
Lecture6 2/14/2024< Happy Valentives Day !

Ref: The torsion of a connection 4 on TM is the (1 i2) -tensor
-

TxY = PxY - DyX- [X , x]

Ref: The connection I is patible with a Riemannian metric gif

Pg = 0, ie
. X(gNiz) = g(TxY ,

z) + g(Y . (x2)
,

EX
,Y ,

z e(t(M)

1)

(also say D is a metric connection")
-.

The Given a Riemannion metric g
on M

,

there exists a

-

unique torsion-free
connection on TM compatible with

g,

given by the "Noszul formula":

g(0+X , z) = 2(Xg(Y ,z) + Yg(z ,X) - zg(X,Y)

- g((x ,z)
,Y) =g((Y ,z] , X) - g)(X, y ]

,2) .

or
, equivalently, whose Christoffel symbols arei

Def- This connection

is called theTiY = 5 [ g
*

(gej + xgie-x8is) Levi-Civita connection

where (g) is the inverse matrix to (Oxe) .

of the metric g.

Pf : Suppose such a connection 4 exists
,
and compute :

Note : Can replace the

M

&

↑ glz gloxY,zo 3 underlined terms

with brackets
,

i
.

e,

④ terms independent of1

if we subtract the
· Eglx) = *) +I last time from the

sum of first two...
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so X g(Y ,z) + Yg(z ,X) -
z g(X,2) =I.X)+z].X)

+g(DxY + DyX , 2) .

Use DXY = Py X + [X,Y] to replace lost term with g) [X,Y]
.
z) + 2g(0,X ,z)

.

Solving for g(TyX .2)
,

one obtains the Hostul formula. This proves

uniquenue of D
,
and

, for existence, simply define it by the Koszel formule.

To compute Christofful symbols, set Y= C Ex /
X= E,

z = Ex , so
.

as [X, = [X,z] :[Y,z]=

g(D- x , 2) = g)DyX , z) = E(Xg( ,z) +Yg(z ,X) - z g(X ,Y)

= E(Ex
,
Sie + ExiSej - Exegij)

DEE = [Tik x
= g(Polydie) = [Note

I gre Careful: &Ex.3Neednee
.

=EenergieExiteg - Exegic) = &Tingem = & + Samie
Sam

m-
&ent (Ex

,
Sie + Exigej -Exegij) .

Recoll gij
=

9ji
end

Ch he

So T ↑ = g =

g
if

R
because inverse of a symm.

matrix is symmetric too. E

Def : A curve (: (a ,b) -> (M ,g) in a Riem . mflel .
is a geodesic if it is a

geodetics for the Levi-Civite connection Dofg ,
i
.

e
., Dj8 = 0.

- Note The geodesic equation
in a chart x= (xx-- > Xn) is given by

O
-i

z-
+ [xixj N = 0

,

N = 1
, ...,

i , j
x (U) < IR"e andTik for the Levi-Civita connection can be written as

functions of gij and xegijs
so geodesics are determined by g .
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Prop: IfI is a geodesic in (M
,g), then its speed g(VD)" is constant.

If: Agl 2g(4, 8 . 8) =
0 = g(2 ,2) is constant along2.

dt
Geodesic Def: A vector field XE)(M) is Willing on (M,z)

compatibility equation if its flow 0 : M-M is a 1-per, subgroup of Isom(Mig) .

-
L

&ropi[6XCIM)is aHilling Geld of (Mg) ,
ie

, [x9 = 0
,
then gli e

&: Recall[xg = 0 EDX is shew
,

in
. g(D1 ,

z) = - g(4zX , Y)Y

methi lit,

↓So # g(X ,2) = g(4, X , 8) + g(X , -8) = 0 bK DX is shew.
TL

Careful : IXI need not be constant along y, so the agle between a hsilling
field and a geodesic need

not be constant .
Moreover

,
if X is killing but

IX) is not constant
,
thenA need not be killing ,

in general , f . X satisfies

T (fX) = xX + 1 PyX ,
00 Y (f) g(X :z) + fX.z) = - z(f)g(X) -EgM

need not a < Y(8)Z + ZIAY = 0
,
but generally YandI are lin

. Indep!
be shew

Exi On ((a ,b) x Stdr2 + f(r)dOY,
the vector field XI is Willing ,

but IXI = f(r) .

Can prove this in

lots of ways,
e . g.

HW2 : g(X , 8) = f?0 is constant along U(H = (r(t) , OH) · i computing explicitly.
(But I find

Cor: Geodesics in R are straight limes; geodesics in $" are great circles ·
this proof

more

elegant...)

18 : Every constant vector field in IR" is Killing, since if veIR" $(p) = p + tv are isometries.
-

In particular, the coordinate vector fields[} are killing ,
and formaen

IRM
orthonormal baris at all points. So given a geodesic W : (a ,b) - IR"

,
it

..... follows that gliii) =C
: is constant

,
this

g = [ciExitul is constant
,

T

1

m ie
, U is a straight line. rotations!

n -

& - -

ti i

Similarly , if Vilab) is It is a geodesic, there- S dd --- - are (n-1) lin . Indep . Hillingrector Felds [xiBct.&- Y(to)+= spen &Xi(u(t)] ,

and a killing field Y with g(td =Y (UHD)
.7

yiiMd- This
, g(g/) , Xi(Vit)= O

,
and W(H = Y (2() , so is a flow lineT

of the rotation field Y ,
i
.

s
,

a great circle El
3



a affine reparametrization.

