Lecture 6 2/14/2024 ${ }^{-}$Happy Valentines Day!
Def: The torsion of a connection ∇ on TM is the $(1,2)$-tensor

$$
T_{x} y=\nabla_{x} y-\nabla_{y} x-[x, y]
$$

Def: The connection ∇ is compatible with a Riemannian metric g if

$$
\nabla_{g} \equiv 0 \text {, ie., } \quad X(g(y, z))=g\left(\nabla_{x} y, z\right)+g\left(y, \nabla_{x} z\right), \quad \forall x, y, z \in \notin(M)
$$

(aldo soy ∇ is a "metric connection".)
Thy. Given a Riemannion metric g on M, there exists a unique torsion-free connection on TM compatible with g, given by the "Koszul formula.":

$$
\begin{aligned}
g\left(\nabla_{y} X, Z\right)=\frac{1}{2}(X g(y, z) & +y g(Z, X)-z g(X, y) \\
& -g([x, z], y)-g([y, z], X)-g([x, y], z)) .
\end{aligned}
$$

or, equivalently, whose Christoffel symbols are:

$$
\Gamma_{i j}^{k}=\frac{1}{2} \sum_{l} g^{k e}\left(\frac{\partial}{\partial x_{i}} g_{l j}+\frac{\partial}{\partial x_{j}} g_{i l}-\frac{\partial}{\partial x_{l}} g_{i j}\right)
$$

Def: This connection is called the Levi-Civita connection
where $\left(g^{\text {re }}\right)$ is the inverse matrix to $\left(g_{\text {re }}\right)$. of the metric g.

Pe: Suppose such a connection ∇ exists, and compute:

$$
\begin{aligned}
& \left.\begin{array}{l}
\text { - } X g(Y, Z)=g\left(\nabla_{x} y, z\right)+g\left(y, \nabla_{x} z\right) \\
\text { - } \quad Y g(Z, X)=g\left(\nabla_{y} Z, X\right)+g\left(Z, \nabla_{y} x\right) \\
\text { - } Z g(X, Y)=g\left(\nabla_{z}, y, y\right)+g\left(X, \nabla_{z} y\right)
\end{array}\right\}\left\{\begin{array}{l}
\text { No }
\end{array}\right\} \\
& \text { Note: Con replace the } \\
& \text { underlined terms } \\
& \text { with brackets, ie, } \\
& \text { terms independent of } D \\
& \text { if we subtract the } \\
& \text { last lime from the } \\
& \text { sum of first two... }
\end{aligned}
$$

so $\quad X g(Y, Z)+Y g(Z, X)-Z g(X, Y)=g([X, Z], Y)+g([Y, Z], X)$

$$
+g\left(\nabla_{x} y+\nabla_{y} x, z\right)
$$

Use $\nabla_{x} y=\nabla_{y} X+[X, Y]$ to replace lest term with $g([X, Y], Z)+2 g\left(\nabla_{y} X, Z\right)$. Solving for $g\left(\nabla_{y} x, z\right)$, one dotains the koszul formula. This proves uniqueness of D, and, for existence, simply define it by the Koszul formula. To compute Christoffel symbols, set $y=\frac{\partial}{\partial x_{i}}, x=\frac{\partial}{\partial x_{j}}, z=\frac{\partial}{\partial x_{e}}$, so, as $[x, y]=[x, z]=[y, z]=0$,

$$
\begin{aligned}
& g\left(\nabla_{\frac{\partial}{\partial x_{i}}} \frac{\partial}{\partial x_{j}}, \frac{\partial}{\partial l}\right)=g\left(\nabla_{y} x, z\right)=\frac{1}{2}(X g(y, z)+y g(z, x)-Z g(x, y)) \\
& =\frac{1}{2}\left(\frac{\partial}{\partial x_{j}} g_{i e}+\frac{\partial}{\partial x_{i}} g_{e j}-\frac{\partial}{\partial x_{e}} g_{i j}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { so } \quad \Gamma_{i j}^{n k^{k}}=\sum_{l} g^{l u k} \frac{1}{2}\left(\frac{\partial}{\partial x_{j}} g_{i l}+\frac{\partial}{\partial x_{i}} g_{e j}-\frac{\partial}{\partial x_{e}} g_{i j}\right) \text {. } \\
& \text { Recall } g_{i j}=g_{j i} \text { and } j^{e k}=g^{k e} \\
& \text { because inverse of a sem. } \\
& \text { matrix is sgumetric too. }
\end{aligned}
$$

Def: A curve $\gamma:(a, b) \rightarrow(M, g)$ in a Rem. mfled. is a geodesic if it is a geodesics for the Levi-Civita connection ∇ of g, ie., $\nabla_{\dot{\gamma}} \dot{\gamma}=0$.

Note: The geodesic equation in a chart $x=\left(x_{1}, \ldots, x_{n}\right)$ is given $b y$

$$
\ddot{x}_{k}+\sum_{i, j} \dot{x}_{i} \dot{x}_{j} \Gamma_{i j}^{k}=0, \quad k=1, \ldots, n
$$

and $\Gamma_{i j}^{k}$ for the Levi-Civita connection can be written as functions of $g_{i j}$ and $\frac{\partial}{\partial x_{e}} g_{i j}$, so geoderics are determined by g.

Prop: If γ is a geodesic in (M, g), then its speed $g(\dot{\gamma}, \dot{\gamma})^{1 / 2}$ is constant.
PPi: $\frac{d}{d t} g(\dot{\gamma}, \dot{\gamma})=2 g(\nabla \dot{\gamma} \dot{\gamma}, \dot{\gamma})=0 \Rightarrow g(\dot{\gamma}, \dot{\gamma})$ is constant along γ.
Def: A rector field $X \in \notin(M)$ is Killing on (M, g) if its flow $\phi_{t}: M \rightarrow M$ is a 1 -pori. subgroup of $\operatorname{Isom}(M, \delta)$.
Prop: If $X \in \notin(M)$ is a killing field of (M, g), ie., $\mathcal{L}_{X} g=0$, then $g(X, \dot{\gamma})$ is constant along any geodesic γ.
Pd: Recall $\mathcal{L}_{x j}=0 \Longleftrightarrow \nabla x$ is skew, ie., $g\left(\nabla_{y} x, z\right)=-g\left(\nabla_{z} x, y\right)$

$$
\text { So } \frac{d}{d t} g(X, \dot{\gamma}) \stackrel{\substack{\text { compmarbcelety }}}{=} g\left(\nabla_{\dot{\gamma}} X, \dot{\gamma}\right)+g(X, \underbrace{\nabla_{\dot{\gamma}} \dot{\gamma}}_{=0})=0 \text { b/c } \nabla X \text { is skew. }
$$

Careful: $|X|$ need not be constant along γ, so the angle between a Killing field and a geoderic need not be constant. Moreover, if X is killing but $|X|$ is not constant, then $\frac{X}{|X|}$ need not be Killing; in general, $f \cdot X$ satisfies

$$
\nabla_{y}(f X)=Y(f) X+f \nabla_{y} X, \infty Y(f) g(X, Z)+f \cdot g\left(\nabla_{y} X, Z\right)=-Z(f) g(X, Y)-f \cdot g\left(\nabla_{z} X, Y\right)
$$

$\begin{aligned} & \text { need not } \pi \\ & \text { be skew }\end{aligned} \Leftrightarrow Y(f) Z+Z(f) Y \equiv 0$, but generically Y aud Z are lin inge!
Ex: $O_{n}\left((a, b) \times S^{1}, d r^{2}+f(r)^{2} d \theta^{2}\right)$, the vector field $X=\frac{\partial}{\partial \theta}$ is killing, but $|X|=f(r)$.
NW: $g(X, \dot{\gamma})=f^{2} \cdot \dot{\theta}$ is constant along $\gamma(t)=(r(t), \theta(t)$. this prafif
more
elegant...)
Cor. Geodesics in \mathbb{R}^{n} are straight limes; geodesics in S^{n} are great circles.
Pf: Every constant vector field in \mathbb{R}^{n} is Killing, since if $v \in \mathbb{R}^{n}, \phi_{t}(p)=p+t r$ are isometries. In particular, the coordinate vector fields $\left\{\frac{\partial}{\partial x_{i}}\right\}$ are Killing; and form an orthonormal basis at all points. So given a geodesic $\gamma:(a, b) \rightarrow \mathbb{R}^{n}$, it follows that $g\left(\dot{\gamma}, \frac{\partial}{\partial x_{i}}\right) \equiv c_{i}$ is constant, thus $\left.\dot{\gamma} \equiv \sum_{i} c_{i} \frac{\partial}{\partial x_{i}}\right|_{\gamma(1)}$ is constant,
 ie., γ is a straight lime.
Similarly, if $\gamma:(a, b) \rightarrow \mathbb{S}^{n}$ is a geoderate, there) are $(n-1)$ lin. index. Killing vector fields $\left\{X_{i}\right\}$ s.t. $\dot{\gamma}\left(t_{0}\right)^{\perp}=\operatorname{span}\left\{x_{i}((1))\right\}$, and a killing fill Y with $\dot{\gamma}\left(t_{0}\right)=Y\left(\gamma\left(t_{0}\right)\right.$. Thus, $g\left(\dot{\gamma}(t), X_{i}(\gamma(t))\right)=0$, and $\dot{\gamma}(t)=Y(\gamma(t))$, so γ is a flow line of the rotation field y, ie., a great circle.

