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Homework #4

Due: Apr 19, 2024

1. Prove that if (Mn, g) is a complete connected Riemannian manifold with sec > 0, then
any two totally geodesic closed submanifolds N1, N2 ⊂ M with dimN1 + dimN2 ≥ n
must intersect. (This is known as Frankel’s Theorem.)

Hint: If N1 ∩N2 = ∅, adapt the proof of Myers’ Theorem (p.7 of Lectures3.pdf).

SupposeN1∩N2 = ∅. SinceN1 andN2 are compact, there exists a unit speed minimizing
geodesic γ : [0, L]→M such that γ(0) ∈ N1, γ(L) ∈ N2, and, for all pi ∈ Ni,

dist(p1, p2) ≥ dist(γ(0), γ(L)) = L > 0.

By the first variation formula, γ meets Ni orthogonally at its endpoints. Thus, the
parallel transport of Tγ(L)N2 along γ from γ(L) to γ(0) is a linear subspace of Tγ(0)M
whose intersection with Tγ(0)N1 has dimension ≥ 1, since both are linear subspaces
orthogonal to γ̇(0) and the sum of their dimensions is at least n. Let v ∈ Tγ(0)N1

be a vector in this intersection, so that its parallel transport V (t) along γ(t) satisfies
V (0) ∈ Tγ(0)N1 and V (L) ∈ Tγ(L)N2. The variational field of γs(t) = expγ(t) sV (t),
s ∈ (−ε, ε), is clearly the parallel vector field V (t), and since Ni are totally geodesic,
γs(0) ∈ N1 and γs(L) ∈ N2 for all s ∈ (−ε, ε). Thus, by the second variation formula,
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so for sufficiently small 0 < s < ε, the curve γs, is shorter than γ0 = γ and joins N1 to
N2, contradicting the choice of γ as minimizing geodesic between N1 and N2.

2. Prove that a closed hypersurface Mn ⊂ Rn+1 with sec > 0 is diffeomorphic to Sn.

Hint: If ~n is a unit normal to M , show that M 3 p 7→ ~np ∈ Sn is a covering map.

Choose a unit normal ~n to the hypersurface Mn ⊂ Rn+1, which is possible as embedded
submanifolds of codimension 1 in Rn+1 are two-sided. We write the second fundamental
form of Mn as II(X,Y ) = h(X,Y )~n, where h(X,Y ) = 〈S~nX,Y 〉 and S~nX = −(∇X~n)T

is the shape operator. By the Gauss Equation, for all X,Y ∈ TpM , we have

0 < sec(X ∧ Y ) = h(X,X)h(Y, Y )− h(X,Y )2 = 〈S~nX,X〉〈S~nY, Y 〉 − 〈S~nX,Y 〉2.

Since S~n : TpM → TpM is symmetric, we can diagonalize it with an orthonormal basis
{ei} of eigenvectors and corresponding eigenvalues κi, say S~nei = κiei. Setting X = ei
and Y = ej in the above, we find that κiκj > 0 for all i 6= j. In particular, κi 6= 0 for all
1 ≤ i ≤ n, which means that the linear map S~nx = −(∇x~n)T is invertible at all points,
so the map M 3 p 7→ ~np ∈ Sn ⊂ Rn+1 is a local diffeomorphism, hence a covering map.
Since Sn is simply-connected, it follows that this map is a diffeomorphism.



3. Let (Mn, g) be a complete Riemannian manifold, and f : M → R a smooth function.
Prove that f is convex, i.e., Hessf � 0, if and only if for all geodesics γ : R → M , the
function (f ◦ γ) : R→ R is convex. What can you say about the topology of (Mn, g) if
it admits a strictly convex function, i.e., with Hessf � 0?

If f : M → R is smooth and γ(t) is a geodesic, then
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Thus, Hessf � 0 implies f ◦ γ is convex. Conversely, suppose f ◦ γ is convex for all
geodesics γ. For all v ∈ TpM and all p ∈ M , there is a geodesic γ with γ(0) = p and

γ̇(0) = v, hence (Hessf)p(v, v) = d2

dt2
f(γ(t)) ≥ 0 for all p ∈M and v ∈ TpM .

Quite a lot can be said about a complete manifold (Mn, g) that admits a strictly convex
function. Since Hessf � 0 cannot hold at a maximum, the function f : M → R can
only have critical points which are nondegenerate local minima. In particular, M is
noncompact, for otherwise f : M → R would have a maximum, besides a minimum.