Note: If UH) is a geodesic, then so is altli = flat + b) for any a to
, betr.

P: <H = a Glattb) so My = Daylattb) &Wat + b) = Dj(t +b
W(at 3) = 0 b Tz8 = 0

.

Initial conditions are

Note :

(t)=vS
x(t1) =P(t1=ato + b) it

e the same, up to rescaling[8(t0)
= 4
-2(t) = av ·Itil

the initial velocity ! This,/Sid/ x(ti) E Geometrically 3EPR(T1M)distinct pointed
28: TM : = &(iv) <TM : qp(v,v)= 13

F (n- 1) - sphere bundle geodesics in M

projectivized
is the "unit tangent bundle" of (M ,g) .

over (M,g) . unit tougent bundle
.

RP"-1
, PR(TM)- M

Grefel : If a reparametrization fit) is not affine ,
then <(t = U(f(H) need not be good:

-

2= f) (f(t) so T =

just)
ful =f ,/(3) = 8)f" 8(2) + fe)

=>
= O

↓ Using that Isom (M
,g) acts transitively onTIM if M =Mor M =S

.

ternativepf : Show that at least one straight line Un
in IR" and one great circk

Vo in Ih are geodesics. Given any
initial conditions (piv) , up

to affinely reparam.

So ,
we have a gooderic

with the prescribed initial conditions ,
so by uniqueness all

( images of 80 via an isometry. E
geodesics are (possibly reparametrized

Op

Def : the exponential map of (M , g) at PeM is

........
V

...
--- TPM

3 tv

exPp : OpCTpM -> M -
i 7--

.....
-

- Wit -
--. M

P OrsiL
expp(v) = Uv(d)

where Ur(t) is the (unique) geoderic in (M ,g) with [Cr(0)=P and OpCTpM is

(d) = V

the open subset of veTpM s.

6
. Writ is defined at least up

to t = 1
.

Byabove , Usult) = Ur1st) provided It) , Is) are sufficiently small
.

This
, WVETpM,

TTM
d(expp)

.

V = exppltv) It
=
=

Utv( *) It
=

= Wv(t(t = -

= (b) = v.

i. e, d(exppo = id. Thus , by the Inverse Function Theorem
,
there exist open

neighborhoods UC-O in TpM and USP in M s .
t. (exPp)/y : U-V is a differ

/

This defines a local chart around p+M ,
whose word. are called mal coordinates.

"

- identify TpMER" by choosing a g-orthonormal basis. 4



Lecture7 2/16/2024

Recall Levi-Civita connection of g
is the unique forsion-free connection

-i

compatible with g .

EX : Let B : M -> MN be an isom . embedding ,
in

., g
=*(Give) .

Then

L P

to a vector field On ·(PxY),= proj (X(Y)n) UCIRN then use (-
~locally extend Y

yEnt.--Eis
-
TpM connection from I X - P(M)
Lorthogonal projection L

to TPMCIRN.

L
isforsion-free and compatible with hence

it is the Levi-Civita connection a8'(M, g) .

-
> eXPp

: OpCTPM-M satisfies dexpplo = id
,

hence
Recell

Inverse Funct . Thm
-

expp(v) = (r(1)
7U50 in TPM and JVFp in M 31

. (expp)/y : U-V is a differ

Propertiesof Normal Coordinates. X = (x , , . .

., x2) : Va H st. x
+

= (exPp) /v
-

TM

· x (Ur(t) =
tv FreTpM ,

It smell

TPMER"Fina( 3 follow from

· X(p) = 0
All of these

·

gij(p) = bij . gis)(p) = 0 the above.
because:

exppltr) =Utr() =Ur(t)
· N(p) = 0

-

Levi-Civita
Questions of "naturality" : connections

L E

Atop: If P : (M , 8) -> (N ,2) is an isometry ,
in
. g = P

* h
,
then 78 = 0

* D

18 : **** isorsion-free, andhwith g ,
hence equal to 78

E

&

by uniqueness of LC
connection.- T-

checking this is a good exercise,

see e.

g. Lee] Prop 5
. 8,
5

. 9 for solution. 5



Cor . If Vi(a , b) - /M , g) is a codesic
,

and : (Mig) -> (Nih) an isometry,g
then DOW : (a,b) -> /N , h) is a geodesia .

If. Leta = boy ,
so <( =d,

/GH) and compute :

D
,
x( =

dbg(t[(t)
&via((t) = (p

*

DY) vinU(H = 19 WH =0
.

