Homework \#4

Due: Apr 19, 2024

1. Prove that if $\left(M^{n}, \mathrm{~g}\right)$ is a complete connected Riemannian manifold with sec >0, then any two totally geodesic closed submanifolds $N_{1}, N_{2} \subset M$ with $\operatorname{dim} N_{1}+\operatorname{dim} N_{2} \geq n$ must intersect. (This is known as Frankel's Theorem.)
Hint: If $N_{1} \cap N_{2}=\emptyset$, adapt the proof of Myers' Theorem (p. 7 of Lectures3.pdf).
Suppose $N_{1} \cap N_{2}=\emptyset$. Since N_{1} and N_{2} are compact, there exists a unit speed minimizing geodesic $\gamma:[0, L] \rightarrow M$ such that $\gamma(0) \in N_{1}, \gamma(L) \in N_{2}$, and, for all $p_{i} \in N_{i}$,

$$
\operatorname{dist}\left(p_{1}, p_{2}\right) \geq \operatorname{dist}(\gamma(0), \gamma(L))=L>0
$$

By the first variation formula, γ meets N_{i} orthogonally at its endpoints. Thus, the parallel transport of $T_{\gamma(L)} N_{2}$ along γ from $\gamma(L)$ to $\gamma(0)$ is a linear subspace of $T_{\gamma(0)} M$ whose intersection with $T_{\gamma(0)} N_{1}$ has dimension ≥ 1, since both are linear subspaces orthogonal to $\dot{\gamma}(0)$ and the sum of their dimensions is at least n. Let $v \in T_{\gamma(0)} N_{1}$ be a vector in this intersection, so that its parallel transport $V(t)$ along $\gamma(t)$ satisfies $V(0) \in T_{\gamma(0)} N_{1}$ and $V(L) \in T_{\gamma(L)} N_{2}$. The variational field of $\gamma_{s}(t)=\exp _{\gamma(t)} s V(t)$, $s \in(-\varepsilon, \varepsilon)$, is clearly the parallel vector field $V(t)$, and since N_{i} are totally geodesic, $\gamma_{s}(0) \in N_{1}$ and $\gamma_{s}(L) \in N_{2}$ for all $s \in(-\varepsilon, \varepsilon)$. Thus, by the second variation formula,

$$
\begin{aligned}
\left.\frac{\mathrm{d}^{2}}{\mathrm{ds} s^{2}} E_{\mathrm{g}}\left(\gamma_{s}\right)\right|_{s=0} & =\left.\mathrm{g}\left(\frac{D V}{\mathrm{~d} s}, \dot{\gamma}\right)\right|_{0} ^{L}+\int_{0}^{L} \mathrm{~g}\left(\frac{D V}{\mathrm{~d} t}, \frac{D V}{\mathrm{~d} t}\right)+\mathrm{g}(R(V, \dot{\gamma}) V, \dot{\gamma}) \mathrm{d} t \\
& =-\int_{0}^{L} \mathrm{~g}(R(V, \dot{\gamma}) \dot{\gamma}, V) \mathrm{d} t \\
& <0
\end{aligned}
$$

so for sufficiently small $0<s<\varepsilon$, the curve γ_{s}, is shorter than $\gamma_{0}=\gamma$ and joins N_{1} to N_{2}, contradicting the choice of γ as minimizing geodesic between N_{1} and N_{2}.
2. Prove that a closed hypersurface $M^{n} \subset \mathbb{R}^{n+1}$ with sec >0 is diffeomorphic to \mathbb{S}^{n}.

