v_{L} = \frac{v}{v(t_{0})} v_{L} = \frac{v}{v(t_{0})} v_{L} = 0$$

$$\int \frac{v}{v(t_{0})} v_{L} = \frac{v}{v(t_{0})} v_{L} = \frac{v}{v(t_{0})} v_{L} = 1$$

$$\int \frac{v}{v(t_{0})} v_{L} = \frac{v}{v(t_{0})} v_{L} = \frac{v}{v(t_{0})} v_{L} = 1$$

$$\int \frac{v}{v(t_{0})} v_{L} = \frac{v}{v(t_{0})} v_{L} =$$

Thus, as
$$\chi: [a,b] \rightarrow TpM$$
 joins $r(a) = 0$ to $r(b) = t_{K}v$, we have
 $L_{3}(x) = \int_{a}^{b} ||\dot{x}(t)|| dt \gg \int_{a}^{b} r'(t) dt = r(b) - r(a) = ||t_{*}v|| = L_{g}(g)$
i.e., the lingth of α is at least as large as the lingth of the robult
geoderic $\chi: [0,t_{*}] \rightarrow U$, $\chi[t] = exp[tv]$.
Contrology, Geodesic balls are invertic balls, i.e., if exp. is well-defined on $Br(b) \subset TpM$.
Hum $Br(p) = \{x \in M : dist(p, x) < r\} = exp_{p}(Br(b))$.
Contrology, Geodesics are locally distance - minimizing.
Pl Let $\chi(t)$ be a geodesic, and a,b st. $\chi(a)$ and $\chi(b)$ are sufficiently
close, in the same that $\chi(t)$ is in a normal inequilibrication, so by the Prop. above,
 $(\chi(a)) = \frac{1}{2} \int_{a}^{b} ||f_{1}(b)||$ dt is inder on $\chi(b)$ is the proproductive from $\chi(b)$.
Prop. For all peM, there exists $\tau > 0$ sufficiently small so that $Br(b)$ is
 χ to χ and thus geodesic is entirely contained in $Br(p)$.
Lecture 9 $3/2/2024$
Every v . Length.
 $E_{1}(v) = \frac{1}{2} \int_{a}^{b} ||f_{1}(b)||^{2} dt$ is invariant under reproductive times (fixed game)
 $L_{1}(v) = \int_{a}^{b} ||f_{1}(b)||^{2} dt$ is invariant under reproductive times (game - invariant).
By Cauchy-Schwartz, $L_{0}(y)^{2} = (\int_{a}^{b} ||f_{1}(b)||^{2} \leq \int_{a}^{b} ||f_{1}(dt) + \int_{a}^{b} 1dt = 2(b-a)E(b);$

and equality holds if ||j||= const, i.e., iff y has constant speed.

Thus, if
$$\gamma = \chi_{0}$$
 is a critical point of E: $2p_{ij} \rightarrow R$, then
 $4E_{j}(\xi)V = 0$ for all $V \in T_{0} SP_{ij}$, so it follows from the Findamental
Learner of Calculus of Viristons that $DY = 0$, i.e., $\nabla_{i} T = 0$ i.e.,
 γ is a geodesic curve (hence constant speed) young to q .
Simularly, of γ is a critical point of Eq: $2p_{ij} \rightarrow R$, then
 $dE_{ij}(y)V = 0$ for all $V \in T_{\chi} SP_{ijk}$ so χ is a geodesic joining P to Q
and remeting them orthogonally
Note: First, use voriational fields supported in the interior of [ab]
 $\frac{1}{10} = 0$ for $q_{ijk}(y)V = 0$, $\forall V \in C_{i}^{*}([ab], g^{*TM})$
 $\varphi = \int_{0}^{1} \int_{0}^{1} (V, \frac{3}{4t}) dt = 0$, $\forall V \in C_{i}^{*}([ab], g^{*TM})$
 $\varphi = \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{1}{10} \int_{0}^{$