(t)
DY -H I

Cor If $ : (M,g) -> (N , h) is on isometry ,
then PlexppOv) = expop(dbpV),-

in
.,
the following diagram commutes :

TPM TRAN

expe- ↓ exp (0)d
N

&f :

By definition, $ (expo(v)= ↓(U(1) and expan (dpV) = 24(1)

g-good. onM
h-geod on N

-dbpV
s .
t . Uv(0)= P.Ein( = v

s.
t . [Wdpu(d)

= 0(p)

Wddv(d) = dpu

By Prop, Doyk is a good in (Nch) ,
with same initial conditions

L
as Vapo ,

so port =Neopr 7

Cor: If p ,55 : (M
, g) -> (N

,2) are local isometries and JPEM such that

[PMP) ,
then &ENT on the connected component of PEM

P1: Let USP be a meighborhood of p&M and let 8= POST; so

E S(p)
= 0

Sp : U -> S(U) is an isometry. By Prop, since

d8p = id
,

we have :

6 (exPpv) = exp g,p)
d6(p) V = exPpV , VreOp <TpM

↑ domain of expp .
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so S(x= x for all XepUp) in ., PET near paM .

;

M still a
-

neighborhood
of PEM

Propagate this to the connected component of paM
"as usual"

let 5 : [0 , 1) - M be a curve with (10)= p , <(H) = q
and note

7330 s .

t. Balo) < OrH <TriM for all +t [01] , by

continuity (of the "injectivity radius") .

Then apply argumentabove

at((ti) ,
where Octo <E < --- < t = 1 is a sufficiently fine

partition so
that U(tit) +exprii) Pulil

to get from p to
q

· O
&

--.·

Ultil gHtz) d

y
E

·

f
e & size of the neighborhoods

... doesn't shrink to zero by"Geometric
(I
If hypotheses compactures of (([0 , 1]).induction hold at y(ti) get
conclusion to hold This will be justified better

at U(tin) ,

which is later
, using "uniformly normal" 7L

coordinates.
also the hypotheses there--

Car : Isom(1R") = 0(n) XIR" = <X + Ax + b
.

AcOl)
, beR"] .

P2: Clearly X1> Axtb
,
AcOlu) ,

beli are
isometries of (R". Feel

Conversely , if P : IR-IR" is an
isom

,
let P(x) = P(x) - P(0) and note

that :I"-IR2
is also an isometry ,

with M101 = 0. Then,

dio :To 12 -> Pol2 is a flimeer) isometry of TolR" ER".

Since the

isometrine It and di satisfy [P(0)
= 0 = do(0)

,

and R" is connected,

dTo = d (d) .

it follows that I= dio
is limeer

,

hence acts as an
element of 0(u).

This W(x) = Ax ,
At Olu) and setting b = P10 ,

we have $(x) =Ax +h
·

i ↳

7



Gauss Lemma exp
,

is a radial isometry ,

i

. e.-i

(d(exPp) - V
, deXploW) = <v , w)

,

fr
,
weTpM = TuTpM

Here we use ( .) instead of g to simplify motation ...

&fi TpM =TuTpM Write W = W
+ + W

+ ,
where SUTFC
-->Wi

W - Clearly--
!

WI d(expp]rV=d(expp)((t + 1) v) ItL
exPp I

=d(expp)( tv) /-
-
D

-
fild =

U

expp
- W(t)/t =,

= Wr(1) =PV (v).# -

so vi parelles transport
of VETPM along
zu to UV(1) -

P
Ul"

: TpM -To
The

< d(expp)
,

U
, d k4p)

, W) = < dexpplyv , dep)
,(V))

+ <de<pp) . U
, depprW1

= x < Pptu , Pro
+ <de<pp) . U

, depprW1

= <v ,
< V) + <de<pp) . U

, depprWI-

Wi

= < V ,w) + <de<p) . v
, deppvW1

f



So we must show [dRPp)rU , depprW1) = 0.

v(o)= V

v(s) Let vIs) = (loss) V + (sins)WI So V (0) = WI
·· E IV (s)I) = const

W
+ = v (0)

TpM =TuTpM
and f(t , s) = expp(tv(s) = Uris

↓t f(t)) are

+) AltoFrie
geodesics Unsit

St f(t ,s)

(1 ,0)

=> <de<pp) . U
, depprW1deverrrcEexPp<trssedAs3

= (f , 2ts) (1.
0).

Compute :

E <E ,2) = <Off , Cs) + (2 , De A s) = [Ef

· [is] = 0

bk tref(t S) = Uvis(t)crehabilitye
-

↓end

I

are geodesics .

=s [ ) = 0
,
/ = /IWv(s(t) = Kais)(d) I=

= Hv/s))) = coust .

Therefore Its (11 , 25 7 (t ,0) is constant , and , computing at + =.

28 (t, 0) = & (exPp)[tv(s) I s
= 0

= d(XPp)(t0)(tv) = d(expp)
er
to

lim
+ -
If (t, 0)= dexpptr tw+

= 0
,

so < ,2) (20) = 0.



Lecture8 (by Den Lee) 2/23/2024

Def. A curve 8 from p to
q

is a minimizing curve (or minimal)

if dist(p , g) = (g(z) ,
ie . if it realizes the inf in dist(p -2) .