Hint: If \vec{n} is a unit normal to M, show that $M \ni p \mapsto \vec{n}_{p} \in \mathbb{S}^{n}$ is a covering map.
Choose a unit normal \vec{n} to the hypersurface $M^{n} \subset \mathbb{R}^{n+1}$, which is possible as embedded submanifolds of codimension 1 in \mathbb{R}^{n+1} are two-sided. We write the second fundamental form of M^{n} as $\mathbb{I}(X, Y)=h(X, Y) \vec{n}$, where $h(X, Y)=\left\langle S_{\vec{n}} X, Y\right\rangle$ and $S_{\vec{n}} X=-\left(\nabla_{X} \vec{n}\right)^{T}$ is the shape operator. By the Gauss Equation, for all $X, Y \in T_{p} M$, we have

$$
0<\sec (X \wedge Y)=h(X, X) h(Y, Y)-h(X, Y)^{2}=\left\langle S_{\vec{n}} X, X\right\rangle\left\langle S_{\vec{n}} Y, Y\right\rangle-\left\langle S_{\vec{n}} X, Y\right\rangle^{2}
$$

Since $S_{\vec{n}}: T_{p} M \rightarrow T_{p} M$ is symmetric, we can diagonalize it with an orthonormal basis $\left\{e_{i}\right\}$ of eigenvectors and corresponding eigenvalues κ_{i}, say $S_{\vec{n}} e_{i}=\kappa_{i} e_{i}$. Setting $X=e_{i}$ and $Y=e_{j}$ in the above, we find that $\kappa_{i} \kappa_{j}>0$ for all $i \neq j$. In particular, $\kappa_{i} \neq 0$ for all $1 \leq i \leq n$, which means that the linear map $S_{\vec{n}} x=-\left(\nabla_{x} \vec{n}\right)^{T}$ is invertible at all points, so the map $M \ni p \mapsto \vec{n}_{p} \in \mathbb{S}^{n} \subset \mathbb{R}^{n+1}$ is a local diffeomorphism, hence a covering map. Since \mathbb{S}^{n} is simply-connected, it follows that this map is a diffeomorphism.
3. Let $\left(M^{n}, \mathrm{~g}\right)$ be a complete Riemannian manifold, and $f: M \rightarrow \mathbb{R}$ a smooth function. Prove that f is convex, i.e., Hess $f \succeq 0$, if and only if for all geodesics $\gamma: \mathbb{R} \rightarrow M$, the function $(f \circ \gamma): \mathbb{R} \rightarrow \mathbb{R}$ is convex. What can you say about the topology of $\left(M^{n}, \mathrm{~g}\right)$ if it admits a strictly convex function, i.e., with Hess $f \succ 0$?
If $f: M \rightarrow \mathbb{R}$ is smooth and $\gamma(t)$ is a geodesic, then

$$
\begin{aligned}
\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} f(\gamma(t)) & =\frac{\mathrm{d}}{\mathrm{~d} t} \mathrm{~g}(\nabla f(\gamma(t)), \dot{\gamma}(t)) \\
& =\mathrm{g}\left(\nabla_{\dot{\gamma}} \nabla f(\gamma(t)), \dot{\gamma}(t)\right)+\mathrm{g}\left(\nabla f(\gamma(t)), \nabla_{\dot{\gamma}(t)} \dot{\gamma}(t)\right) \\
& =(\operatorname{Hess} f)_{\gamma(t)}(\dot{\gamma}(t), \dot{\gamma}(t)) .
\end{aligned}
$$

Thus, Hess $f \succeq 0$ implies $f \circ \gamma$ is convex. Conversely, suppose $f \circ \gamma$ is convex for all geodesics γ. For all $v \in T_{p} M$ and all $p \in M$, there is a geodesic γ with $\gamma(0)=p$ and $\dot{\gamma}(0)=v$, hence $(\operatorname{Hess} f)_{p}(v, v)=\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} f(\gamma(t)) \geq 0$ for all $p \in M$ and $v \in T_{p} M$.