Lemma, Given a vector field W(s,t) along Yslt), we have $\frac{D}{ds}\frac{D}{dt}W - \frac{D}{dt}\frac{D}{ds}W = R\left(\frac{d}{ds}\gamma_{s}, \frac{d}{dt}\gamma_{s}\right)W,$ where R is the (1,3) - tensor given by "Curvature tensor" $\mathcal{R}(X,Y)\mathcal{Z} = \nabla_X \nabla_Y \mathcal{Z} - \nabla_Y \nabla_X \mathcal{Z} - \nabla_{[X,Y]} \mathcal{Z}.$ Pt. Compute in coordinates, using $X = (\gamma_S)_* \stackrel{2}{\Rightarrow}_S \cdot Y = (\gamma_S)_* \stackrel{2}{\Rightarrow}_T$ so that [X,Y] = 0 and $\frac{D}{ds} = \nabla_X$, $\frac{D}{dt} = \nabla_Y$, so result follows. \square Suppose y= yo is a geodesic. Then, $\frac{d^2 E_g(x)(V,V)}{ds^2} = \frac{d^2}{ds^2} E_g(x) \Big|_{s=0} = \int_a^b \frac{d}{ds} g\left(\frac{DV}{dt}, \dot{x}s\right) \Big|_{s=0} dt$ $= \int_{a}^{b} g\left(\frac{D}{ds}\frac{D}{dt}V,\dot{\gamma}\right) + g\left(\frac{DV}{dt},\frac{DV}{dt}\right) dt$ Lemme $\sum_{i=1}^{b} \int_{0}^{b} g\left(\frac{DV}{dt}, \frac{DV}{dt}\right) + g\left(\frac{D}{dt}\frac{D}{ds}V, \dot{y}\right) + g\left(R\left(V, \dot{y}\right)V, \dot{y}\right) dt$ Int. by ports $= g\left(\frac{DV}{ds}, \dot{\chi}\right)\Big|_{a}^{b} - \int_{a}^{b} g\left(\frac{DV}{ds}, \frac{D\dot{\chi}}{dt}\right)^{o} \frac{b(c \chi) is e}{geodesic.}$ + $\int_{a}^{b} g\left(\frac{DV}{dt}, \frac{DV}{dt}\right) + g\left(R\left(V, \dot{y}\right)V, \dot{y}\right) dt$ often write V''Int. by ports + symmetry $\sum_{a} g\left(\frac{DV}{ds}, \tilde{y}\right) \Big|_{a}^{b} + g\left(\frac{DV}{dt}, V\right) \Big|_{a}^{b} - \int_{a}^{b} g\left(\frac{D^{2}V}{dt^{2}} + R(V, \tilde{y})\tilde{y}, V\right) dt$ Note: Using polorization, can easily compute d'Eg(x)(V,W) for any V,W.

Det A vector field
$$J:[a,b] \rightarrow TM$$
 along a geotae $Y:[a,b] \rightarrow TM$ is
a Jack field if it solves the Jack equation $J'' + R(J,j)Y = 0$.
Prop. The variational field $J(t) = \frac{d}{dt} Y_b|_{S=0}$ is a Jack field along the
geodese $Y - y$. If the curves $t \mapsto y_{S}(t)$ are geodeses for $|s| < \varepsilon$.
Proof $Jf = J(t) = \frac{d}{ds} Y_{S}(t)|_{S=0}$ where $Y_{S}(t)$ is a variation by geodeses,
then
 $J''(t) = \frac{d}{dt} \frac{d}{dt} Y_{S}(t) = \frac{D}{dt} \frac{d}{dt} Y_{S}(t) = \frac{D}{ds} \frac{D}{dt} \frac{V}{t} Y_{S}(t) - R(J, V)Y$
 $= 0$ the $Y_{S}(t) -$

Rever HW3.
Row See HW3.
Row by J(t) = d(eep) two, cf. and of Pl. of Gauss Lemma.
Similarly, can also write the numpue Judoi field along gill with
orbitrary invitial conductions J(o) and J(o) writing d(exp).
Symmetries of the curvature Timor
Lat
$$R(x, Y, Z, W) = g(R(x, Y)Z, W)$$
, so $R:TMOTHOTMOTM \rightarrow R$ is
a (Q4) tensor. Then, at satisfies:
a (Q4) tensor. Then, at satisfies:
a (Q4) tensor. Then, at satisfies:
b) $R(X, Y, Z, W) = R(Y, X, Y, W)$
 $R(X, Y, Z, W) = R(Y, Y, Z, W) = R(Y, X, Y, W)$
 $R(X, Y, Z, W) = R(Y, Y, Z, W) = R(Y, X, Y, W)$
 $Symmetric endomorphism $R:RTM \rightarrow RTM$ called the "curvature operator":
 $g(R(XnY), Z \wedge W) = g(R(XnY)W, Z)$ A conference of FTM.
 $D_{4}(Sectional Curvature)$ The sectional curvature of the plane G spowned by
 X, Y is
 $sec(XnY) = \frac{g(R(XnY), XnY)}{g(XnY, XnY)} = \frac{g(R(XnY)Y, Y)}{R(Y, Y)^{2}}$.
Note a first Sec: $G_{2}TM \rightarrow R$ where $Grit TM = R(Y, Y)^{2}$.
Note arite Sec: $G_{2}TM \rightarrow R$ where $Grit TM = R(Y, Y)^{2}$.
Note arite Sec: $G_{2}TM \rightarrow R$ where $Grit TM = R(Y, Y)^{2}$.
Note arite Sec: $G_{2}TM \rightarrow R$ where $Grit TM = R(Y, Y)^{2}$.
Note $R(Y, Y) = \frac{g(R(XnY), XnY)}{g(XnY, XnY)} = \frac{g(R(XnY), Y)}{R(R(Y, Y), X)}$.
So we write Sec: $G_{2}TM \rightarrow R$ where $Grit TM = R(Y, Y)^{2}$.
Note $R(Y, Y) = (R, T, G)$.
 $R(Y, Y) = (R, T, G)$.
 $R(Y, Y) = (R, T, G)$.
 $R(Y, Y) = (R, T, G)$.$