Prop: A unit speed minimizing curve is a geodesic .

48. (First variation of length). Let USH) , IsKE ,
be a

smooth family of

curves sit . 2= 50 is minimizing from p = V(a) to
q = 0(b)

,

and

Us(a) = 4 , Us(b) =

G .

Then
, letting VisUs/s = 0 ,

we compute

44

V(t +
< g(↳gl/s-= glasgi* t ~

-

+ 04

F↑ I UsIt)
F

(g(ti , is) +gi ii) I
E

-Us(a)

= ! g(AV ,8) dt = g(V,
2)/ - (b g(V
,!
e.

kil a- -

ports = 0 bl
A bly
is unit speed V(a)= 0

,
V(b)= 0

If the above vanishes for all smooth families of curves with fixed

endpoints et P and q ,

then E = DjV = 0
,

it
, Wise grookie

TL

④ Lemme # Usils-= UsH/s
== UsIs

=
0- =

# Compute both sides of=in local cordinates
,

use that TipN .

I

Note : The above shows that smnoth curves with fixed endpoints that
-

are stationary Critical points for Lyminimize
,

or
,

more generely,
are geodesics .

Smoothness can be assumed by a "cutting corners" argument
· If C < T

,
then moving inwords

, ie; replacing
P- q

with blue curve
,
would decrease distances

,
see

,
e .g. fee), p.

156

10
-



Rop . Up to reperemetrization ,
redial geodesics

t +> exppltr) ,
where

It < E is small enough so that curve stays in a normal neighbal.

of P ,
are the only minimizing geoderics from p to exppltv) .

Pf Let < It) be another curve joining

- p to q=exppltal) in U
,
end write in TPM

-

. existe
& It) : = exp

*

(x(t) = w(t) Pl

↓ expe
TpM

where ~ is a (positive) real-relied

function end OSt) <TPM is a unit

- M

I...... vector for each t.ie. . IOIE11 .

Then
,

W z q- \

I x(t = exp
,
a(t) = expp(r(HO(t)-- L

(↳ .....
< It) = d(exPp)<It)

I'lt)

..... ↓
= d((XP4)2(4)(r(t)O(t) + w()0'(t) .

V : [0 .#) - U
.
US = exp

,
tV = r'(t)d(eXPp)< (t) O(t)

+ ~It) d(eXPp) <(t D'(t)

Li[e ,b) -> U
,
<(a) =P , <(b) = exppIteV)

I% d(exPp) <H2(t) + w(t)d(eXPp)< (t)Ol)
has the same endpoints as 8

By the Gauss Lemmo, (d(exPp) < /[It) ,
dexpp)
+
W) = < <1) , w) for any WeTpM ,

so

121/F =

I
Ild(XPp) ItilP+ WHY /d(exPp)<itO'lt)/2(t)

r(t)2

Gase + 2 r' H )d(expp)y[/ , d(expp) - (t)O'(t)

-> w'H) IId(exPp)<ItPl+ 2 r'It)<,O'(t))4. = It) [O(t) , O'H)) = O

= r'Ol = r'It) .
blc (10(t) If= 1 .

11



Thus
,

as Yi[a ,b] -> TPM joins v( = 0 to r(b) = tar
,

we have

b b

Lg(x) = l<It)lldt <, S W(t)dt = w(b) - r(2) = ((txvI) = (g()
a

i
n

.
., the length of & is at least es large as the length of the radial

geoderic WiCOt] -> U
,

WH = exPp(tv) . I

rollery .

Geodesic balls are metric balls
,

i
.

e., if expp is well-defined on Br(o) <TpM,
II

then Br(p) = [xtM : dist(pix) <r) = expp(Br(d) .

EVETpM : I/vI/ < r3

Gallery. Geodesics are locally distance - minimizing .

If Let Ult) be a geoteric, and ab sit . gla) and y(b) are sufficiently

close
,

in the sense that UIt) is in a
normal neighborhood of Ula) for

j(a)

-

-.. all
te[ab) .

Then , I agrees
with the Coul) redial geodesic

-
from glas to((b), up

to reparametrization ,
so by the Prop .

above,

-- (t)
·

g(b) ↑
is distence - minimizing from j(a) to (b) .

O

Pla yi --
-

Pop. For all PCM ,

there exists >O sufficiently small so that Bri is

convex , ie
.,

Ex
, y -> Brlp) ,

there is a unique minimizing geoderic from
--

x to
y , and This geodetic is entirely

contained in Br(p) .

3/1/2024

Lecturea Length

Eg() = 1) llylldt is not inveient under reparametrizations (fixed garge)

Lg(V) = J Ij (t)Il d is invenient under reparametrizations (garge - invervent).

By Carchy-Schwartz, (g(y)= /Kyl d)" I SUIPdt . I 1dt = 2(b - a) Eg(z),

and equality holds if 181 = const
,

i. e
., iff I has constant speed .

12



Prop. Let piGEM and Vi[ab] - M a curve joining p to .