Quite a lot can be said about a complete manifold ($M^{n}, \mathrm{~g}$) that admits a strictly convex function. Since Hess $f \succ 0$ cannot hold at a maximum, the function $f: M \rightarrow \mathbb{R}$ can only have critical points which are nondegenerate local minima. In particular, M is noncompact, for otherwise $f: M \rightarrow \mathbb{R}$ would have a maximum, besides a minimum.
If $f: M \rightarrow \mathbb{R}$ does not have a minimum, then M is diffeomorphic to $N \times \mathbb{R}$ where $N=f^{-1}(c)$ is the preimage of any (regular) value $c \in \mathbb{R}$, as can be seen using the flow of the nowhere vanishing unit vector field $\nabla f /\|\nabla f\|$. Moreover, if $f: M \rightarrow \mathbb{R}$ has a minimum, then it is unique. Indeed, if p, q are distinct local minima, then let $\gamma:[0,1] \rightarrow M$ be a geodesic with $\gamma(0)=p$ and $\gamma(1)=q$. But as $f \circ \gamma$ is strictly convex, we have $f(\gamma(t))<\min \{f(p), f(q)\}$ for all $0<t<1$, contradicting the fact that p, q are local minima. Let $p \in M$ be the unique minimum of f. Since the vector field $\nabla f /\|\nabla f\|$ is bounded and nowhere vanishing on $M \backslash\{p\}$, it follows that M is contractible. If, in addition, $f: M \rightarrow \mathbb{R}$ is proper, i.e., $f^{-1}(K)$ is compact in M for all compact $K \subset \mathbb{R}$, then M is diffeomorphic to \mathbb{R}^{n} as a consequence of the Brown-Stallings Theorem ${ }^{\text {? }}$
4. Let $\left(M^{n}, \mathrm{~g}\right)$ be a connected closed Riemannian manifold, and consider smooth functions $f, f_{1}, f_{2}: M \rightarrow \mathbb{R}$. Recall that $\Delta f=\operatorname{div} \nabla f=\operatorname{tr} \operatorname{Hess} f$, and a real number λ is an eigenvalue of $-\Delta$ if there exists a nonzero function f such that $-\Delta f=\lambda f$, in which case f is called an eigenfunction of $-\Delta$ with eigenvalue λ.

$$
\text { a) Prove the Green's identity } \int_{M} f_{1} \Delta f_{2} \operatorname{vol}_{\mathrm{g}}=-\int_{M} \mathrm{~g}\left(\nabla f_{1}, \nabla f_{2}\right) \mathrm{vol}_{\mathrm{g}} \text {. }
$$

[^0]b) Show that harmonic functions on M, i.e., solutions to $\Delta f=0$ on M, are constant. Conclude that the smallest eigenvalue of $-\Delta$ on $\left(M^{n}, \mathrm{~g}\right)$ is
$$
\lambda_{0}\left(M^{n}, \mathrm{~g}\right):=\inf _{f \in W^{1,2}(M)} \frac{\int_{M}\|\nabla f\|^{2} \operatorname{vol}_{\mathrm{g}}}{\int_{M} f^{2} \operatorname{vol}_{\mathrm{g}}}=0
$$
and the corresponding eigenspace is formed by constant functions.
c) Decompose the symmetric 2-tensor Hess f as the sum of its traceless part and a multiple of the identity ${ }^{2}$ to show that if $f: M \rightarrow \mathbb{R}$ is an eigenfunction of $-\Delta$ with eigenvalue λ, then $\lambda \int_{M}\|\nabla f\|^{2} \operatorname{vol}_{\mathrm{g}} \leq n \int_{M}\|\operatorname{Hess} f\|^{2}$ vol $_{\mathrm{g}}$.
d) Use the Bochner identity $\frac{1}{2} \Delta\|\nabla f\|^{2}=\mathrm{g}(\nabla \Delta f, \nabla f)+\|\operatorname{Hess} f\|^{2}+\operatorname{Ric}(\nabla f, \nabla f)$ to prove that $\int_{M}(\Delta f)^{2}$ vol $_{g}=\int_{M}\|\operatorname{Hess} f\|^{2}+\operatorname{Ric}(\nabla f, \nabla f) \operatorname{vol}_{g}$.
e) Using the above, prove that if $\left(M^{n}, \mathrm{~g}\right)$ has Ric $\geq(n-1) k \mathrm{~g}$, where $k>0$, then the smallest nonzero eigenvalue of $-\Delta$ satisfies the Lichnerowicz estimate
$$
\lambda_{1}\left(M^{n}, \mathrm{~g}\right):=\inf _{\substack{f \in W^{1,2}(M) \\ \int_{M} f \operatorname{vol}_{\mathrm{g}}=0}} \frac{\int_{M}\|\nabla f\|^{2} \operatorname{vol}_{\mathrm{g}}}{\int_{M} f^{2} \operatorname{vol}_{\mathrm{g}}} \geq n k
$$
a) A simple computation gives $\operatorname{div}\left(f_{1} \nabla f_{2}\right)=\mathrm{g}\left(\nabla f_{1}, \nabla f_{2}\right)+f_{1} \Delta f_{2}$. By the Stokes theorem, since M is closed,
$$
0=\int_{M} \operatorname{div}\left(f_{1} \nabla f_{2}\right) \operatorname{vol}_{\mathrm{g}}=\int_{M} \mathrm{~g}\left(\nabla f_{1}, \nabla f_{2}\right) \operatorname{vol}_{\mathrm{g}}+\int_{M} f_{1} \Delta f_{2} \operatorname{vol}_{\mathrm{g}} .
$$
b) If $\Delta f=0$, then by Green's identity with $f_{1}=f_{2}=f$, we have that $\nabla f \equiv 0$. Thus, since M is connected, it follows that f is constant.
c) The traceless part of Hess f is $\operatorname{Hess} f-\frac{\operatorname{tr} \operatorname{Hess} f}{n} \mathrm{Id}=\operatorname{Hess} f-\frac{\Delta f}{n} \mathrm{Id}$, and it is orthogonal to $\frac{\Delta f}{n}$ Id in the inner product $\langle A, B\rangle=\operatorname{tr} A B$. Thus,
$$
\|\operatorname{Hess} f\|^{2}=\left\|\operatorname{Hess} f-\frac{\Delta f}{n} \mathrm{Id}\right\|^{2}+\frac{(\Delta f)^{2}}{n} \geq \frac{(\Delta f)^{2}}{n}
$$