Note: If $\gamma(t)$ is a geodesic, then so is $\alpha(t):=\gamma(a t+b)$ for $a n y$ affine reparametrization. $a \neq 0, b \in \mathbb{R}$.
Pf: $\dot{\alpha}(t)=a \dot{\gamma}(a t+b)$ so $\nabla_{\dot{\alpha}} \dot{\alpha}=\nabla_{a \dot{\gamma}(a t+b)} a \dot{\gamma}(a t+b)=a^{2} \nabla_{\dot{\gamma}(a+t b)} \dot{\gamma}(a t+b)=0 \quad b / c \nabla_{\dot{\gamma}} \dot{\gamma}=0$.
Note: $\left\{\begin{array}{l}\gamma\left(t_{0}\right)=p \\ \dot{\gamma}\left(t_{0}\right)=v\end{array} \Leftrightarrow \begin{cases}\alpha\left(t_{1}\right)=p & \left(t_{1}=a t_{0}+b\right) \\ \dot{\alpha}\left(t_{1}\right)=a v & \alpha^{(t)}\end{cases}\right.$
Initial conditions are the same, up to rescaling the initial velocity! Thus,

Def: $T_{1} M:=\left\{(p, v) \in T M: \delta_{0}(v, v)=1\right\}$ is the "Unit tangent bundle" of (M, g).
$\alpha_{\alpha}^{\alpha(t)} \overbrace{\gamma_{1}^{(t)}}^{\dot{\gamma}^{(b)}}$
$(n-1)$-splore bundle
over (M, g).

Corefl If a $\quad \mathbb{R} P^{n-1} \rightarrow P_{R}(t, M) \rightarrow M$ Careful: If a reparametrizalion $f(t)$ is not affine, then $\alpha(t)=\gamma(f(t))$ need not be geod: $\dot{\alpha}(t)=f^{\prime}(t) \dot{\gamma}(f(t))$ s. $\nabla_{\dot{\alpha}} \dot{\alpha}=\nabla_{\gamma^{\prime} \dot{\gamma}(f)} f^{\prime} \dot{\gamma}(f)=f^{\prime} \nabla_{\dot{\gamma}(f)}\left(f^{\prime}(f)\right)=f^{\prime}\left(\underline{f^{\prime \prime}} \dot{\gamma}(f)+\underset{=0}{f^{\prime}} \underset{\dot{\gamma}(f)}{\nabla_{j}(f)}\right)$.

Using that $I_{\text {som }}(M, g)$ acts transitively on $T_{1} M$ if $M=\mathbb{R}^{n}$ or $M=\mathbb{S}^{n}$.
Alternative pf: Show that at least one straight lime γ_{0} in \mathbb{R}^{n} and one great circle γ_{0} in \mathbb{S}^{n} are geodesics. Given any initial conditions (p, v), up to affinity reporam. Yo, we have a geoderic with the prescribed initial conditions, so by uniqueness s all geodesics are (possibly reparametrized) images of γ_{0} via an isometry.

Def: The exponential map of (M, g) at $p \in M$ is

$$
\begin{aligned}
\exp _{p}: O_{p} \subset T_{p} M & \longrightarrow M \\
& \exp _{p}(v)=\gamma_{v}(1)
\end{aligned}
$$

where $\gamma_{v}(t)$ is the (owipue) geodesic in (M,g) with $\left\{\begin{array}{l}\gamma_{v}(0)=p \\ \dot{\gamma}_{r}(0)=r\end{array}\right.$ and $O_{p} \subset T_{p} M$ is the open subset of $v \in T_{p} M$ s.t. $\gamma_{v}(t)$ is defined at least up to $t=1$.

By $\#$ above, $\gamma_{s v}(t)=\gamma_{v}(s t)$ provided $|t|,|s|$ are sufficiently small. Thus, $\forall v \in T_{12} M$,

$$
d\left(\exp _{p}\right)_{0} v=\left.\frac{d}{d t} \exp _{p}(t v)\right|_{t=0}=\left.\frac{d}{d t} \gamma_{t v}(1)\right|_{t=0}=\left.\frac{d}{d t} \gamma_{v}(t)\right|_{t=0}=\dot{\gamma}_{v}(0)=v
$$

ie., $d(\exp)_{0}=i d$. Thus, by the Inverse Function Theorem, there exist open neighborhoods $U \ni 0$ in $T_{P} M$ and $V \ni p$ in M s.t. $\left.\left(\exp _{p}\right)\right|_{U}: U \rightarrow V$ is a differ.
This defines a local chart around $p \in M$, whose coors. are celled "Normal coordinates." τ identify $T_{P} M \cong \mathbb{R}^{n}$ by choosing a g-orthonermal basis.

Lecture $7 \quad$ 2/16/2024
Recall: Levi-Givita connection of g is the unique torsion-free connection compatible with g.
Ex: Let $\phi: M \hookrightarrow \mathbb{R}^{N}$ be an som. emberdoling, ie., $g=\phi^{*}\left(g_{\text {Eve }}\right)$. Then

$$
\left(\nabla_{X} Y\right)_{p}:=\operatorname{proj}_{\substack{T_{p} M \\ \text { Onthoged depiction } \\ \text { Oncmed }}}\left(X(\tilde{y})_{p}\right)
$$ locally extend Y to a vector field on $U \subset \mathbb{R}^{N}$, then ${ }^{\text {oe }}$

 is torsion-free and compatible with g, hence it is the Levi-Civite connection on (M, g).
Recall: $\exp _{p}: \Theta_{p} \subset T_{p} M \rightarrow M$ satisfies $d(\exp)_{p}=i d$, hence

$$
\exp _{p}(v)=\gamma_{v}(1)
$$ Inverse Fund. Them.

$\exists U \rightarrow 0$ in $T_{p} M$ and $\exists V \ni p$ in M si. $\left.\quad(\exp p)\right|_{U}: U \rightarrow V$ is a differ
Properties of Normal Coordinates, $x=\left(x_{1}, \ldots, x_{n}\right): V_{C M}^{\longrightarrow} U_{C M}$ st. $x^{-1}=\left.(\operatorname{expp})\right|_{0}$

$$
\left.\begin{array}{ll}
\cdot & x\left(\gamma_{v}(t)\right)=t v \quad \forall v \in T_{p} M \\
\cdot & x(p)=0 \\
\cdot & g_{i j}(p)=\delta_{i j},\left(\frac{\partial}{\partial x_{k}} g_{i j}\right)(p)=0
\end{array}\right\}
$$

It small

$$
\cdot \Gamma_{i j}^{k}(p)=0
$$ the above.

Questions of "naturality":
Prop: If $\phi:(M, g) \rightarrow(N, h)$ is an isometry, ie., $g=\phi^{*} h$, then $\nabla^{\delta}=\phi^{*} \nabla^{h}$.
Pf: $\phi^{\text {th }} \nabla^{h}$ is torsion-free and compatible with g, hence equal to ∇^{8} by uniqueness of LC connection. Checking this is a good exercise, see eeg. [Lee] Prop 5.8,5.9 for solution. 5

Cor: If $\gamma:(a, b) \rightarrow(M, \delta)$ is a geodesic, and $\phi:(M, g) \rightarrow(N, h)$ an isometry, then $\phi \circ \gamma:(a, b) \rightarrow(N, h)$ is a geodesic.

If. Let $\alpha=\phi \circ \gamma$, so $\dot{\alpha}(t)=d \phi_{\gamma(t)}(\dot{\gamma}(t))$ and compute:

$$
\nabla_{\dot{\alpha}(t)}^{h} \dot{\alpha}(t)=\nabla_{d \phi_{\gamma(t)}}^{h} \dot{\gamma}(t) d \phi_{\gamma(1)}(\dot{\gamma}(t))=\left(\phi^{\infty} \nabla^{h}\right)_{\dot{\gamma}(t)} \dot{\gamma}(t)=\nabla_{\dot{\gamma}(t)}^{\dot{\gamma}(t)} \dot{ } \dot{(t)} .
$$

Cor: If $\phi:(M, g) \rightarrow(N, h)$ is an isometry, then $\phi\left(\exp _{p}^{g} v\right)=\exp _{\phi(p)}^{h}\left(d \phi_{p} v\right)$, ie., the following diagram commutes:

$$
\begin{array}{rl}
T_{p} M & d \phi_{p} \\
T_{\phi(\rho)} N \\
\exp _{p}^{g} & \downarrow \\
M & \\
& \downarrow \exp _{\phi(v)}^{h}
\end{array}
$$

Pp: B definition, $\phi\left(\exp _{p}^{g}(v)\right)=\phi\left(\gamma_{v}^{g}(1)\right)$ and $\exp _{\phi(p)}^{h}\left(d \phi_{p} v\right)=\gamma^{h}$

$$
\begin{array}{ll}
\text { get. } \begin{cases}\gamma_{v}(0)=p . \\
\dot{\gamma}_{v}(0)=v & \text { geod on } M \text {-geod iou } N\end{cases} & \text { st. }\left\{\begin{array}{l}
\gamma_{d \phi_{p} v}(0)=\phi(p) \\
\gamma_{d \phi_{p} v}(0)=d \phi_{p} v
\end{array}\right. \tag{1}
\end{array}
$$

 as $\gamma_{d \phi_{p} v}^{h}$, so $\phi \circ \gamma_{v}^{\delta}=\gamma_{d \phi_{p} v}^{h}$
Cor: If $\phi, \psi:(M, \delta) \rightarrow(N, h)$ are local isometries and $\exists p \in M$ such that $\left\{\begin{array}{l}\phi(p)=\psi(p) \\ d \phi_{p}=d \psi_{p}\end{array}\right.$, then $\phi \equiv \psi$ on the connected component of $p \in M$.
Pf: Let Ump be a neighborhood of $p \in M$ and leet $\delta=\phi \cdot \psi$, -1 so $\delta \|_{U}: U \rightarrow \delta(U)$ is an isometry. By Prop, $\sin u\left\{\begin{array}{l}\delta(p)=p \\ d \delta_{p}=i d, \text { we have: }\end{array}\right.$ $\delta\left(\exp _{p} v\right)=\exp \delta(p) d \delta(p) v=\exp _{p} v$,

$$
\begin{array}{r}
\forall v \in O_{p} \subset T_{p} M \\
\underset{\text { domain }}{ } M
\end{array}
$$

σ domain of $\exp _{p}$.