Then I
is a

minimizer for Eg if it is a minimizer for Ly and has constant speed.

Ef. If I has constant speed and minimizes (g , then any other curve < : [x . b) - M with

x (a) = p ,
<Ibl = q has (gIcK, Lg(D), so Eg() <Tsa) glaTcz-)stF = Eg(y);↑

Hill= coust

i
.

e. < minimizes Eg. Converse will follow from first variation of energy (below). I

Analyticallyy, Eg is easier to handle then Lg. We can consider the Hilbert mild

W +2 ([a ,b)
,M) of paths in M ,

whose tangent spec at y is

Ty WY (2a ,b]
,
M) E W

+2

(aib] , 8
*TM) = [Vi(eb) ->TM ,

W
Y -Vectotonfields

and submanifolds ,
such as

, given fixed endpoints piqeM ,

&2 p , q
= EVEW'R ([2b] ,M) : 8(2) = p , y(b) = q]

Turpig = SVetW(((b) , M) : V(e) = 0
,
V( = 53

rentsa
P

or
, given submanifolds P

,<M
,

-P
,0 = [8E W ([ab] ,M) : W(d) =P

, -(b) ER)

Trapa = SV-TW((( .3) ,M) : V(a) eTraP,

V(DT)ele
or of closed

=[VEW"Y ( [0 ,b]
,M) : U(a) =Ubi etc.

L
j
still an open problem to establish existence

N

of infinitely many geometrically distinct closed

Variationof Energy . groderis on all closed Riemannian manfolds!

Let UseW'2 (ab] , M) ,

ISK E
,

and set V = d Uss
=
0
Note that

P= 83/s = 0 by the Lemme of Previous Lecture

Int . by
parts

dEgGV= EgWil/_fasstisivil,__(g(i)at g(vii) - Jag(V, C) et

13



·This
, if2 = 00 is a critical point of Eg : Apiq-l , then

dEg() V = 0 for all VETodpq ,
so it follows from the Fundamental

Lemme of Calculus of Variations that #
= 0

,

ie
, PjV = 0

,

ie
,

dt

v is a geoderic curve (hence constant speed) joining 4 to q

· Similarly , of I is a critical point of Egi RP-IR,
then

dEg(g)V = 0 for all VETPURPO so y is a geoderic joining
P to Q

and meeting
them orthogonally-

Note First
,

use variational fields supported in the interior of (a,b)
-i

to see
that y is a gooderic,

ie. DjV = 0 :

dEgG) V = 0
,
XVeCk((aib) ,

*TM)

&it.( ↳ S
.
g(V , * ) dt = 0

, XVe(((aib) ,

*TM)

P a E
=
0 a (a ,b) .

Then ,
to that g(V(H , j() = 0 for tra and tab individually ,

use

see

variational fields supported in a neighborhood of t = a and t = b
.

......fl m b

P a
P a

dEgbV = 0
,
XVE CO(( ,2)

,
8

*TM)
similarly at gl /

E> Val ETrPt

I
& (

W

b)
I

E g(VI) , je)) =0
, XVE CO(( ,2)

,

*TM) get g(b) =Ty(bQ .

14



Variationof Energy

Lemma Given a rector field WIsit) along UsIt) ,
we have

-

R
as PW-W = R Vs- Ws)W ,

where R is the (1is) - tensor given by
"Curvature

R(X , Y) z = DxDyz - MyDx z - <[x,y]
Z

. tensor"

P2. Compute in coordinates , using X = (US)xEs· Y = (US)
+ E so that

[X ,Y] = 0 and D IP = 4x / di
=My ,

so revet follows.

-

Suppose U =80
is a geodesic.

Then
,

I
d

dEgb)(V , V) = ↳2 Egl/s
= -

= Sigl, () Is t

= g(P V
, U) + g(* , ) It

Lemme ((b g( ,4) + g(4 s V,) + g(R(VDV, ct

Fr e g( ,g) - -g ,

0 dee

Int. by ports
+ S" g(P , E) + g(R (v, 2) V, 2) I often write

+ Symmeti (
g (R , 8) + g(** v)I -S"gR(V, W , v) atof

R

"Jacobi operator"

Note: Using polarization ,
can easily compute cEg()(V ,

W) for any V
,
W.

15



Def A vector field J : [a.b) -> TM along a geodesi 8 : (a .b]-M is

a field if it salves the Jabi equation J"+ R(5, U)) = 0.

Prop.
The variational field J(H= VsIs

= 0

is a Jacobi field along the

geodesic 8 = 80 if the curves th UsH) are geodesis for 19
.

Proof- If 5H = -UsItls =

:Where Us(t) is a
variation by geodesic,

them

5 "H = GAUs(t = #Us() = Y - R (5 ,8
cit

- -

is(t)
= 0
bl UsIt) is good .

so J is a
Jacobi field. Conversely , ifJ is a Jacobi field ,

then let

x() = expr,
55(0) and let X(s) be a

vector field

X(s)
along < (s) with

X(0) = 8(0) ,
X 10) =510).

- j(s) -

- UsIt)
J-(d) Set Us(H = exp + X(s)

.