Integrating the above, using $-\Delta f=\lambda f$ and Green's identity, we have:

$$
n \int_{M}\|\operatorname{Hess} f\|^{2} \operatorname{vol}_{\mathrm{g}} \geq \int_{M}(\Delta f)^{2} \operatorname{vol}_{\mathrm{g}}=-\int_{M} \lambda f \Delta f \operatorname{vol}_{\mathrm{g}}=\lambda \int_{M}\|\nabla f\|^{2} \operatorname{vol}_{\mathrm{g}}
$$

[^1]d) By Green's identity applied with $f_{1}=-\Delta f$ and $f_{2}=f$, we have
$$
\int_{M} \mathrm{~g}(\nabla \Delta f, \nabla f) \operatorname{vol}_{\mathrm{g}}=-\int_{M}(\Delta f)^{2} \operatorname{vol}_{\mathrm{g}}
$$

Since M is closed, integrating the Bochner identity, we have

$$
0=\int_{M} \mathrm{~g}(\nabla \Delta f, \nabla f)+\|\operatorname{Hess} f\|^{2}+\operatorname{Ric}(\nabla f, \nabla f) \operatorname{vol}_{\mathrm{g}}
$$

so it follows that $\int_{M}(\Delta f)^{2} \operatorname{vol}_{g}=\int_{M}\|\operatorname{Hess} f\|^{2}+\operatorname{Ric}(\nabla f, \nabla f) \operatorname{vol}_{g}$.
e) If $-\Delta f=\lambda f$ and Ric $\geq(n-1) k \mathrm{~g}$, where $k>0$, combining c) and d), we have:

$$
\begin{aligned}
& \lambda^{2} \int_{M} f^{2} \operatorname{vol}_{g}=\int_{M}(\Delta f)^{2} \operatorname{vol}_{g}=\int_{M}\|\operatorname{Hess} f\|^{2}+\operatorname{Ric}(\nabla f, \nabla f) \operatorname{vol}_{\mathrm{g}} \\
\geq & \frac{\lambda}{n} \int_{M}\|\nabla f\|^{2} \operatorname{vol}_{g}+(n-1) k \int_{M}\|\nabla f\|^{2} \operatorname{vol}_{g}=\frac{\lambda+n(n-1) k}{n} \int_{M}\|\nabla f\|^{2} \operatorname{vol}_{g},
\end{aligned}
$$

so, if $f \not \equiv 0$, we obtain:

$$
(\lambda+n(n-1) k) \frac{\int_{M}\|\nabla f\|^{2} \operatorname{vol}_{g}}{\int_{M} f^{2} \operatorname{vol}_{g}} \leq n \lambda^{2}
$$