If f : M → R does not have a minimum, then M is diffeomorphic to N × R where
N = f−1(c) is the preimage of any (regular) value c ∈ R, as can be seen using the
flow of the nowhere vanishing unit vector field ∇f/‖∇f‖. Moreover, if f : M → R

has a minimum, then it is unique. Indeed, if p, q are distinct local minima, then let
γ : [0, 1]→M be a geodesic with γ(0) = p and γ(1) = q. But as f ◦γ is strictly convex,
we have f(γ(t)) < min{f(p), f(q)} for all 0 < t < 1, contradicting the fact that p, q are
local minima. Let p ∈M be the unique minimum of f . Since the vector field ∇f/‖∇f‖
is bounded and nowhere vanishing on M \ {p}, it follows that M is contractible. If, in
addition, f : M → R is proper, i.e., f−1(K) is compact in M for all compact K ⊂ R,
then M is diffeomorphic to Rn as a consequence of the Brown–Stallings Theorem.1

4. Let (Mn, g) be a connected closed Riemannian manifold, and consider smooth functions
f, f1, f2 : M → R. Recall that ∆f = div∇f = tr Hessf , and a real number λ is an
eigenvalue of −∆ if there exists a nonzero function f such that −∆f = λf , in which
case f is called an eigenfunction of −∆ with eigenvalue λ.

a) Prove the Green’s identity

∫
M
f1 ∆f2 volg = −

∫
M

g(∇f1,∇f2) volg.

1The Brown–Stallings Theorem states that if Mn is a smooth manifold such that for all compact subsets
K ⊂ M there exists an open subset O that contains K and is diffeomorphic to an open ball, then M
is diffeomorphic to Rn. It can be proved as an application of the Palais–Cerf Disc Theorem, see Palais
“Extending diffeomorphisms”, on Proc. AMS 1960. In particular, exotic R4’s have compact subsets not
contained in any open subset diffeomorphic to a ball!
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b) Show that harmonic functions on M , i.e., solutions to ∆f = 0 on M , are constant.
Conclude that the smallest eigenvalue of −∆ on (Mn, g) is

λ0(Mn, g) := inf
f∈W 1,2(M)

∫
M
‖∇f‖2 volg∫
M
f2 volg

= 0,

and the corresponding eigenspace is formed by constant functions.

c) Decompose the symmetric 2-tensor Hessf as the sum of its traceless part and a
multiple of the identity2 to show that if f : M → R is an eigenfunction of −∆ with

eigenvalue λ, then λ

∫
M
‖∇f‖2 volg ≤ n

∫
M
‖Hessf‖2 volg .

d) Use the Bochner identity 1
2∆‖∇f‖2 = g(∇∆f,∇f) + ‖Hessf‖2 + Ric(∇f,∇f) to

prove that

∫
M

(∆f)2 volg =

∫
M
‖Hessf‖2 + Ric(∇f,∇f) volg.

e) Using the above, prove that if (Mn, g) has Ric ≥ (n−1)k g, where k > 0, then the
smallest nonzero eigenvalue of −∆ satisfies the Lichnerowicz estimate

λ1(Mn, g) := inf
f∈W 1,2(M)∫
M f volg=0

∫
M
‖∇f‖2 volg∫
M
f2 volg

≥ nk.

a) A simple computation gives div(f1∇f2) = g(∇f1,∇f2) + f1 ∆f2. By the Stokes
theorem, since M is closed,

0 =

∫
M

div(f1∇f2) volg =

∫
M

g(∇f1,∇f2) volg +

∫
M
f1 ∆f2 volg .

b) If ∆f = 0, then by Green’s identity with f1 = f2 = f , we have that ∇f ≡ 0.
Thus, since M is connected, it follows that f is constant.

c) The traceless part of Hessf is Hessf − tr Hessf
n Id = Hessf − ∆f

n Id, and it is orthog-

onal to ∆f
n Id in the inner product 〈A,B〉 = trAB. Thus,

‖Hessf‖2 =

∥∥∥∥Hessf − ∆f

n
Id

∥∥∥∥2

+
(∆f)2

n
≥ (∆f)2

n
.

Integrating the above, using −∆f = λf and Green’s identity, we have:

n

∫
M
‖Hessf‖2 volg ≥

∫
M

(∆f)2 volg = −
∫
M
λf∆f volg = λ

∫
M
‖∇f‖2 volg .

2Recall from Linear Algebra that if A is a symmetric n× n matrix, then its traceless part A− trA
n

Id is

orthogonal to Id, and hence ‖A‖2 = ‖A− ( trA
n

)Id‖2 + (trA)2

n
, since ‖Id‖2 = n.

3



d) By Green’s identity applied with f1 = −∆f and f2 = f , we have∫
M

g(∇∆f,∇f) volg = −
∫
M

(∆f)2 volg

Since M is closed, integrating the Bochner identity, we have

0 =

∫
M

g(∇∆f,∇f) + ‖Hessf‖2 + Ric(∇f,∇f) volg,

so it follows that

∫
M

(∆f)2 volg =

∫
M
‖Hessf‖2 + Ric(∇f,∇f) volg.

e) If −∆f = λf and Ric ≥ (n− 1)k g, where k > 0, combining c) and d), we have:

λ2
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M
f2 volg =

∫
M

(∆f)2 volg =

∫
M
‖Hessf‖2 + Ric(∇f,∇f) volg

≥ λ

n

∫
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∫
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n
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so, if f 6≡ 0, we obtain:

(
λ+ n(n− 1)k

) ∫
M
‖∇f‖2 volg∫
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≤ nλ2.