Cor. If $R: \Lambda^2TM \rightarrow \Lambda^2TM$ is sit. $\operatorname{Dec}(\sigma) = K$ for all σ , then $R=K\cdot \operatorname{Id}$, i.e.
$\langle R(X,Y)W,Z \rangle = \langle R[XnY),ZnW \rangle = K \langle XnY,ZnW \rangle$
curvature operator of a = $\mathcal{K}\left(\langle X, Z \rangle \langle Y, W \rangle - \langle X, W \rangle \langle Y, Z \rangle\right)$. Space form W / Sec = \mathcal{K}
Cartan: Curvature is the only local invariant of a Riem mild.
I J TPM Liveor Sourcetry = y exp p = y exp p
$\frac{1}{1-\frac{1}{2}} = \frac{1}{2} + \frac{1}{2$
Q = exp_ o I o exp_ is a diffeon. (on good. normal coord.)
Let $\overline{Y} = \varphi \circ \gamma$, $\overline{T}_{\gamma(t)}$; $\overline{T}_{\gamma(t)} \land M \to \overline{T}_{\overline{\gamma(t)}} \land M$ $\left(\begin{array}{c} \underline{Note} : \ \overline{T}_{\gamma(t)} \land \sigma_{\tau} \\ \hline \\ $
Ly(H) := To John SH) parallel tronsport To Preserving curvature is the So Ight is linear isometry to become a local isometry:
$T_{lin}(Cortan)$. If for all geodesics $\chi(H)$ storting at $p \in M$,
$\mathbb{I}_{\chi(H)}(R(\chi, Y)Z) = \overline{R}(\mathbb{I}_{\chi(H)}\chi, \mathbb{I}_{\chi(H)}\chi)\mathbb{I}_{\chi(H)}Z \forall H \text{ small}$
then φ is a local isometry, and $d\varphi_{\gamma(t)} = I_{\gamma(t)}$.

If Given g near p, and
$$X \in T_{\mp}M$$
, let $\gamma: [0, L] \rightarrow M$ be
minimizing geodesic w/ $\gamma(0) = p$, $\gamma(L) = q$ and let $\mathcal{J}: [0, L] \rightarrow TM$
be the Seeds field along γ with $\mathcal{J}(0) = 0$ and $\mathcal{J}(L) = X$.
Let $\overline{\mathcal{J}}(t) = T_{\delta(t)}(\mathcal{J}(t))$. By hypotheois, $\overline{\mathcal{J}}(t)$ is a Jecobi
field along $\overline{\gamma}$, since:
 $\overline{\mathcal{J}}^{(1)}(t) + \overline{\mathbb{C}}(\overline{\mathcal{J}}(t), \overline{\gamma}'(t))\overline{\gamma}^{(1)}(t) = I_{\mu}(\mathcal{J}^{(1)}(t) + \mathbb{R}(\mathcal{J}(t), \gamma'(t))\gamma'(t)) = 0$.
Note: I $\mathcal{J}^{(1)}(t) = \overline{\mathcal{J}}^{(1)}(t)$ be T_{μ} , is defined along product transport. Say $\mathcal{J}(t) = \overline{\mathcal{J}}^{(1)}(t)$, with
 $f_{\mu}(t) + \overline{\mathbb{C}}(\overline{\mathcal{J}}(t), \overline{\gamma}'(t))\overline{\gamma}^{(1)}(t) = I_{\mu}(\mathcal{J}^{(1)}(t) + \mathbb{R}(\mathcal{J}(t), \gamma'(t))\gamma'(t)) = 0$.
Note: I $\mathcal{J}^{(1)}(t) = \overline{\mathcal{J}}^{(1)}(t)$ be T_{μ} , is defined along product transport. Say $\mathcal{J}(t) = \overline{\mathcal{J}}^{(1)}(t)$, $t_{\mu}(t)$.
 $f_{\mu}(t)$, $t_{\mu}(t)$ for $\mathcal{J}(t) = \overline{\mathcal{J}}^{(1)}(t) = I_{\mu}(t)\overline{\mathcal{J}}^{(1)}(t)$ and $\overline{\mathcal{J}}(t) = \overline{\mathcal{J}}^{(1)}(t)$.
 $f_{\mu}(t)$ for $\mathcal{J}(t) = \overline{\mathcal{J}}^{(1)}(t) = I_{\mu}(t)\overline{\mathcal{J}}^{(1)}(t)$.
 $f_{\mu}(t) = d(\exp_{\overline{p}})_{t}\overline{\gamma}^{(1)}(t)$ the $\overline{\mathcal{J}}^{(1)}(t)$
 $= d(\exp_{\overline{p}})_{t}\overline{\gamma}^{(1)}(t)$ the $\overline{\mathcal{J}}^{(2)}(t)$ the $\overline{\mathcal{J}}^{(2)}(t)$ the $\overline{\mathcal{J}}^{(1)}(t)$ the $\overline{\mathcal{J}}^{(1)}(t)$
 $= d(\exp_{\overline{p}})_{t}\overline{\gamma}^{(1)}(t)$ the $\overline{\mathcal{J}}^{(2)}(t)$ the \overline