So $\delta(x)=x$ for all $x \in \underbrace{U \cap\left(\exp \theta_{p}\right)}_{\pi}$; ieee. $\alpha \equiv \psi$ near $p \in M$.
neighoorinood
of $p \in M$
Propagate this to the connected component of $p \in M$ "as usual": let $\gamma:[0,1] \rightarrow M$ be a curve with $\gamma(0)=p, \gamma(1)=q$ and note $\exists \varepsilon>0$ s.t. $B_{\varepsilon}(0) \subset \bigcup_{\gamma(t)} \subset T_{\gamma(t)} M$ for all $t \in[0,1]$; by continuity (of the "ingectivity radius"). Then apply argument above at $\gamma\left(t_{i}\right)$, where $0=t_{0}<t_{1}<\cdots<t_{k}=1$ is a sufficiently fine prortition so that $\gamma\left(t_{i+1}\right) \in \exp \operatorname{erti} \oplus_{\gamma\left|t_{i}\right|}$ to get from p to q.

"Geometric. If hypotheses induction" hold at $\gamma\left({ }_{(i)}\right)$ get conclusion to hold at $\gamma\left(t_{i+1}\right)$, which is also the hypotheses there---

Cor: $\operatorname{Isom}\left(\mathbb{R}^{n}\right)=O(n) \times \mathbb{R}^{n}=\left\{x \mapsto A x+b, A \in O(n), b \in \mathbb{R}^{n}\right\}$.
Pf: Clearly $x \mapsto A x+b, A \in O(u), b \in \mathbb{R}^{n}$ are isometries of $\left(\mathbb{R}^{n}, g_{E v e}\right)$. Conversely, if $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is an isom., let $\psi(x)=\phi(x)-\phi(0)$ and note that $\psi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is also an isometry, with $\psi(0)=0$. Then, $d \psi_{0}: T_{0} \mathbb{R}^{n} \rightarrow T_{0} \mathbb{R}^{n}$ is a (linear) isometry of $T_{0} \mathbb{R}^{n} \cong \mathbb{R}^{n}$. Since the isometries ψ and $d \psi_{0}$ setioty $\left\{\begin{array}{l}\psi(0)=0=d \psi_{0}(0), \\ d \psi_{0}=d\left(d \psi_{0}\right)_{0}\end{array}\right.$, and \mathbb{R}^{u} is connection, It follows that $\psi=d \psi_{0}$ is linear, hence acts as an element of $O(n)$. Thu e $\psi(x)=A x, A \in O(n)$ and setting $b=\phi(0)$, we have $\phi(x)=A x+b$. \mathbb{R}^{n}

Gauss Lemma: $\exp _{p}$ is a radial isometry, ie.,

$$
\left\langle d\left(\exp _{p}\right)_{v} v, d\left(\exp _{p}\right)_{v} w\right\rangle=\langle v, w\rangle, \quad \forall v, w \in T_{p} M=T_{v} T_{p} M
$$

Here we use $(i\rangle$,$) insbered of g$ to simplify notation...

Thus

Write $w=w_{T}+w_{1}$, where $\left\{\begin{array}{l}w_{T}=\alpha V . \\ \left\langle w_{1}, V\right\rangle=0\end{array}\right.$
Clearly,

$$
\begin{aligned}
d(\exp)_{v} v & =\left.\frac{d}{d t}\left(\exp _{p}\right)((t+1) v)\right|_{t=0} \\
& =\left.\frac{d}{d t}\left(\exp _{p}\right)(t v)\right|_{t=1} \\
& =\left.\frac{d}{d t} \gamma_{v}(t)\right|_{t=1}=\dot{\gamma}_{v}(1)=\underbrace{P_{p}^{\gamma_{v}(1)}(v)} .
\end{aligned}
$$

parallel transport of $v \in T_{r} M$ along γ_{v} to $\gamma_{v}(1)$.

$$
P_{r}^{\gamma \cdot(1)}: T_{p} M \rightarrow T_{\gamma_{r}(1)} M
$$

$$
\begin{aligned}
& \left\langle d\left(\exp _{p}\right)_{v} v, d\left(\left(\exp _{p}\right)_{v} w\right\rangle=\left\langle d\left(\exp _{p}\right)_{v} v, d\left(\operatorname{expp}_{p}\right)_{v}(\alpha v)\right\rangle\right. \\
& +\left\langle d\left(\left(x_{p p}\right)_{v} v, d\left(\operatorname{expp}_{p}\right)_{v} w_{\perp}\right\rangle\right. \\
& =\alpha\left\langle P_{p}^{\gamma_{v}(1)} v, P_{p}^{\gamma_{v}(1)} v\right\rangle \\
& +\left\langle d\left((\exp)_{v} v, d(\operatorname{expp})_{v} w_{\perp}\right\rangle\right. \\
& =\langle v, \underbrace{\alpha v}_{w_{T}}\rangle+\left\langle d(\exp)_{v} v, d\left(\operatorname{expp}_{p}\right)_{v} w_{\perp}\right\rangle \\
& =\langle v, w\rangle+\left\langle d(\exp)_{v} v, d\left(\operatorname{expp}_{p}\right)_{v} w_{\perp}\right\rangle
\end{aligned}
$$

So we must show $\left\langle d(\text { exp })_{v} v, d(\text { exp })_{v} w_{\perp}\right\rangle=0$.

$T_{p} M=T_{V} T_{p} M \quad$ and $\quad f(t, s)=\exp _{p}(t v(s))=\gamma_{v(s)}(t)$ $t \mapsto f(t, s)$ are
 geodesics $\gamma_{n s}(t)$

$$
\left.\begin{array}{l}
d\left(\operatorname{expp}_{p}\right)_{v}=\left.\frac{\partial}{\partial t} \exp _{p}(t v(s))\right|_{\substack{t=1 \\
s=0}}=\frac{\partial f}{\partial t}(1,0) \\
d\left(\exp _{p}\right)_{v} w_{1}=\left.\frac{\partial}{\partial s} \exp _{p}(t v(s))\right|_{\substack{t=1 \\
s=0}}=\frac{\partial f}{\partial s}(1,0)
\end{array}\right\}=
$$

$$
\begin{array}{r}
\Rightarrow\left\langle d(\text { exp })_{v} v, d\left(\operatorname{expp}_{2} v_{v} w_{\perp}\right\rangle\right. \\
=\left\langle\frac{\partial f}{\partial t}, \frac{\partial f}{\partial s}\right\rangle(1,0) .
\end{array}
$$

Compute: of ∇
are geodesics. and

$$
\begin{aligned}
=\frac{1}{2} \frac{\partial}{\partial s}\left\langle\frac{\partial f}{\partial t}, \frac{\partial f}{\partial t}\right\rangle \stackrel{ }{=} 0, \quad b k\left\|\frac{\partial f}{\partial t}(t)\right\|=\left\|\dot{\gamma}_{v(s)}(t)\right\| & =\left\|\dot{\gamma}_{v(s)}(0)\right\|= \\
& =\|v(s)\|=\text { cont. }
\end{aligned}
$$

Therefore $t \mapsto\left\langle\frac{\partial f}{\partial t}, \frac{\partial f}{\partial s}\right\rangle(t, 0)$ is constant, and, computing at $t=0$:

$$
\begin{aligned}
& \frac{\partial f}{\partial s}(t, 0)=\left.\frac{\partial}{\partial s}(\exp p)(t v(s))\right|_{s=0}=d(\exp p)(\underbrace{v(0)}_{v})(\underbrace{w_{\perp}}_{w_{\perp}(0)})=d\left(\operatorname{expp}_{t v} t w_{\perp}\right. \\
& \lim _{t \rightarrow 0} \frac{\partial \rho}{\partial s}(t, 0)=\lim _{t \rightarrow 0} d\left(\operatorname{expp}_{p}\right)_{t v} t w_{\perp}=0 ; \text { so }\left\langle\frac{\partial f}{\partial t}, \frac{\partial f}{\partial s}\right\rangle(1,0)=0 .
\end{aligned}
$$