Letting f ∈ C∞(M) be a function with
∫
M f volg = 0 that achieves the infimum

in the definition of λ1 := λ1(M, g), the above inequality implies(
λ1 + n(n− 1)k

)
λ1 ≤ nλ2

1.

So, dividing both sides by λ1 > 0, we conclude that λ1 ≥ nk.

Remark: The above bound λ1(Mn, g) ≥ nk for manifolds with Ric ≥ (n − 1)k g,
k > 0, is sharp: equality is achieved by the round sphere Sn(1/

√
k) ⊂ Rn+1 of constant

curvature sec = k, whose first eigenfunctions are height functions f(x) = 〈x, v〉, for any
fixed v ∈ Rn+1. Moreover, it is rigid : if (Mn, g) is a manifold with Ric ≥ (n − 1)k g,
k > 0, and λ1(Mn, g) = nk, then (Mn, g) is isometric to Sn(1/

√
k).

5. Let (P, g) be a Riemannian manifold, and M ⊂ N ⊂ P be submanifolds of one another,
with metrics induced by g. Prove or disprove (with a counter-example) the statements:

a) If M is totally geodesic in N and N is totally geodesic in P , then M is totally
geodesic in P ;

b) If M is minimal in N and N is minimal in P , then M is minimal in P ;
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c) If M is totally geodesic in N and N is minimal in P , then M is minimal in P ;

d) If M is minimal in N and N is totally geodesic in P , then M is minimal in P .

a) True. If M is totally geodesic in N and N is totally geodesic in P , then geodesics
in M are geodesics in N and geodesics in N are geodesics in P . Thus, geodesics
in M are geodesics in P , so M is totally geodesic in P .

b) False. Let P = R3, N be a catenoid in R3, and M be the (unique) closed geodesic
in the catenoid N . Then M is minimal (actually, totally geodesic) in N and N is
minimal in P , but M is not minimal in P since it is not a straight line.

c) False. Same counter-example as the previous item.

d) True. If N is totally geodesic in P , then the Levi-Civita connection ∇N of N
agrees with the Levi-Civita connection ∇P of P , i.e., for all X,Y ∈ TpN , we have
∇NXY = ∇PXY . Fix an orthonormal basis of TpP such that the first dimM vectors
are an orthonormal basis of TpM and the first dimN vectors are an orthonormal
basis of TpN . Since IIPM (X,Y ) = ∇PXY −∇MX Y = ∇NXY −∇MX Y , in this basis

IIPM =

(
IINM 0
0 0

)
,

so the trace of IIPM is equal to the trace of IINM , hence zero, i.e., M is minimal in P .

X. (Will not be graded) In Problem 1, prove Mn is the boundary of a convex body in Rn+1.

Given a unit vector v ∈ Rn+1, consider the height function fv(p) = 〈p, v〉, p ∈ Mn.
Clearly, ∇fv(p) is the orthogonal projection of v onto TpM , so p ∈M is a critical point
of fv if and only if v = ±~np. Since M 3 p 7→ ~np ∈ Sn is a diffeomorphism, it follows
that fv has exactly two critical points, say p±v ∈M . At such critical points,

(Hessfv)(X,Y ) = 〈∇X∇fv, Y 〉 = ±〈∇X~n, Y 〉 = ∓〈S~nX,Y 〉.

As explained in the solution to Problem 1, the eigenvalues κi of S~n satisfy κiκj > 0 for
all i 6= j. Thus, either κi > 0 for all 1 ≤ i ≤ n, or κi < 0 for all 1 ≤ i ≤ n, so (Hessfv)p±v
is either positive-definite or negative-definite. So each of the two critical points p±v is
either a local minimum or local maximum of fv. On the other hand, by compactness
of M , the function fv : M → R has a global minimum and a global maximum. Up to
relabeling, let p−v be the global minimum and p+

v be the global maximum, so for p ∈M ,

fv(p
−
v ) ≤ fv(p) ≤ fv(p+

v ).

This means that M ⊂ Rn+1 is contained in the slab Sv between two parallel hyper-
planes in Rn+1 with normal vector v, that are at a bounded distance from each other
and each intersects M at a single point p±v . By the Jordan–Brouwer separation theorem,
Rn+1\M has two connected components, the (bounded) interior of M and the exterior

5



of M . If x, y are in the interior of M , then the line segment xy joining them is entirely
in the interior of the slab Sv. In particular, p±v /∈ xy, since p±v is in the boundary of the
slab Sv. Our choice of v, and hence of p±v ∈M , was arbitrary, so it follows that no line
segment joining two points in the interior of M intersects M . Therefore, the interior of
M is convex, i.e., M is the boundary of a (strictly) convex body in Rn+1.

Remark: The above is known as Hadamard’s convexity theorem, and it was proved (in
dimension 3) in: J. Hadamard, Sur certaines proprietés des trajectoires en dynamique,
J. Math. Pures Appl. 3 (1897) 331–387.
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