I - x(s)a)44**-

Us(d) -

Od St Since theUsi are geoderics , by the above
,
the

Y = Usit/s Satisfies
"

+ R(5
,
1=Vector field J

Moreover, 5(0) = 10s01s=

= < (0) = J(0) and

(0) = Cit Us(t)/po = Eof WH/s =X(b)( =
=
X (0) = 5..

-

So 5H) = F It= UsHIs
= 0

for all to by uniqueness of
sol . 6 ODE

v/ same initial conditions
,
hence J is the variational field of the

family of geoderics [s( .

t

16



~ see HW3
.

Emk: The Jacobi field along &(t) = expptr with 510)= 0 and J 10)= N

is given by 5(t) = d(exPp)+n
tw

, of end of Pf
. of Gauss Lemme.

Similarly ,

can also write the unique
Jacobi field along Jr() with

arbitrary initial
conditions 510) and 510) using d(expo) .

symetriesof the Curvature Tensor

Let R(X ,
Y

,
z

,W) = g(R(X,Y)E ,W) ,
so RiTMeTMTMOTM- RR is

a (0, 4) tensor. Then
,

it satisfies :

symr . 1) R(X , Y .

2
,
W) = RIZ ,

W
,
X

, Y)Ed
- -

R(X ,Y ,
z

,
W)

& R(X. Y ,

z
,W =

- R(Y
,
X ,
Z

,W)
a M
wa La

Skew Stew = R(Y ,
X

,
W

, z)

3) 1st Bianchi identity : R(X , 4) z + R(Y ,2) X + R(Z ,x) Y = 0

Together 1) and 2) correspond
to the fact that R defines a

RiRTM -> NTM called the "curvature operator" :
symmetric endomorphism

g(R(XnY) ,
zaw) = g(R()WI Careful withthee

flip here !

for all X. YE ,
WETM and extended by linearity to ATM.

Def. (Sectional Curvature) The sectional curvature of the plane y spanned by
X , Y is

sex(XaY)=
XX)

.
Xax)

= Y Tx 2
g(Xny ,

Xny)

Note. If X', Y' are s .

t
. spenEX', Y'3 = spenEXY ,

then seaWNaY) : secIXet)
,

so we write Sec : GreTpM-R,

where GrETM <&TpM is the Coriented)

Grassmenuien of 2-planes in TPM , given by GreTM = 30 e ↑TM : IWIF= 1
,

= 03,
"Plicker relations" a

as sec() = (R0 , 8) &
characterize the elements <NTPM

↑ curvature operator R : ATPM ->&TIM of the form 8= XnY for some

X,YETpM ,
i
.

e., "rank 1 tensors. " 47



Ifi Any other bosis is obtained by performing finitely many
of the following operations :

a) EX1Y3 - 34 , X3

b) [X ,43 -> 24X, 43 DeR

2) [X143 -> EX+ x Y , Y3 XeR
.

All the above clearly preserve
see (X); e.

g. (4 :

< R(X+xY , 4)Y,
X+ 1Y) = < R(X ,Y, X) bK R(Y

,
Y) = 0 ( R( , ·) Y,Y) = 0.

1 X+xy (MIP- <X + xY
,Y) = (lX12 + 21< X, ) + PIN (12) IYlP- ((X ,-) + x((2)

>

=(XINYP- <X ,Y)?

Cor , more elegantly ,
note : /(+**Y= XcY +x -1XnY

TL

EmX: Given J < TpM , let E = expp(0). Then sec() = Ks -

Gaussian
curvature

of E with induced
Lecture10 3/6/2024 metric from [c> M .

From the 2nd variation of energy ,
we were led to the rature sor

R :TM TM -> End(TM) R(X ,) Z = DyTyz - MyTx E -

[x,y]
E

(or R : TMOTMOTM- TM)
Due to its symmetries ,

one may equivalently write R as a symmetric
endomorphism R : 1TM -> TM

.

called the curvature operator.---

<R(X-Y) , znW) == < R(Xi W , 2) .

Pef. Sectional curvature : sec (XNY) = Yay = A **li
Prop Curvature operator R : FTM- NTM

,
curvature tensor R :TMQTM -> End (TM),

-

and sectional currature sec : GriTM-R are uniquely determined by one another.

18



Ef : Currature operator and curvature tensor uniquely determine each other by basic

Linear Algebra. Only left to show sec determines R .

Use "polarization" and symmetries:

Suppose R' is sit.
NY ,X)

=

IX)
= Sec(xny)

1 XNY12 IXAYIR

for all X ,Y
;
want to show R=R

.

By hypothesis , <R'(XZ ,1) 1,XIE) =<R(#E,4)X,#2)

So 4(X,Y)Y,
X) + 2 < R'(X

, Y) Y
,z) +Re

-((,)Y,X) + 2(R(X, 4) Y , z)+ e

So RILE) =CR(x) .