Lecture 8 (by Dan Lee) 2/23/2024
Def. A curve γ from p to g is a minimizing curve (or minimal) if $\operatorname{dist}(p, q)=L_{g}(\gamma)$; ie. if it realizes the inf in $\operatorname{dist}(p, q)$.
Prop: A unit speed mininuizing curve is a peoderic.
Pe. (First variation of length). Let $\gamma_{s}(t),|s|<\varepsilon$, be a smosth family of curves st. $\gamma=\gamma_{0}$ is minimizing from $p=\gamma(a)$ to $q=\gamma(b)$; ad $\gamma_{s}(a)=p, \quad \gamma_{s}(b)=q$. Then, letting $V=\left.\frac{d}{d s} \gamma_{s}\right|_{s=0}$, we compute

$$
\begin{aligned}
& \left.\frac{d}{d s} L_{g}\left(\gamma_{s}\right)\right|_{s=0}=\left.\int_{a}^{b} \frac{d}{d s} g\left(\dot{\gamma}_{s}, \dot{\gamma}_{s}\right)^{1 / 2}\right|_{s=0} d t \\
& \left.\stackrel{\otimes}{=} \frac{1}{2} \int_{a}^{b} \frac{1}{\left|\dot{\gamma}_{s}\right|}\left(g\left(\frac{D}{d t} \dot{\gamma}_{s}, \dot{\gamma}_{s}\right)+g\left(\dot{\gamma}_{s}, \frac{\partial}{d t} \dot{\gamma}_{s}\right)\right)\right|_{s=0} ^{d t}
\end{aligned}
$$

If the above vanishes for all smooth families of curve with fixed endpoints at P and q, then $\frac{D_{\dot{\gamma}}}{d t}=\nabla_{\dot{\gamma}} \dot{\gamma}=0$, ie., γ is a geooteric.
® Lemme $\cdot \frac{D V}{d t}=\left.\frac{D}{d t} \frac{d}{d s} \gamma_{s}(t)\right|_{s=0}=\left.\frac{D}{d s} \frac{d}{d t} \gamma_{s}(t)\right|_{s=0}=\left.\frac{D}{d s} \dot{\gamma}_{s}\right|_{s=0}$.
Pf. Compute both sides of $=$ in local coovalinates, use that $\Gamma_{i j}^{k}=\Gamma_{j i}^{k}$, \square
Note: The above shows that smooth curves with fixed endpoints that minimize, or, more generaly, are stationary/critical points for $L g$ are geoderics, Snoothmess cor be assumed by a "cutting corners" argument: If $\alpha<\pi$, then moving inwards, ie, replacing with blue curve, would decrease distances, see, egg. $[$ lee $], p$ p 156

Prop. Up to reparametrization, redial geodesics $t \longmapsto \exp _{p}(t v)$, where $|t|<\varepsilon$ is small enough so that curve stays in a normal naighbed. of p, are the only minimizing geoderics from p to $\exp p(t)$).

Let $\alpha(t)$ be another curve joining p to $q=\exp _{p}\left(t_{*} v\right)$ in U, and write in $T_{p} M$

$$
\tilde{\alpha}(t):=\exp _{p}^{-1}(\alpha(t))=r(t) \theta(t)
$$

where r is a (positive) real-valued function and $\theta(t) \in T_{p} M$ is a unit vector for each t; ie. $\|\theta(t)\| \equiv 1$. Then,

$$
\begin{aligned}
\alpha(t) & =\exp _{p} \tilde{\alpha}(t)=\exp _{p}(r(t) \theta(t)) \\
\dot{\alpha}(t) & =d\left(\exp _{p}\right)_{\tilde{\alpha}(t)} \tilde{\alpha}^{\prime}(t) \\
& =d\left(\exp _{p}\right)_{\tilde{\alpha}(t)}\left(r^{\prime}(t) \theta(t)+r(t) \theta^{\prime}(t)\right) . \\
& =r^{\prime}(t) d\left(\exp _{p}\right)_{\tilde{\alpha}(t)} \theta(t)+r(t) d\left(\exp _{p}\right)_{\widetilde{\alpha}(t)} \theta^{\prime}(t) \\
& =\frac{r^{\prime}(t)}{r(t)} d\left(\exp _{p}\right)_{\tilde{\alpha}(t)} \tilde{\alpha}(t)+r(t) d\left(\exp _{p}\right)_{\tilde{\alpha}(t)} \theta^{\prime}(t)
\end{aligned}
$$

By the Gauss Lemme, $\left\langle d\left(\exp _{p}\right)_{\tilde{\alpha}(t)} \tilde{\alpha}(t), d\left(\operatorname{expp}_{\tilde{p}}\right)_{\tilde{\alpha}(t)} w\right\rangle=\langle\tilde{\alpha}(t), \omega\rangle$ for any $w \in T_{p} M$, So

$$
\begin{aligned}
& \|\dot{\alpha}(t)\|^{2}=\frac{r^{\prime}(t)^{2}}{r(t)^{2}}\left\|d\left(\exp _{p}\right)_{\tilde{\alpha}(t)} \tilde{\alpha}(t)\right\|^{2}+r(t)^{2}\left\|d\left(\exp _{p}\right)_{\tilde{\alpha}(t)} \theta^{\prime}(t)\right\|^{2} \\
& +2 r^{\prime}(t)\left\langle d\left(\exp _{p}\right)_{\tilde{\alpha}(t)} \widetilde{\alpha}(t), d\left(\exp _{p}\right)_{\vec{\alpha}(t)} \theta^{\prime}(t)\right\rangle \\
& \geqslant r^{\prime}(t)^{2} \| d(\operatorname{exppp}_{\tilde{\alpha}(t)} \theta(t) \|^{2}+2 r^{\prime}(t) \underbrace{\left\langle\tilde{\alpha}(t), \theta^{\prime}(t)\right\rangle}_{=r(t)\left\langle\theta(t), \theta^{\prime}(t)\right\rangle=0} \\
& \stackrel{V}{=} r^{\prime}(t)^{2}\|\theta(t)\|^{2}=r^{\prime}(t)^{2} . \\
& \text { bic }\|\theta(t)\|^{2} \equiv 1 \text {. }
\end{aligned}
$$

Thus, as $\tilde{\alpha}:[a, b] \rightarrow T_{p} M$ joins $r(a)=0$ to $r(b)=t_{*} v$, we have

$$
L_{g}(\alpha)=\int_{a}^{b}\|\dot{\alpha}(t)\| d t \geqslant \int_{a}^{b} r^{\prime}(t) d t=r(b)-r(a)=\left\|t_{*} v\right\|=L_{g}(\gamma)
$$

ie., the length of α is at least as loge as the length of the radial geodesic $\gamma_{i}\left[0, t_{*}\right] \rightarrow U, \quad \gamma(t)=\exp _{p}(t v)$.
Corollary. Geodesic balls are metric balls, ie., if $\exp _{p}$ is well-defined on $B_{r}(0) \subset T_{p} M$, then $B_{r}(p)=\{x \in M: \operatorname{dist}(p, x)<r\}=\exp _{p}\left(B_{r}(0)\right)$. $\left\{v \in T_{p} M:\|v\|<r\right\}$

Cordlory. Geodesics are locally distonce-minimizing.
If Let $\gamma(t)$ be a geoderic, and a, b s.t. $\gamma(a)$ and $\gamma(b)$ are sufficiently clove, in the sense that $\gamma(t)$ is in a normal neighborhood of $\gamma(a)$ for all $t \in[a, b]$. Then, γ agrees with the (only)) radial geodesic
$\dot{\gamma}^{(a)}$ م $\gamma^{\prime}(b)$ ' from $\gamma(a)$ to $\gamma(b)$, up to reparametrization, so by the Prop. above, γ is distanc-minimizing from $\gamma(a)$ to $\gamma(b)$.

Prop. For all $p \in M$, there exists $r>0$ sufficiently smell so that $B_{r}(p)$ is convex, ie., $\forall x, y \in B_{r}(p)$, there is a unique minimizing geodesic from x to y, and this geoderis is entirely contained in $B_{r}(p)$.
Lecture $9 \quad 3 / 1 / 2024$
Energy v. Length
$E_{g}(\gamma)=\frac{1}{2} \int_{a}^{b}\|\dot{\gamma}(t)\|^{2} d t$ is not invariant under reporametrizations (fixed gayer)
$\operatorname{Lg}(\gamma)=\int_{a}^{b}\|\dot{\gamma}(t)\| d t$ is invariant under reparametrizations (gauge-invorvant).
By Caochy-Sehwertz, $\quad L_{g}(\gamma)^{2}=\left(\int_{a}^{b}\|\dot{\gamma}\| d t\right)^{2} \leq \int_{a}^{b}\|\dot{\gamma}\|^{2} d t \cdot \int_{a}^{b} 1 d t=2(b-a) E_{g}(\gamma)$; and equality holds if $\|\dot{\gamma}\|=$ const, i.e., if γ has constant speed.