Letting $f \in C^{\infty}(M)$ be a function with $\int_{M} f \operatorname{vol}_{g}=0$ that achieves the infimum in the definition of $\lambda_{1}:=\lambda_{1}(M, \mathrm{~g})$, the above inequality implies

$$
\left(\lambda_{1}+n(n-1) k\right) \lambda_{1} \leq n \lambda_{1}^{2} .
$$

So, dividing both sides by $\lambda_{1}>0$, we conclude that $\lambda_{1} \geq n k$.
Remark: The above bound $\lambda_{1}\left(M^{n}, \mathrm{~g}\right) \geq n k$ for manifolds with Ric $\geq(n-1) k \mathrm{~g}$, $k>0$, is sharp: equality is achieved by the round sphere $\mathbb{S}^{n}(1 / \sqrt{k}) \subset \mathbb{R}^{n+1}$ of constant curvature sec $=k$, whose first eigenfunctions are height functions $f(x)=\langle x, v\rangle$, for any fixed $v \in \mathbb{R}^{n+1}$. Moreover, it is rigid: if $\left(M^{n}, \mathrm{~g}\right)$ is a manifold with Ric $\geq(n-1) k \mathrm{~g}$, $k>0$, and $\lambda_{1}\left(M^{n}, \mathrm{~g}\right)=n k$, then $\left(M^{n}, \mathrm{~g}\right)$ is isometric to $\mathbb{S}^{n}(1 / \sqrt{k})$.
5. Let $(P, \mathrm{~g})$ be a Riemannian manifold, and $M \subset N \subset P$ be submanifolds of one another, with metrics induced by g. Prove or disprove (with a counter-example) the statements:
a) If M is totally geodesic in N and N is totally geodesic in P, then M is totally geodesic in P;
b) If M is minimal in N and N is minimal in P, then M is minimal in P;
c) If M is totally geodesic in N and N is minimal in P, then M is minimal in P;
d) If M is minimal in N and N is totally geodesic in P, then M is minimal in P.
a) True. If M is totally geodesic in N and N is totally geodesic in P, then geodesics in M are geodesics in N and geodesics in N are geodesics in P. Thus, geodesics in M are geodesics in P, so M is totally geodesic in P.
b) False. Let $P=\mathbb{R}^{3}, N$ be a catenoid in \mathbb{R}^{3}, and M be the (unique) closed geodesic in the catenoid N. Then M is minimal (actually, totally geodesic) in N and N is minimal in P, but M is not minimal in P since it is not a straight line.
c) False. Same counter-example as the previous item.
d) True. If N is totally geodesic in P, then the Levi-Civita connection ∇^{N} of N agrees with the Levi-Civita connection ∇^{P} of P, i.e., for all $X, Y \in T_{p} N$, we have $\nabla_{X}^{N} Y=\nabla_{X}^{P} Y$. Fix an orthonormal basis of $T_{p} P$ such that the first $\operatorname{dim} M$ vectors are an orthonormal basis of $T_{p} M$ and the first $\operatorname{dim} N$ vectors are an orthonormal basis of $T_{p} N$. Since $\mathbb{I}_{M}^{P}(X, Y)=\nabla_{X}^{P} Y-\nabla_{X}^{M} Y=\nabla_{X}^{N} Y-\nabla_{X}^{M} Y$, in this basis

$$
\mathbb{I}_{M}^{P}=\left(\begin{array}{cc}
\mathbb{I}_{M}^{N} & 0 \\
0 & 0
\end{array}\right)
$$