UXiYIE

Thus
, <R'/X , Y + W) /Y +W), z) =<R(X, Y+W)N + W) , zC

so IRNY, 22 + < R'(X , Y)W ,z) + < R'(X ,w)Y,z) + <R' X,
W) W

. 2) =

m

=INNY ,
2) + <R(X ,Y)W ,

zC + <R(XW)Y ,z) + <R(X,
WIW ,z)

sen

so < R'(X , Y)W ,z) + < R'(X ,wIY ,2) = <R(X ,Y)W ,
zC + <R(XW)Y ,z)

i. e. < R'(X ,YW ,z) - <R(X,W.EC = <R(XW)Yiz)- < R'(X ,W)Y,z)
---

= (R'(k, 1)1, 7) - <R(W),z) UXYiEW

Therefore R' (X ,4)W-R(X ,YW is invenient under cyclic perm.
of (XNW) and hence

, by the 1st Bianchi identity,

3 (R'(XMW-R(X,YW) = 0 ,
FX

, Y,W so R =R'
.

E

19



Cor . If R : PTM-RTM is st
. sec(8) = X for all 8

,
then R = K. Id

,
ie .

(R(X,)W ,2) = < R(Xny) , zaw) = x <XNy ,
zaw>

carradureoperatorof
= )[X ,2)<Y, w) - <XWIte

Certan: Curvature is the only local invenient of a Riem . Mfld.

I
e - I(v)-Ei i-

>

-

Efrexpe
TPM isometry EfexPp

TFM

- ---
TriM

I--
O7 -----:=. ---- =

--FL -L
· *> j

-e M T

4 = exp-
Io expp is a differ . (on good normal word)

& (Let = You , Inh :TWM-TM Note: IUH ore
If :=Pl O To PP

j Ult)
Preserving curvature is the

parallel transport
->

-

"Integrability condition"
so Frit is neerometry to become a local isometry :

---

Inm(Cortan) . If for all geodesis gHt) starting at pEM ,

Iw(R(X, Y)z) =E (IriX , [vait)Fri ↓ It small

then 19 is a local isometry ,
and du1 = Ifit)

Zo



&f .
Givenq near p ,

and XeTqM ,

let 8 : [P . 2) - M be

minimizing geodesic w/((0) = p , W (L) =q
and let J: [0 .<]->TM

see

Lemma

be the Jacobi field along2 withI5/2) =X. later
.

Let J(t) = If (5 (t). By hypothesis , 5(t) is a Jacobi

field along J ,
since :

5 "(t) + E (5(1,(H)W'It) = I (5 "It + R(5 (H) , W(H)W'H)= 0
.

u(t)

Note:
I J H) = J "It) bl IvH) is defined using for

the transport. Sey J(t =[ail+) < i (t)
, wh

U(t)
eilt) parallel frame dong y(t) .

Then Elt = [G1Tilt) is a parellel frame along j(t), end 5(t)=ailteilt) .

This
,
I5"( =&alt) Fulvi(t) = [q(t)Ei(t) =F"It)

.

W(t)

Moreover, E
5(t) = d(expp)tycot J(0)

--
+Jsee HW3 JH) = dleypptto

-

(0)

+ 5'10) = d(exPp) o
5 (t)

so J(t) = dleyppt toso + (0) Inverse Ect

= d(exPp)+ (0)
+ I (510)

↳

dlexppppstri tis
U(t)
~= d (expo)+Evi) Ioxppt)5 (t)
<

= do10expp t)5(t) = dYvIt5
e

Computing at t = L
,

we here 5(L) = dy1 5(L) = #f X and

1d4qX11 = 115(4) 1 = 115(2) / = /IXII so diff is an isometry. E↑
(If is a linear isometry) 21



Lemma .

Let 8 : [0
,LJOM be a geodesic, VETiaM , WeTri4M .

If L 0 is soff · small, there
exists a unique Jacobi field

5 along 8 with 310) = v
,
514 = W

.

If: Let S = 25 is a Jacobi field along y ,
5(0) =03

,

↑
HW3-

= [5() = dexpria)
+lo

+5/10)] this is a

vector spec

Consider eve : 5-> TVL M dim I = dimTpM

5> 3(4) (Lineor mep)

If L > 0 is small, then eve is injective :
otherwise

51
,
52 =3 , Jal =52(L) but 5#52. The J, -Jce]

satisfies O = (5 -52)(2) = d (exPrio) Ly 10)
L . (5, -52)(d)

and for I small d(exp)
(8)

is invertible, so (3-521101=0,

hence (T2-52)(0) = 0 and (5 , -52) 10) =0 so J,
= J2
(contradition)

Since eve : 3
->TJM is limeor and dim J = dimT M

,WIL

ev is bijective. So F51] with J1L) = w
.

L

By the sameargument starting from UL) , JJ2 a

Jacobi field along 8 with Juld= v and J2(L) = 0
.

Thus
,
5: = 5 + 52 satisfies 5(0) = V and 5(L) = W

. IL

RmX: The above holds for any
L > 0 s. t . U(L) is not

congate to (10) along 8 . (We define conjugate points later).
22



Lecture11 3/8/2024

-
> (Mig) is geodesicallyCompleteness·

can be extend completeifevery geodesic y:

· (M . g) is metrically complete if the metric space (M , disty)

is complete ,
i. e, every Carchy sequence converges.