Prop. Let $p, q \in M$ and $\gamma_{i}[a, b] \rightarrow M$ a curve joining p to g. Then γ is a minimizer for $E g$ if it is a minimuizer for $L g$ and has constant speed.
Pp. If γ has constant speed and minimizes \lg, then any other curve $\alpha:[a, b] \rightarrow M$ with $\alpha(a)=p, \quad \alpha(b)=q$ has $L_{g}(\alpha) \geqslant L_{g}(\gamma)$; so $\quad E_{g}(\alpha) \geqslant \frac{1}{2(b-a)} L_{g}(\alpha)^{2} \geqslant \frac{1}{2(b-a)} L_{g}(\gamma)^{2}=E_{g}(\gamma)$; ie., a minimizes E_{g}. Converse will follow from first variation of energy (below). Istle cons. I Analytically, Eg is easier to handle then Lg . We con consider the Hilbert mild $W^{1,2}([a, b], M)$ of paths in M, whose tangent space at γ is

$$
T_{\gamma} W^{1,2}([a, b], M) \cong W^{1,2}\left([a, b], \gamma^{*} T M\right)=\left\{V_{i}[a, b] \rightarrow T M, W^{1.2}-\text { vector field } \begin{array}{r}
\text { along } \gamma
\end{array}\right\}
$$

and submonifolds, ouch as, given fixed endpoints $p, q \in M$,

$$
\begin{aligned}
\Omega_{p, q} & =\left\{\gamma \in W^{1,2}([a, b], M): \gamma(a)=p, \quad \gamma(b)=\gamma\right\} \\
T_{\gamma} \Omega_{p, q} & =\left\{V \in T_{\gamma} W^{1,2}([a, b], M): V(a)=0, \quad V(b)=0\right\}
\end{aligned}
$$

 or, given subumanifolds $P, Q \subset M$,

$$
\begin{aligned}
\Omega_{P, Q} & =\left\{\gamma \in W^{1,2}([a, b], M): \gamma(a) \in P, \quad \gamma(b) \in Q\right\} \\
T_{\gamma} \Omega_{P, Q} & =\left\{V \in T_{\gamma} W^{1,2}([a, b], M): V(a) \in T_{\gamma(a)} P, V(b) \in T_{\gamma(b)} Q\right\} \\
\text { or } \Omega_{\text {closed }} & =\left\{\gamma \in W^{1,2}([a, b], M): \gamma(a)=\gamma(b)\right\} \text { etc. }
\end{aligned}
$$

$1^{\text {st }}$ Variation of Energy.
Si steel an open problem to eetrablich existence

Let $\gamma_{s} \in W^{1 i 2}([a, b], M), \quad|s|<\varepsilon$, and set $V=\left.\frac{d}{d s} \gamma_{s}\right|_{s=0}$. Note that $\frac{D V}{d t}=\left.\frac{d}{d s} \dot{\gamma}_{s}\right|_{s=0}$ by the Lemme of previous Lecture.

$$
d E_{g}(\gamma) V=\left.\frac{d}{d s} E_{g}\left(\gamma_{s}\right)\right|_{s=0}=\left.\frac{1}{2} \int_{a}^{b} \frac{d}{d s} g(\dot{\gamma}, \dot{\gamma})\right|_{s=0} d t=\left.\int_{a}^{b} g\left(\frac{D V}{d t}, \dot{\gamma}\right) d t \stackrel{\substack{\text { Enl. } \\ \text { ports }}}{=} g(V, \dot{\gamma})\right|_{a} ^{b}-\int_{a}^{b} g\left(V, \frac{D \dot{\gamma}}{d t}\right) d t
$$

- Thus, if $\gamma=\gamma_{0}$ is a critical point of $E_{g:}: \Omega_{p, q} \rightarrow \mathbb{R}$, then $d E g(\gamma) V=0$ for all $V \in T_{\gamma} \Omega_{p, q}$, so it flows from the Fundamental Lemme of Calculus of Variations that $\frac{D \dot{\gamma}}{d t}=0$, ie., $\nabla_{\dot{\gamma}} \dot{\gamma}=0$, ie., γ is a geodesic curve (hence constant speed) joining p to q.
- Similarly, of γ is a critical paint of $E: \Omega P, Q \rightarrow \mathbb{R}$, then $d E_{g}(\gamma) V=0$ for all $V \in T_{\gamma} \Omega_{R, Q}$ so γ is a geodesic joining P to Q and meeting them orthogonally.
Note: First, use variational fields supported in the interior of $[a, b]$ to see that γ is a geaderic, ie., $\nabla_{\dot{\gamma}} \dot{\gamma}=0$:

$$
\begin{aligned}
d E_{g}(\gamma) V & =0, \forall V \in C_{c}^{\infty}\left([a, b], \gamma^{*} T M\right) \\
& \Leftrightarrow \int_{a}^{b} g\left(V, \frac{D \dot{x}}{d t}\right) d t=0, \quad \forall V \in C_{c}^{\infty}\left([a, b], \gamma^{*} T M\right) \\
& \Leftrightarrow \frac{D \dot{\gamma}}{d t}=0 \text { on }(a, b) .
\end{aligned}
$$

Then, to see that $g(V(t), \dot{\gamma}(t))=0$ for $t=a$ and $t=b$ individually, wee variational fields supported in a neighborhood of $t=a$ and $t=b$.

$$
\begin{aligned}
d E(\gamma) V & =0, \quad \forall V \in C^{\infty}\left([a, \varepsilon], \gamma^{*} T M\right) \\
& \Leftrightarrow g(V(a), \dot{\gamma}(a))=0, \quad \forall V \in C^{\infty}\left([a, \varepsilon], \gamma^{*} T M\right) \\
& \Longleftrightarrow \dot{\gamma}(a) \in T_{\gamma(a)} P^{\perp}
\end{aligned}
$$

similarly at $\gamma^{(b)}$, pet $\dot{\gamma}(b) \in T_{\gamma(b)} Q^{\perp}$.
$2^{\text {nd }}$ Variation of Energy
Lemma, Given a rector field $W(s, t)$ along $\gamma_{s}(t)$, we have

$$
\frac{D}{d s} \frac{D}{d t} W-\frac{D}{d t} \frac{D}{d s} W=R\left(\frac{d}{d s} \gamma_{s} \cdot \frac{d}{d t} \gamma_{s}\right) W,
$$

where R is the $(1,3)$-tensor given by

$$
R(x, y) z=\nabla_{x} \nabla_{y} z-\nabla_{y} \nabla_{x} z-\nabla_{[x, y]} z
$$

"Curvature tensor"

If. Compute in coordinates, using $X=(\gamma s)_{*} \frac{\partial}{\partial s}, Y=(\gamma s)_{*} \frac{\partial}{\partial t}$ so that $[X, Y]=0$ and $\frac{D}{d s}=\nabla_{X}, \quad \frac{D}{d t}=\nabla_{Y}$, so revet follows.

Suppose $\gamma=\gamma_{0}$ is a geodesic. Then,

$$
\begin{aligned}
& d^{2} E_{g}(\gamma)(V, V)=\left.\frac{d^{2}}{d s^{2}} E_{g}\left(\gamma_{s}\right)\right|_{s=0}=\left.\int_{a}^{b} \frac{d}{d s} g\left(\frac{D V}{d t}, \dot{\gamma}_{s}\right)\right|_{s=0} d t \\
& =\int_{a}^{b} g\left(\frac{D}{d s} \frac{D}{d t} V, \dot{\gamma}\right)+g\left(\frac{D V}{d t}, \frac{D V}{d t}\right) d t \\
& \text { Lemma } \xlongequal[=]{=} \int_{a}^{b} g\left(\frac{D V}{d t}, \frac{D V}{d t}\right)+g\left(\frac{D}{d t} \frac{D}{d s} V, \dot{\gamma}\right)+g(R(V, \dot{\gamma}) V, \dot{\gamma}) d t \\
& \text { Int by } \\
& \begin{array}{l}
\text { Int by } \left.\left.\begin{array}{l}
\text { ports } \\
= \\
=
\end{array}\left(\frac{D V}{d s}, \dot{\gamma}\right)\right|_{a} ^{b}-\int_{a}^{b} g\left(\frac{D V}{d s}, \frac{D \dot{\gamma}}{d t}\right)^{\circ} \begin{array}{l}
\text { lc } \gamma \text { is a } \\
\text { geodetic. }
\end{array}\right]
\end{array} \\
& \text { Int. b, ports } \\
& +\int_{a}^{b} g\left(\frac{D V}{d t}, \frac{D V}{d t}\right)+g(R(V, \dot{\gamma}) V, \dot{\gamma}) d t \text { often write } V^{\prime \prime} \\
& +\left.{ }_{\text {of }}^{s \gamma n} R \stackrel{\sum m e t}{=} g\left(\frac{D V}{d s}, \dot{\gamma}\right)\right|_{a} ^{b}+\left.g\left(\frac{D V}{d t}, V\right)\right|_{a} ^{b}-\int_{a}^{b} g\left(\frac{D^{2} V^{2}}{d t^{2}}+R(V, \dot{\gamma}) \dot{\gamma}, V\right) d t \text {. }
\end{aligned}
$$

Note: Using polarization, can easily couppate $d^{2} E_{g}(\gamma)(V, W)$ for any V, W.