Lemma. Let
$$\gamma: [QL] \rightarrow M$$
 be a geodere, $V \in T_{S(0)}M$, $W \in T_{S(0)}M$.
If $L > 0$ is suff. small, there exists a unique Jacobi field
 J along γ with $J(0) = v$, $J(L) = W$.
Pf: Let $J = \{J \ is a Jacdoi field along γ , $J(0) = 0$,
 $HU^{2} = \{J(L) = d(eqp_{S(0)})_{LY(0)} + J'(0)\}$ this is a
vector space
Consider ev_{L} i $J \rightarrow T_{Y(L)}M$ due $J = dim T_{P}M$
 $J \mapsto J(L)$ (Liner map)
If $L > 0$ is small, then ev_{L} is injective: otherwise
 $J_{L}, J_{Z} \in J$, $J_{4}(L) = J_{2}(L)$ but $J_{1} \neq J_{2}$. Then $J_{1} - J_{2} \in J$
solutifies $0 = (J_{1} - J_{2})(L) = d(eqp_{S(0)})_{LY(0)}L'(J_{1} - J_{2})'(0)$
and for L small $d(eqp)_{LY(0)}$ is invertible, so $(J_{1} - J_{2})'(0)$
Nerve $(J_{4} - J_{2})(0) = 0$ and $(J_{1} - J_{2})'(0) = 0$ so $J_{1} = J_{2}$
(construction)
Since av_{L} ; $J \rightarrow T_{Y(L)}M$ is linear and date $f = due T_{Y(L)}M$,
 ev_{L} is bijective. So $\exists J_{4} \in J$ with $J_{4}(L) = w$.
By the same argument starting from $\gamma(L)$, $\exists J_{2}$ a
Joseful along γ with $J_{2}(0) = v$ and $J_{2}(L) = 0$.
 $Thus, J := J_{1} + J_{2}$ satisfies $J(0) = v$ and $J(L) = W$.
 $Prive the obove holds for any $L > 0$ s.t. $\gamma(L)$ is nef
converse to $\gamma(0)$ along γ . (We define conjugate points later).$$

Pf. a)
$$\Rightarrow$$
 f) Let $r = dist(p,q)$ and $B_{\delta}(p)$ be a normal neighbol of p.
? The function $f: \partial B_{\delta}(p) \rightarrow \mathbb{R}$, $f(x) = dist(x,q)$
is continuous hence has a minimum $x_0 \in \partial B_{\delta}(p)$.
Let $v \in T_pM$ be s.t. $exp_p \delta v = x_0$ and $\|v\| = 1$,
let $\chi(t) = exp_p tv$, which is defined $\forall t \in \mathbb{R}$ by a)
Claim. $\chi(r) = q$.