The (Hopf-Rinow , 1931). Let (M,g) be a connected Riem . motel, and peM.

The following are equivalent :

a) expp : TpM-M is defined on all of TpM,

b) closed and bounded subsets of M are compact

c) (M ,g) is metrically complete

d) (M , 8) is geodesically complete

e) JKnCM nested sequence of compact
subsets (kuCinthn+) s -

t
.

M = UNn ,
and if quehnVn ,

then dist(p, qu)-> + ↓
.

If any (hence all) of the above hold
,
then :

8) For all GEM ,
there exists a minimizing geodesic from p to q,

ie. V : [O .L] -M with ((0=P , U14 =

q ,
end dist(p, g) = Lg()) .

22 .
a) => f) Let w = dist(pig) and Bs(p) be a normal neighbol of P

-
The function f : 2Bs(p) - IR , f(x) = dist(x, q)

y is continuous hence has a minimum XoedBslp)
.

S
--W · Xo

y Let VETpM be st . exppSr = xo and IVl = 1
,

-M let U(H = expptr, which is defined Vtel by a)
p

Claim
- V(r) = q .

23



ofClaim : (Continuity method) Consider the subset
again by

&continuity
of dist) , q)

A = < t c [0 .r] : dist(y(t) , q) = w- +3 d
and note AFD because OEA

,
and A C [Or] is closed.

It suffices to show that if toA
,
then totECA for suff small 370,

since then A = [0 ,w] ,
and rEA is the desired claim .

Let to eA and 360 small; We want to show that to+ -A
.

By making ECO soff · small, we may assume Ba(y(to) is a normal miglbel

of 21t). Let J be a curve from ult) to
q and X, E2Bg(y(t)

be the first time it intersects [Bg(yIto) .

Write 8= 8, US2 ,
where

/

4 joins UHto) to X8
,

as in the picture.

I p- Every point in 2Bg(y(to) is at distance a from y(to) ,Xo-·g(td
O

·

Xo
Oz so Lg(p) > dist (u(to) ,

X8) = E = dist(y(to) , xoP

IE/ andLg(vz) > dist(xo,q), distIX , 7) where

XSE2Bg((to) is a minimum for dist(Xif) ,
X+ Ba (WHO). Thus,

Lg(v) = Lg(a) + Lg(vz)> dist(y(to) , x) + dist(x, q)

Taking the intimum over all sucho,
since distlti . Elinf (g(s),

-to
to

distlyltol , 4) >&Hulto),
x) + dist (x,

E

which
, together with the triangle inequality ,

implies that

r -to = 2 + dist(x , q)
i . e. dist(Xif) =

2- to -E
.

Thus
,

it suffices to show xo = Ulto+ 2)
;
for that

will imply to EEA . By the triangle inequality,

dist(p . x) > dist(p,q) - dist(q , x)= - (r - to -3) = to + E

24



Moreover
,

the curve U([0 . t]) UX where c is a radial good.

from p to ulto
& from gHo to xo

from plto) toxo has length to+E
,
and therefore is minimizing.

Minimizing geodesics are smooth
,

soa must be a piece of 5/

namely <= 0([to ,
to +33) ,

so x = UHo +2) as desired .

7L

a) => b) Let UCM be closed and bounded. Boundedness gives RO s .

t
.

defined on all ToM by 2)
~-

where BR(0) <TPM is compact, and
K < BR(p) ,

so K < exPpBrld) ,

as expp
is continuous,

also exppR10) is compact .

Since KC exppad is

L

closed in a compact ,
it is also compact. L

b) => c) Let [xn] be a Carchy sequence
and =MENG

.

Since

is closed and bounded
,
it is compact by b) so [Xn) has a convergent

/

Subsequence, hence (as it is Carchy) it converges. I

c) = d) Suppose 8 : [0 ,5) - M is a unit speed geodesic
that we wish to

extend to T and beyond .
Let th= T-Yn and xn = U(tn) .

Since dist(xn , xm) = (tn-tm1 = If- m) , the sequence
Xn is Carchy ,

hence

converges
to XaEM by 4 . Let Ba(xa) be a normal neighborhood at Xc.

For 4
,
m suff. large ,

Xn
, XmeBg(Xa) so there exists a unique) minimizing

eodesic Xum from Xn to Xm
,
which hence coincides with U([tuitm]) .

q
Since expx

,

is a differ onto Ba(X0) ,
the geodesic y

① can be extended to 8(T) = Xo and beyond, as

Xu-xM

, WH = exPxxlt-TV for tT where v =
him W(tn)ET,M

O
n+a

TYM
d) => a) is trivial ; (Lb) => e) follows from general topology · (limitin thewritte

7

RRmx . 8) > a) . b) , c) , d) . 2) . E .g,
let M = EXER" : 1x1) < 13 be an open ball -

Cor : Compact manifolds are complete. Closed submanifolds of a complete
manifold are complete. 25