Def. A vector field $J:[a, b] \rightarrow T M$ along a geodesic $\gamma:[a, b] \rightarrow M$ is a Jacobi field if it solves the Jacobi equation $J^{\prime \prime}+R(J, \dot{\gamma}) \dot{\gamma}=0$.
Prop. The variational field $J(t)=\left.\frac{d}{d s} \gamma_{s}\right|_{s=0}$ is a Jacobi field along the geodesic $\gamma=\gamma_{0}$. If the curves $t \longmapsto \gamma_{s}(t)$ are geodesics for $|s|<\varepsilon$.
Proof. If $J(t)=\left.\frac{d}{d s} \gamma_{s}(t)\right|_{s=0}$ where $\gamma_{s}(t)$ is a variation by geodesics,
then

$$
J^{\prime \prime}(t)=\frac{D}{d t} \frac{D}{d t} \frac{d}{d s} \gamma_{s}(t)=\frac{D}{d t} \frac{D}{d s} \underbrace{\frac{d}{d t} \gamma_{s}(t)}_{\dot{\gamma}_{s}(t)}=\frac{D}{d s} \underbrace{\frac{D}{d t} \dot{\gamma}_{s}(t)}_{=0 \text { bk } \gamma_{s}(t) \text { is geod. }}-R(J, \dot{\gamma}) \dot{\gamma}
$$

so J is a Jacobi field. Conversely, if J is a Jacobi field, then let $\alpha(s)=\exp _{\gamma(0)} s J(0)$ and let $X(s)$ be a vector field
$X(s)$

along $\alpha(s)$ with $X(0)=\dot{\gamma}(0), \quad X^{\prime}(0)=J^{\prime}(0)$. Set $\tilde{\gamma}_{s}(t)=\exp _{\alpha(s)}+X(s)$.
Since $t \mapsto \tilde{\gamma}_{s}(t)$ are geodesics, b] the dove, the vector field $\tilde{J}(t)=\left.\frac{d}{d s} \tilde{\gamma}_{s}(t)\right|_{s=0}$ sotiisfes $\tilde{J}^{\prime \prime}+R\left(\tilde{J}_{1}, \tilde{\gamma}^{\prime}\right) \tilde{\gamma}^{\prime \prime}=0$.
Moreover, $\tilde{J}(0)=\left.\frac{d}{d s} \tilde{\gamma}_{s}(0)\right|_{s=0}=\alpha^{\prime}(0)=J(0)$ and

$$
\tilde{J}^{\prime}(0)=\left.\frac{D}{d t} \frac{d}{d s} \tilde{\gamma}_{s}(t)\right|_{\substack{s=0 \\ t=0}}=\left.\frac{D}{d s} \frac{d}{d t} \tilde{\gamma}_{s}(t)\right|_{\substack{s=0 \\ t=0}}=\left.\frac{D}{d s} X(s)\right|_{s=0}=X^{\prime}(0)=J^{\prime}(0) .
$$

So $J(t)=\widetilde{J}(t)=\left.\frac{d}{d s} \widetilde{\gamma}_{s}(t)\right|_{s=0}$ for all t, by uniqueness of sol to ODE $\checkmark /$ same initial conditions; hence J is the variational field of the family of geodesics $\tilde{\gamma}_{s}(t)$.

T See HW 3.
Rink: The Jacobi field along $\gamma_{v}(t)=\exp$ tv with $J(0)=0$ and $J^{\prime}(0)=w$ is given by $J(t)=d\left(\exp _{p}\right)_{t v} t w$, of. end of Pf. of Gauss Lemma. Similarly, con also write the unique Jacobi field along $\gamma_{v}(t)$ with arbitrary initial conditions $J(0)$ and $J^{\prime}(0)$ using $d\left(\exp _{P}\right)$.
Symmetries of the Curvature Tensor
Let $R(X, y, z, w)=g(R(x, y) z, w)$, so $R: T M \otimes T M \otimes T M \otimes T M \rightarrow \mathbb{R}$ is a $(0,4)$-tensor. Then, it satisfies:

$$
\text { 1) } \quad \begin{aligned}
R(X, Y, Z, w) & =R(Z, w, X, Y) \\
\text { 2) } \quad R(X, Y, Z, w) & =-R(Y, X, Z, w) \\
& =R(Y, X, W, Z)
\end{aligned}
$$

3) $^{\text {st }}$ Bianchi identity: $R(x, y) z+R(y, z) x+R(z, x) y=0$

Together 1) and 2) correspond to the fact that R defines a symmetric endomorphism $R: \Lambda^{2} T M \rightarrow n^{2} T M$ called the "curvature operator":

$$
g(R(X \wedge y), Z \wedge W)=g(R(X, y) W, Z) \quad \text { I Corful with the }
$$

for all $X, y, z, W \in T M$ and extended by linearity to $\Lambda^{2} T M$.
Def. (Sectional Curvature) The sectional curvature of the plane σ spanned by X, Y is

$$
\sec (X \wedge Y)=\frac{g(R(X \wedge Y), X \wedge Y)}{g(X \wedge Y, X \wedge Y)}=\frac{g(R(X, Y) Y, X)}{\|X\|^{2}\|Y\|^{2}-g(X, Y)^{2}}
$$

Note. If X^{\prime}, Y^{\prime} are s.t. $\operatorname{span}\left\{X^{\prime}, Y^{\prime}\right\}=\operatorname{spen}\{X, Y\}$, then $\sec \left(X^{\prime} \wedge Y^{\prime}\right)=\sec (X \wedge Y)$, so we write Sec: $G_{r}^{+} T_{p} M \longrightarrow \mathbb{R}_{1}$ where $G_{C_{2}}^{+} T_{p} M \subset \Lambda^{2} T_{p} M$ is the (oriented) Grassmonnien of 2 -planes in $T_{p} M$, given by $\operatorname{Gr}_{2}^{+} T_{p} M=\left\{\sigma \in \Lambda^{2} T_{p} M:\|\sigma\|^{2}=1, \frac{\sigma \wedge \sigma=0}{9}\right\}$, as $\sec (\sigma)=\langle R \sigma, \sigma\rangle$.
"Plicter relation"
characterize the elements $\sigma \in \Lambda^{2} T p M$ of the form $\sigma=X, Y$ for some $X, Y \in T_{p} M$, le., "rank 1 tenors:" 17

Pf: Any other basis is obtained by performing finitely many of the following operations:
a) $\{x, y\} \rightarrow\{y, x\}$
b) $\{x, y\} \rightarrow\{\lambda x, y\} \quad \lambda \in \mathbb{R}$
c) $\{x, y\} \longrightarrow\{x+\lambda y, y\} \quad \lambda \in \mathbb{R}$.

All the above clearly preserve $\sec (x, y)$; e.j., (c):
$\langle R(x+\lambda y, y) y, x+\lambda y\rangle=\langle R(x, y) y, x\rangle$ b/c $\quad R(y, y)=0 \quad\langle R(\cdot, \cdot) y, y\rangle=0$.

$$
\begin{aligned}
\|x+\lambda y\|^{2}\|y\|^{2}-\langle x+\lambda y, y\rangle^{2} & =\left(\|x\|^{2}+2 \lambda\langle x, Y)+\lambda^{2}\|Y\|^{2}\right)\|y\|^{2}-\left(\langle x, y\rangle+\lambda\|y\|^{2}\right)^{2} \\
& =\|x\|^{2}\|y\|^{2}-\langle X, Y\rangle^{2} .
\end{aligned}
$$

(or, more elegantly, note: $\|(x+\lambda y) \wedge Y\|^{2}=\|X \wedge Y+\lambda \underbrace{y \wedge Y}_{=0}\|^{2}=\|x \wedge y\|^{2}$.)
Rok: Given $\sigma \subset T_{p} M$, let $\Sigma=\exp _{p}(\sigma)$. Then $\sec (\sigma)=K_{\Sigma}$.
Gaussian curvature
Lecture $10 \quad 3 / 6 / 2024$
of \sum with induced
metric from $\Sigma \hookrightarrow M$.
From the $2^{\text {nd }}$ variation of energy, we were led to the curvature tensor $R: T M \otimes T M \rightarrow \operatorname{End}(T M) \quad R(x, y) z=\nabla_{x} \nabla_{y} z-\nabla_{y} \nabla_{x} z-\nabla_{[x, y]} z$ (or $R: T M \otimes T M \otimes T M \rightarrow T M$)
Due to its symmetries, one may equivalently write R as a symmetric: endomorphisms $R: \Lambda^{2} T M \rightarrow \Lambda^{2} T M$. called the curvature operator; $\langle R(x \wedge y), z \wedge W):=\langle R(x, y) W, z\rangle$.
Def: Sectional curvature: $\sec (X \wedge y)=\frac{\langle R(x \wedge y) \cdot X \wedge Y\rangle}{\|x \wedge y\|^{2}}=\frac{\langle R(x, y) y, x\rangle}{\|x\|^{2}\|y\|^{2}-\langle x, y\rangle^{2}}$
Prop. Curvature operator $R: \Lambda^{2} T M \rightarrow n^{2} T M$, curvature tensor $R: T M \otimes T M \rightarrow E_{n d}(T M)$, and sectional currative sec: $G_{r_{z}} T M \rightarrow \mathbb{R}$ are uniquely determined by one another,

Pf: Curvature operator and curvature tensor uniquely determine each other by basic Linear Algebra. Only left to show sec determines R. Use "polarization" and squmetries: Suppose R^{\prime} is sit. $\frac{\left\langle R^{\prime}(X, Y) Y, X\right\rangle}{\|X \wedge Y\|^{2}}=\frac{\langle R(X, Y) Y, X\rangle}{\|X \wedge Y\|^{2}}=\sec (X \wedge Y)$ for all X, Y; want to show $R^{\prime}=R$.