so the trace of \mathbb{I}_{M}^{P} is equal to the trace of $\mathbb{\Pi}_{M}^{N}$, hence zero, i.e., M is minimal in P.
X. (Will not be graded) In Problem 1, prove M^{n} is the boundary of a convex body in \mathbb{R}^{n+1}. Given a unit vector $v \in \mathbb{R}^{n+1}$, consider the height function $f_{v}(p)=\langle p, v\rangle, p \in M^{n}$. Clearly, $\nabla f_{v}(p)$ is the orthogonal projection of v onto $T_{p} M$, so $p \in M$ is a critical point of f_{v} if and only if $v= \pm \vec{n}_{p}$. Since $M \ni p \mapsto \vec{n}_{p} \in \mathbb{S}^{n}$ is a diffeomorphism, it follows that f_{v} has exactly two critical points, say $p_{v}^{ \pm} \in M$. At such critical points,

$$
\left(\operatorname{Hess} f_{v}\right)(X, Y)=\left\langle\nabla_{X} \nabla f_{v}, Y\right\rangle= \pm\left\langle\nabla_{X} \vec{n}, Y\right\rangle=\mp\left\langle S_{\vec{n}} X, Y\right\rangle
$$

As explained in the solution to Problem 1, the eigenvalues κ_{i} of $S_{\vec{n}}$ satisfy $\kappa_{i} \kappa_{j}>0$ for all $i \neq j$. Thus, either $\kappa_{i}>0$ for all $1 \leq i \leq n$, or $\kappa_{i}<0$ for all $1 \leq i \leq n$, so $\left(\operatorname{Hess} f_{v}\right)_{p_{v}^{ \pm}}$ is either positive-definite or negative-definite. So each of the two critical points $p_{v}^{ \pm}$is either a local minimum or local maximum of f_{v}. On the other hand, by compactness of M, the function $f_{v}: M \rightarrow \mathbb{R}$ has a global minimum and a global maximum. Up to relabeling, let p_{v}^{-}be the global minimum and p_{v}^{+}be the global maximum, so for $p \in M$,

$$
f_{v}\left(p_{v}^{-}\right) \leq f_{v}(p) \leq f_{v}\left(p_{v}^{+}\right)
$$

This means that $M \subset \mathbb{R}^{n+1}$ is contained in the slab \mathcal{S}_{v} between two parallel hyperplanes in \mathbb{R}^{n+1} with normal vector v, that are at a bounded distance from each other and each intersects M at a single point $p_{v}^{ \pm}$. By the Jordan-Brouwer separation theorem, $\mathbb{R}^{n+1} \backslash M$ has two connected components, the (bounded) interior of M and the exterior
of M. If x, y are in the interior of M, then the line segment $\overline{x y}$ joining them is entirely in the interior of the slab \mathcal{S}_{v}. In particular, $p_{v}^{ \pm} \notin \overline{x y}$, since $p_{v}^{ \pm}$is in the boundary of the slab \mathcal{S}_{v}. Our choice of v, and hence of $p_{v}^{ \pm} \in M$, was arbitrary, so it follows that no line segment joining two points in the interior of M intersects M. Therefore, the interior of M is convex, i.e., M is the boundary of a (strictly) convex body in \mathbb{R}^{n+1}.

Remark: The above is known as Hadamard's convexity theorem, and it was proved (in dimension 3) in: J. Hadamard, Sur certaines proprietés des trajectoires en dynamique, J. Math. Pures Appl. 3 (1897) 331-387.

[^0]: ${ }^{1}$ The Brown-Stallings Theorem states that if M^{n} is a smooth manifold such that for all compact subsets $K \subset M$ there exists an open subset O that contains K and is diffeomorphic to an open ball, then M is diffeomorphic to \mathbb{R}^{n}. It can be proved as an application of the Palais-Cerf Disc Theorem, see Palais "Extending diffeomorphisms", on Proc. AMS 1960. In particular, exotic \mathbb{R}^{4} 's have compact subsets not contained in any open subset diffeomorphic to a ball!

[^1]: ${ }^{2}$ Recall from Linear Algebra that if A is a symmetric $n \times n$ matrix, then its traceless part $A-\frac{\operatorname{tr} A}{n}$ Id is orthogonal to Id, and hence $\|A\|^{2}=\left\|A-\left(\frac{\operatorname{tr} A}{n}\right) \operatorname{Id}\right\|^{2}+\frac{(\operatorname{tr} A)^{2}}{n}$, since $\|\operatorname{Id}\|^{2}=n$.

