
MATH71000, Spring 2024 Renato Ghini Bettiol

Homework #3

Due: Mar 20, 2024

1. Let γ : [a, b]→M be a geodesic and K be a Killing field on M . Show that the restriction
of K to γ is a Jacobi field along γ.

Since K is a Killing field, its flow φs is a 1-parameter subgroup of isometries of (M, g),
with φs = Id. Since the image of a geodesic by an isometry is a geodesic, it follows
that γs := φs(γ) are geodesics for all s ∈ (−ε, ε). Thus, the restriction of K to γ is the
variational field K(t) = d

dsγs(t)
∣∣
s=0

of a variation of γ by geodesics, hence it is a Jacobi
field along γ.

2. Show that if J(t) is a Jacobi field along a geodesic γ : [0, 1] → M , then g(J(t), γ̇(t)) =
a t+ b, where a = g(J ′(0), γ̇(0)) and b = g(J(0), γ̇(0)). In particular, if J(0) and J ′(0)
are both orthogonal to γ̇(0), then J(t) is orthogonal to γ̇(t) for all t ∈ [0, 1].

Since γ is a geodesic, D
dt γ̇ = 0 and hence d

dtg(J(t), γ̇(t)) = g(J ′(t), γ̇(t)) for all t ∈ [0, 1].
Differentiating again and using the Jacobi equation, we have

d
dtg(J ′(t), γ̇(t)) = g(J ′′(t), γ̇(t)) = −g

(
R(J(t), γ̇(t))γ̇(t), γ̇(t)

)
= 0

by the symmetries of R. Thus, the function [0, 1] 3 t 7→ g(J ′(t), γ̇(t)) is constant,
so g(J ′(t), γ̇(t)) = g(J ′(0), γ̇(0)) = a. Integrating in t, it follows that g(J(t), γ̇(t)) =
a t+g(J(0), γ̇(0)) = a t+b. In particular, if J(0) and J ′(0) are both orthogonal to γ̇(0),
then a = b = 0, so J(t) is orthogonal to γ̇(t) for all t ∈ [0, 1].

3. Let f : (−ε, ε) → R be a smooth function with f(0) = 1 and f ′(0) = 0. Consider the
submanifolds P and Q of R2 given by neighborhoods of (0, 0) in the y-axis and of (1, 0)
in the graph of x = f(y), i.e.,

P =
{

(0, s) ∈ R2 : s ∈ (−ε, ε)
}
, and Q =

{
(f(s), s) ∈ R2 : s ∈ (−ε, ε)

}
.

Consider the energy functional Eg : ΩP,Q → R on the set ΩP,Q of curves joining P to Q,
where g is the Euclidean metric. Let γ0 ∈ ΩP,Q be the geodesic γ0(t) = (t, 0), t ∈ [0, 1],
which is a critical point of Eg : ΩP,Q → R.

a) Show that the second variation of Eg : ΩP,Q → R at γ0 is positive-semidefinite
if and only if f ′′(0) ≥ 0. Conclude that if f ′′(0) > 0, then γ0 ∈ ΩP,Q is a local
minimum of energy.

b) If f ′′(0) ≤ 0, is the second variation of Eg : ΩP,Q → R at γ0 is negative-semidefinite?
What about the second variation of Eg among the subset of geodesics in ΩP,Q?

Recall the second variation of energy along a geodesic γ : [a, b] → M with variational
field V (s, t) = d

dsγs(t) is

d2

ds2
Eg(γs)

∣∣
s=0

= g
(
DV
ds , γ̇

) ∣∣∣b
a

+

∫ b

a
g
(
DV
dt ,

DV
dt

)
+ g(R(V, γ̇)V, γ̇) dt.



a) Let γs(t), s ∈ (−ε, ε), t ∈ [0, 1], be an arbitrary variation of γ0 in ΩP,Q, i.e., a
1-parameter family of curves in R2 joining P to Q, so with endpoints

γs(0) =
(
0, φ(s)

)
, and γs(1) =

(
f(ψ(s)), ψ(s)

)
,

for some smooth functions φ, ψ : (−ε, ε)→ R, with φ(0) = ψ(0) = 0.

The corresponding variational field V (s, t) = d
dsγs(t) satisfies

V (s, 0) =
(
0, φ′(s)

)
, and V (s, 1) =

(
f ′(ψ(s))ψ′(s), ψ′(s)

)
,

DV

ds
(s, 0) =

(
0, φ′′(s)

)
, and

DV

ds
(s, 1) =

(
f ′′(ψ(s))ψ′(s)2+f ′(ψ(s))ψ′′(s), ψ′′(s)

)
,

DV

ds
(0, 0) =

(
0, φ′′(0)

)
, and

DV

ds
(0, 1) =

(
f ′′(0)ψ′(0)2, ψ′′(0)

)
,

hence the second variation of energy reads

d2

ds2
Eg(γs)

∣∣
s=0

= g
(
DV
ds (0, 1), γ̇0(1)

)
− g
(
DV
ds (0, 0), γ̇0(0)

)
+

∫ 1

0
g
(
DV
dt ,

DV
dt

)
dt

= f ′′(0)ψ′(0)2 +

∫ 1

0
g
(
DV
dt ,

DV
dt

)
dt. (1)

Clearly, if f ′′(0) ≥ 0, then d2

ds2
Eg(γs)

∣∣
s=0
≥ 0 for all variations s 7→ γs ∈ ΩP,Q of γ0.

Conversely, if d2

ds2
Eg(γs)

∣∣
s=0
≥ 0 for an arbitrary variation s 7→ γs ∈ ΩP,Q of γ0,

then choose a variation with DV
dt

∣∣
s=0

= 0 and ψ′(0) = 1, e.g., set γs(t) = (tf(s), s),
to conclude that f ′′(0) ≥ 0.