By hypothers, $\left\langle R^{\prime}(\underline{x+z}, \underline{y}) \underline{y}, \underline{x+z}\right\rangle=\langle R(\underline{x+z}, \underline{y}) \underline{y}, \underline{x+z}\rangle$
So

$$
\begin{array}{r}
\left\langle R^{\prime}(X, Y) Y, X\right\rangle+2\left\langle R^{\prime}(X, Y) Y, z\right\rangle+\left\langle R^{\prime}(Z, Y) Y, Z\right\rangle \\
=\langle R(X, Y) Y, X\rangle+2\langle R(X, Y) Y, Z\rangle+\langle R(Z, Y) Y, Z\rangle
\end{array}
$$

So $\left\langle R^{\prime}(\underline{x}, \underline{y}) \underline{y}, \underline{z}\right\rangle=\langle R(\underline{x}, \underline{y}) \underline{y}, \underline{z}\rangle . \forall x, y, z$
Thus, $\left\langle R^{\prime}(x, y+w)(y+w), z\right\rangle=\langle R(x, y+w)(y+w), z\rangle$

$$
=\langle R(X, Y) Y, Z\rangle+\langle R(X, Y) W, Z\rangle+\langle R(X, W) Y, Z\rangle+\langle R(X, W) W, Z\rangle
$$

so $\left\langle R^{\prime}(X, Y) \omega, Z\right\rangle+\left\langle R^{\prime}(X, \omega) y, Z\right\rangle=\langle R(X, Y) \omega, Z\rangle+\langle R(X, \omega) Y, Z\rangle$
ie. $\left\langle R^{\prime}(\underline{x}, \underline{y}) \underline{\omega}, z\right\rangle-\langle R(\underline{x}, \underline{y}) \underline{\omega}, z\rangle=\langle R(x, w) y, z\rangle-\left\langle R^{\prime}(x, \omega) y, z\right\rangle$

$$
=\left\langle R^{\prime}(\underline{W}, \underline{X}) \underline{y}, z\right\rangle-\langle R(\underline{W, X}) \underline{y}, z) \quad \forall x, y, z, W
$$

Therefore $R^{\prime}(X, Y) W-R(X, Y) W$ is inveriout under cyclic perm. of (X, Y, W) and hence, by the $1^{\text {st }}$ Biachi identity,

$$
3\left(R^{\prime}(X, Y) \omega-R(X, Y) \omega\right)=0, \forall x, y, W \quad \text { so } \quad R=R^{\prime}
$$

Cor. If $R: \Lambda^{2} T M \rightarrow \Lambda^{2} T M$ is st. $\sec (\sigma)=K$ for all σ, then $R=K \cdot I d$, ie.

$$
\begin{aligned}
&\langle R(X, Y) \omega, Z\rangle=\langle R(X \wedge Y), Z \wedge W\rangle=K\langle X \wedge Y, Z \wedge W\rangle \\
&=K(\langle X, Z\rangle\langle Y, W\rangle-\langle X, W\rangle\langle Y, Z\rangle) . \\
& \text { curvature operator of a } \\
& \text { space form } \omega / \text { sec } \equiv K
\end{aligned},
$$

Cartan: Curvature is the only local invariant of a Riem. mfled.

$\varphi=\exp _{\bar{p}} \circ I \circ \exp _{p}^{-1}$ is a diffeam. (on geod. normal coord.)
Let $\bar{\gamma}=\varphi \circ \gamma, I_{\gamma(t)}: T_{\gamma(t)} M \rightarrow T_{\bar{\gamma}(t)} M\left(\begin{array}{l}\left.\text { Note: } I_{\gamma(t) \text { ore }}\right) \\ I_{\gamma(t)}:=P \bar{\gamma}(t) \circ I_{0} P_{\gamma(t)}^{P}\end{array} \quad \begin{array}{l}\text { linear isometries! })\end{array}\right.$ parallel trousport $工 \bar{p}, \gamma(t)$
so $I_{\gamma(t)}$ is linear isometry

Preserving curvature is the "Integrability condition" to become a local isometry:

Tum (Corban). If for all geodesics $\gamma(t)$ starting at $p \in M$,

$$
I_{\gamma(t)}(R(X, Y) Z)=\bar{R}\left(I_{\gamma(t)} X, I_{\gamma(t)} y\right) I_{\gamma(t)} Z \quad \forall|t| \text { small }
$$

then φ is a local isometry, and $d \varphi_{\gamma(t)}=I_{\gamma(t)}$

Pf. Given q near p, and $X \in T_{q} M$, let $\gamma:[0, L] \rightarrow M$ be minimizing geodesic $\omega / \gamma(0)=p, \quad \gamma(L)=q$ and let $J:[0, L] \rightarrow T M$ be the Jacobi field along γ with $J(0)=0$ and $J(L)=X$. Later Let $\bar{J}(t)=I_{\gamma(t)}(J(t))$. By hypothesis, $\bar{J}(t)$ is a Jacobi field along $\bar{\gamma}$, since:

$$
\bar{J}^{\prime \prime}(t)+\bar{R}\left(\bar{J}(t), \bar{\gamma}^{\prime}(t)\right) \bar{\gamma}^{\prime}(t)=I_{\gamma^{(t)}}\left(J^{\prime \prime}(t)+R\left(J(t), \gamma^{\prime}(t)\right) \gamma^{\prime}(t)\right)=0
$$

Note: $I_{\gamma(t)} J^{\prime \prime}(t)=J^{\prime \prime}(t)$ bc $I_{\gamma^{(t)}}$ is defined using parallel transport. Seq $J(t)=\sum_{i} a_{i}(t) e_{i}(t), w /$ $e_{i}(t)$ poralled frame dong $\gamma(t)$. Then $\overline{z_{i}(t)}=I_{\gamma(t) e^{i}(t)}$ is a parallel frame along $\bar{\gamma}(t)$, and $\bar{J}(t)=\sum_{i} a_{i}(t) \bar{e}_{i}(t)$. Thus, $I_{\gamma(1)} J^{\prime \prime}(t)=\sum_{i} a_{i}^{\prime \prime}(t) I_{\gamma(t)_{i}}(t)=\sum_{i} a_{i}^{\prime \prime}(t) \overline{e_{i}}(t)=J^{\prime \prime}(t)$.

Moreover, $\left\{\begin{array}{l}\bar{J}(t)=d\left(\exp _{p}\right)_{t \gamma^{\prime}(0)} t \bar{J}^{\prime}(0) \\ \bar{J}(t)=d\left(\exp _{\bar{p}}\right)_{t \bar{\gamma}^{\prime}(0)} t \bar{J}^{\prime}(0)\end{array}\right.$
So $\quad \bar{J}(t)=d\left(\exp _{\bar{p}}\right)_{t \bar{\gamma}^{\prime}(0)} t \bar{J}^{\prime}(0)$

$$
=d\left(\exp _{\bar{p}}\right)_{t \bar{\gamma}^{\prime}(0)} t I\left(J^{\prime}(0)\right)
$$

$$
\begin{equation*}
\stackrel{T h m}{=} d\left(\exp _{p}^{-1}\right)_{\text {exp }} \tag{t}
\end{equation*}
$$

$$
=d\left(\exp _{\bar{p}}\right)_{t I \gamma^{\prime}(0)} \circ I \circ \underbrace{d\left(\exp _{p}^{-1}\right)_{\gamma(t)} J(t)}
$$

$$
=d(\underbrace{\operatorname{expp}_{p} \circ I \circ \exp _{p}^{-1}}_{\varphi})_{\gamma(t)} J(t)=d \varphi_{\gamma(t)} J(t)
$$

Computing at $t=L$, we here $\bar{J}(L)=d \varphi_{\gamma(L)} J(L)=d \varphi_{q} X$ and $\left\|d \varphi_{q} X\right\|=\|\bar{J}(L)\|=\|J(L)\|=\|X\|$ so $d \varphi_{q}$ is an isometry. (I_{f} is a linear isometry)

Leman. Let $\gamma:[0, L] \rightarrow M$ be a geodesic; $V \in T_{\gamma(0)} M, \omega \in T_{\gamma(L)} M$.
If $L>0$ is sulf. small, there exists a unique Jacobi field J along γ with $J(0)=v, J(L)=w$.
Pf: Let $J=\{J$ is a Jacobi field along $\gamma, J(0)=0\}$;

$$
H^{H}=\left\{J(t)=d\left(\exp _{\gamma(0)}\right)_{t \gamma^{\prime}(0)} t J^{\prime}(0)\right\} \underset{\substack{\text { Hector space }}}{\substack{\text { this is a } \\ \text { Net er }}}
$$

Consider $e V_{L} ; J \longrightarrow T_{\gamma(L)} M \quad \operatorname{dim} J=\operatorname{dim} T_{P} M$

$$
J \longmapsto J(L) \quad(\text { Linear mop) }
$$

If $L>0$ is small, then $e V_{L}$ is infective: otherwise $J_{1}, J_{2} \in J, J_{1}(L)=J_{2}(L)$ but $J_{1} \neq J_{2}$. Then $J_{1}-J_{2} \in J$ satisfies $0=\left(J_{1}-J_{2}\right)(L)=d\left(\exp _{\gamma(0)}\right)_{L \gamma^{\prime}(0)} L \cdot\left(J_{1}-J_{2}\right)^{\prime}(0)$ and for L small $d(\text { exp })_{L \gamma^{\prime}(0)}$ is invertible, so $\left(J_{1}-J_{2}\right)^{\prime}(0)=0$, hence $\left(J_{1}-J_{2}\right)(0)=0$ and $\left(J_{1}-J_{2}\right)^{\prime}(0)=0$ so $J_{1} \equiv J_{2}$
Since eva $: J \rightarrow T_{\gamma(L)} M$ is liner and $\operatorname{dim} J=\operatorname{dim} T_{\gamma(L)} M$, $e V_{L}$ is bijective. So $\exists J_{1} \in J$ with $J_{1}(L)=w$.
By the same orgument storting from $\gamma(L), \exists J_{2}$ a Jacobi field along γ with $J_{2}(0)=v$ and $J_{2}(L)=0$.
Thus, $J:=J_{1}+J_{2}$ satisfies $J(0)=v$ and $J(L)=w$.
Rok: The above holds for any $L>0$ s.t. $\gamma(L)$ is not conjugate to $\gamma(0)$ along γ. (We define conjugate points later).