Pl & Clarm: (Continuity runthod) Consider the subset

$$A = \left\{ t \in [0,r] : dist(\gamma(t), q) = v - t \right\}$$
and note $A \neq \emptyset$ because $0 \in A$, and $A \subset [0,r]$ is closed.
It suffices to show that if toeA, then totE $\in A$ for suff. small $E \gg p$
since then $A = [0,r]$, and $\tau \in A$ is the desired claim.
Let to $\in A$ and $E > 0$ small, we may assume $B_E(\gamma(ts))$ is a merual neighbor
of $\gamma(ts)$. Let σ be a curve from $\gamma(ts)$ to q and $\chi_{\sigma} \in \partial B_E(\gamma(ts))$
be then first time it intersets $\partial B_E(\gamma(ts))$ is a the precture
 σ_{T} (pins $\gamma(ts)$) to χ_{σ} , as in the precture
 $\gamma(ts)$ $\chi_{\sigma} \in \partial B_E(\gamma(ts))$, is a normal neighbor
 $\gamma(ts)$. So $L_q(\sigma_T) \ge dist(\chi(t))$, $\chi_{\sigma} \ge dist(\gamma(ts),\chi_{\sigma})$
 $\chi_{\sigma} \in \partial B_E(\gamma(ts))$ is a normal neighbor χ_{σ} , $\chi_{\sigma} \in \partial B_E(\gamma(ts))$, χ_{σ} , $\chi_{\sigma} \in \partial B_E(\gamma(ts))$, χ_{σ}
 $\chi_{\sigma} \in \partial B_E(\gamma(ts))$ is a normal neighbor χ_{σ} , $\chi_{\sigma} \in \partial B_E(\gamma(ts))$, χ_{σ} , χ_{σ} , $\chi_{\sigma} \in \partial B_E(\gamma(ts))$, χ_{σ} ,

Moreover, the curve
$$\gamma([0, b_{n}]) \cup \chi$$
 where a is a radial good.
from γ to χ_{bn} is a length to $\pm \varepsilon$, and therefore is minimum zing.
Minimizing geoderics are someoth, so a must be a price of δ manually $q = \gamma([to, to \pm 2])$, so $\chi_{0}' = \gamma(to \pm \varepsilon)$ as derived.
a) \Rightarrow b) let KCM be closed and bounded. Boundaries gives $8 > 0 \le t$.
 $K \subset B_{R}(p)$, so $K \subset exp B_{R}(0)$, where $\beta_{R(0)} \subset TpM$ is compact, and
 $K \subset B_{R}(p)$, so $K \subset exp B_{R}(0)$, where $\beta_{R(0)} \subset TpM$ is compact, and
 $k \subset B_{R}(p)$, so $K \subset exp B_{R}(0)$, where $\beta_{R(0)} \subset TpM$ is compact. D
 $k \subset B_{R}(p)$, so $K \subset exp B_{R}(0)$, where δ is compact. Since $K \subset exp B_{R}(0)$ is
 $closed in a compact, it is also compact. D
 $b) = 0$ Let $\{\chi_{N}\}$ be a Could sequence and $K = \{\chi_{N} : n \in N\}$. Since K
is closed and bounded, it is compact h_{2} b), so $\{\chi_{N}\}$ has a convergent
 ξ because χ hence (as H is Compact h_{2} b), so $\{\chi_{N}\}$ has a convergent
 ξ because χ_{N} hence $(as H is Coulor)$ if convergent χ_{N} is $Cauchy i$ hence
 $(maxy_{N} = 0)$ Let $\{\chi_{N}, \chi_{N} = 1 \pm n \pm m = 1 - 4n$ and $\chi_{N} = \chi(1n)$.
Since $dist(\chi_{N}, \chi_{N}) = [1n - tm] = [\frac{4}{n} - \frac{4}{m}[$, the sequence χ_{N} is $Cauchy i$ hence
 $(max_{N} = \delta M)$ by c . Let $B_{E}(\chi_{N})$ be a normal meighborhood at χ_{N} .
For M_{N} in soft lorge, $\chi_{N}, \chi_{N} = B_{E}(\chi_{N})$ so there exists a (unique) minimizing
geodesic χ_{N} from χ_{N} to χ_{N} , which hence coulds with $\chi([1n \ to 1))$.
 χ_{N} χ_{N} $\chi(1h) = \chi_{N}$ $\chi(1-T) \vee f_{N}$ $h \geq T$ where $v = \lim_{N \to \infty} \chi(1h) \in T_{N}$
 χ_{N} $\chi(1h) = \chi_{N}$ $\chi(1-T) \vee f_{N}$ $h \geq T$ where $v = \lim_{N \to \infty} \chi(1h) \in T_{N}$
 χ_{N} $\chi(1h) = 0$, β_{N} det $M = \frac{1}{2} \times eR^{m}$: $\|\chi_{N}\| < \frac{1}{2}$ here more fields are complete. Closed submanifolds of a complete
 $(max_{N}, f) \neq a$, b , c , d , d $M = \frac{1}{2} \times eR^{m}$: $\|\chi_{N}\| < \frac{1}{2}$ here more fields are complete.$