Lecture 11
Completeness:. (M, g) is geoderically complete if every geodesic $\gamma:(-\varepsilon, \varepsilon) \rightarrow M$ can be extended to $\bar{\gamma}: \mathbb{R} \rightarrow M$.

- (M.g) is metrically complete if the metric space (M, diotg) is complete, i.e., every Cauchy sequence converges.

Thu (Hopf-Rimow, 1931). Let (Mig) be a connected Rem. mild, and $p \in M$. The following are equivdent:
a) $\exp _{p}: T_{p} M \rightarrow M$ is defined on all of $T_{p} M$,
b) Closed and bounded subsets of M are compact
c) (M, δ) is metrically complete
d) (M, g) is geodesically complete
e) $\exists K_{n} \subset M$ nested sequence of compact subsets $\left(K_{n} \subset\right.$ int $\left.K_{n+1}\right)$ s.t. $M=\bigcup_{n} K_{n}$, and if $q_{n} \notin K_{n} \forall n$, then $\operatorname{dist}\left(p, q_{n}\right) \rightarrow+\infty$.
If any (hence all) of the above hold, then:
f) For all $q \in M$, there exists a minimizing geodesic from p to of, ie., $\gamma:[0, L] \rightarrow M$ with $\gamma(0)=p, \gamma(L)=q$, and $\operatorname{dist}(p, q)=L_{g}(\gamma)$.

Pf. a) $\Rightarrow f)$ Let $r=\operatorname{dist}(p, q)$ and $B_{\delta}(p)$ be a normal veighbd of p.

The function $f: \partial B_{\delta}(p) \rightarrow \mathbb{R}, f(x)=\operatorname{dist}(x, q)$ is continuous hence has a minimum $x_{0} \in \partial B_{s}(p)$.
Let $v \in T_{p} M$ be s.t. $\exp _{p} \delta v=x_{0}$ and $\|v\|=1$; let $\gamma(t)=\exp _{p} t v$; which is defined $\forall t \in \mathbb{R}$ by a). Claim: $\gamma(r)=q$.

Pl of Claim: (Continuity method) Consider the subset

$$
A=\{t \in[0, r]: \quad \operatorname{dist}(\gamma(t), q)=v-t\}
$$

and note $A \neq \varnothing$ because $0 \in A$, and $A \subset[0, r]$ is closed. It suffices to show that if $t_{0} \in A$, then $t_{0}+\varepsilon \in A$ for suff. small $\varepsilon>0$, since then $A=[0, r]$, and $r \in A$ is the desired claim.

Let to $\in A$ and $\varepsilon>0$ small; We wart to show that to $+\varepsilon \in A$. By making $\varepsilon>0$ sulf. smell, we may assume $B_{\varepsilon}(\gamma(t))$ is a normal neighed of $\gamma\left(t_{0}\right)$. Let σ be a curve from $\gamma\left(t_{0}\right)$ to q and $\left.x_{\sigma} \in \partial B_{\varepsilon}\left(\gamma \mid t_{0}\right)\right)$ be the first time it intersects $\partial B_{\varepsilon}\left(\gamma\left(t_{0}\right)\right)$, write $\sigma=\sigma_{1} U \sigma_{z}$, where σ_{1} joins $\gamma\left(t_{0}\right)$ to X_{σ}, as in the picture.
 Every point in $\partial B_{\varepsilon}\left(\gamma \mid t_{0}\right)$) is at distance ε from $\gamma\left(t_{0}\right)$, so $\left.L_{g}\left(\sigma_{1}\right) \geqslant \operatorname{dist}\left(\gamma \mid t_{0}\right), x_{\sigma}\right)=\varepsilon=\operatorname{dist}\left(\gamma\left(t_{0}\right), x_{0}^{\prime}\right)$ and $L_{g}\left(\sigma_{2}\right) \geqslant \operatorname{dist}\left(x_{\sigma}, q\right) \geqslant \operatorname{dist}\left(x_{0}^{\prime}, q\right)$ where $X_{0}^{\prime} \in \partial B_{\varepsilon}\left(\gamma\left(t_{0}\right)\right)$ is a minimum for $\operatorname{dist}(x, q), x \in \partial B_{\varepsilon}\left(\gamma\left(t_{0}\right)\right)$. Thus,

$$
L_{g}(\delta)=L_{g}\left(\sigma_{1}\right)+L_{g}\left(\sigma_{2}\right) \geqslant \operatorname{dist}\left(\gamma\left(t_{0}\right), x_{0}^{\prime}\right)+\operatorname{dist}\left(x_{0}^{\prime}, q\right)
$$

Taking the infiumum over all such σ, since $\operatorname{dist}\left(\gamma\left(t_{0}\right), q\right)=\inf \operatorname{Lg}(\sigma)$,

$$
r-t_{0} \stackrel{\text { to f }}{=} \operatorname{dist}\left(\gamma\left(t_{0}\right), q\right) \geqslant \frac{\operatorname{dist}\left(\gamma\left(t_{0}\right), x_{0}^{\prime}\right)}{\varepsilon}+\operatorname{dist}\left(x_{0}^{\prime}, q\right)
$$

which, together with the triangle inequality, implies that

$$
r-t_{0}=\varepsilon+\operatorname{dist}\left(x_{0}^{\prime}, q\right)
$$

ie. $\quad \operatorname{dist}\left(x_{0}^{\prime}, q\right)=r-t_{0}-\varepsilon$. Thus, it suffices to show $x_{0}^{\prime}=\gamma\left(t_{0}+\varepsilon\right)$; for that will imply $t_{0}+\varepsilon \in A$. B_{y} the triangle inequality,

$$
\operatorname{dist}\left(p, x_{0}^{\prime}\right) \geqslant \operatorname{dist}(p, q)-\operatorname{dist}\left(q, x_{0}^{\prime}\right)=r-\left(r-t_{0}-\varepsilon\right)=t_{0}+\varepsilon
$$

Moreover, the curve $\gamma\left(\left[0, t_{0}\right]\right) \cup \alpha$ where α is a radial geod.
from $\gamma\left(t_{0}\right)$ to x_{0}^{\prime} hos length $t_{0}+\varepsilon$, and therefore is minimizing. Minimizing geodesics are smooth, so α must be a piece of γ, namely $\alpha=\gamma\left(\left[t_{0}, t_{0}+\varepsilon\right]\right)$, so $x_{0}^{\prime}=\gamma\left(t_{0}+\varepsilon\right)$ as desired.
$a) \Rightarrow b)$ Let $K \subset M$ be closed and bounded. Boundedness gives $R>0$ s.t. $K \subset B_{R}(p)$, so $K \subset \exp _{p}^{\text {defined on ell } T M \text { by a) }} \overline{B_{R}(0)}$, where $\overline{B_{R}(0)} \subset T_{p} M$ is compact, and as $\exp _{p}$ is continuous, also $\exp \overline{B_{R}(0)}$ is compact. Since $K \subset \exp _{p} \overline{B_{R}(0)}$ is closed in a compact, it is also compact.
b) $\Rightarrow c)$ Let $\left\{x_{n}\right\}$ be a Cauchy sequence and $K=\overline{\left\{x_{n}: n \in \mathbb{N}\right\} \text {. Since } K}$ is closed and bounded, it is compact by b), so $\left[x_{n}\right\}$ has a convergent subsequence, hence (as it is Cauchy) it converges.
c) $\Rightarrow d)$ Suppose $\gamma:[0, T) \rightarrow M$ is a unit speed geodesic that we wish to extend to T and beyond. Let $t_{n}=T-1 / n$ and $x_{n}=\gamma\left(t_{n}\right)$.
Since $\operatorname{dist}\left(x_{n}, x_{m}\right)=\left|t_{n}-t_{m}\right|=\left|\frac{1}{n}-\frac{1}{m}\right|$, the sequence x_{n} is Cauchy, hence converges to $x_{\infty} \in M$ by c). Let $B_{\varepsilon}\left(x_{\infty}\right)$ be a normal neighborhood at x_{∞}. For $n_{1} m$ suff. large, $x_{n}, x_{m} \in B_{\varepsilon}\left(x_{\infty}\right)$ so there exists a (unique) minimizing geodesic $\alpha_{n m}$ from x_{n} to x_{m}, which hence coincides with $\gamma\left(\left[t_{n}, t_{m}\right]\right)$.

d) \Rightarrow a) is trivial;

Since $\exp _{x_{\infty}}$ is a differ onto $B_{\varepsilon}\left(x_{\infty}\right)$, the geodesic γ can be extended to $\gamma(T)=x_{\infty}$ and beyond, as $\gamma(t)=\exp _{x_{\infty}}(t-T) v$ for $t \geqslant T$ where $\quad v=\lim _{n \rightarrow \infty} \dot{\gamma}\left(t_{n}\right) \in T_{x_{\infty}} M$

Rmk,$f) \nRightarrow a), b), c), d), e)$. Egg., let $M=\left\{x \in \mathbb{R}^{n}:\|x\|<1\right\}$ be an open ball.
Cor: Compact manifolds are complete. Closed submanifolds of a complete manifold are complete.