P Q

γ0

Moreover, if f ′′(0) > 0, then d2

ds2
Eg(γs)

∣∣
s=0

> 0 for all variations s 7→ γs ∈ ΩP,Q of

γ0 for which γs(1) is nonconstant or DV
dt is not identically zero, so Eg(γs) > Eg(γ0)

for small s 6= 0. If a variation γs ∈ ΩP,Q has parallel variational field DV
dt ≡ 0,

then it is of the form γs(t) = (t+ a(s), b(s)). If, furthermore, it has γs(1) ≡ γ0(1),
then a ≡ 0 and b ≡ 0 so it is a trivial variation, i.e., V ≡ 0.
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b) From (1), the second variation of energy cannot be negative-semidefinite even
if f ′′(0) ≤ 0, since the term

∫ 1
0 g
(
DV
dt ,

DV
dt

)
dt is nonnegative and can be made

arbitrarily large, corresponding to variations of γ0 that oscillate with arbitrarily
high frequency, e.g., setting γs(t) = (t, s sin(nπt)) for n ∈ N sufficiently large, we
have g

(
DV
dt ,

DV
dt

)
= n2π2 cos(nπt) so

∫ 1
0 g
(
DV
dt ,

DV
dt

)
dt = nπ(2nπ+ sin(2nπ))/4 is

arbitrarily large. However, such variation γs(t) is not by other geodesics.

P Q

γ0

γs

A variation s 7→ γs by geodesics in R2 from P to Q, i.e., by straight line segments
from P to Q, can be written as

γs(t) = (c(s)t, a(s) t+ b(s)),

where a, b, c : (−ε, ε) → R are smooth functions with c(0) = 1, a(0) = b(0) = 0,
and f(a(s) + b(s)) = c(s) for all s because γs(1) ∈ Q. Thus,

V (s, t) = (c′(s)t, a′(s)t+ b′(s))

so DV
ds (s, t) = (c′′(s)t, a′′(s)t+ b′′(s)) and DV

dt (s, t) = (c′(s), a′(s)). Since f ′(0) = 0,
we have c′(0) = 0, but a′(0) is not constrained and can be chosen arbitrarily large.
Thus, once again,

∫ 1
0 g
(
DV
dt ,

DV
dt

)
dt =

∫ 1
0 a

′(0)2 dt can be made arbitrarily large,
e.g., by setting γs(t) = (tf(ns), nst) for sufficiently large n. This variation has a
fixed endpoint at γs(0) = (0, 0). If we let this endpoint vary along P , e.g., setting
γs(t) = (t, nst− ns), then it is geometrically evident (see figure) that γ0 is a local
minimum of s 7→ Eg(γs), hence the second variation is not negative-semidefinite.

P Q

γs

γ0
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Altogether, the critical point γ0 of Eg : ΩP,Q → R is a (strict) local minimum if
f ′′(0) > 0 and a saddle point if f ′′(0) < 0.

4. Let γ : [0, 1]→M be a geodesic with initial conditions γ(0) = p and γ̇(0) = v.

a) Prove that the Jacobi field J along γ with initial conditions J(0) = 0 and J ′(0) = y
is given by J(t) = d(expp)tvty.

b) Prove that the Jacobi field J along γ with initial conditions J(0) = x and J ′(0) = y
is given by J(t) = ∂

∂s expα(s) tw(s)
∣∣
s=0

, where α(s) is a curve with α(0) = p and
α̇(0) = x, and w(s) is a vector field along α(s) with w(0) = v and w′(0) = y.

a) Define a variation of γ(t) = expp tv by geodesics as follows:

γs(t) = expp(tv + sty).

Its variational field V (t) = d
dsγs(t)

∣∣
s=0

= d(expp)tvty is a Jacobi field along γ(t)
with V (0) = 0 and V ′(0) = y, thus, by uniqueness of solutions to ODEs with same
initial conditions, J(t) = V (t).

b) Define a variation of γ(t) = expp tv by geodesics as follows:

γs(t) = expα(s)(tw(s)),

where α(s) is a curve with α(0) = p and α̇(0) = x, and w(s) is a vector field along
α(s) with w(0) = v and w′(0) = y. Note that γ0(t) = γ(t).

Its variational field V (t) = d
dsγs(t)

∣∣
s=0

= ∂
∂s expα(s) tw(s)

∣∣
s=0

is a Jacobi field along

γ(t) with V (0) = ∂
∂s expα(s)(0)

∣∣
s=0

= α̇(0) = x and

V ′(0) = D
dt

∂
∂s expα(s) tw(s)

∣∣
s=0,t=0

= D
ds

∂
∂t expα(s) tw(s)

∣∣
t=0,s=0

= Dw
ds

∣∣
s=0

= y.

By uniqueness of solutions to ODEs with same initial conditions, J(t) = V (t).

5. Let R : ∧2TpM → ∧2TpM be the curvature operator of a Riemannian 3-manifold (M, g)
at a point p, and let {e1, e2, e3} be an orthonormal basis of TpM such that R is diagonal
in the basis {∗e1, ∗e2, ∗e3} of ∧2TpM , with eigenvalues ν1, ν2, ν3 respectively. (Why does
such a basis exist?) Prove that the sectional curvature of a 2-plane σ ⊂ TpM with unit
normal vector ~n ∈ TpM is given by:

sec(σ) = ν1 g(e1, ~n)2 + ν2 g(e2, ~n)2 + ν3 g(e3, ~n)2.

Conclude that, on a 3-manifold, the smallest and largest sectional curvatures at p ∈M
coincide with the smallest and largest eigenvalues of the curvature operator at p ∈M .
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Hint: The Hodge star operator1 ∗ : ∧2 TpM ∼= TpM is a linear isomorphism that maps
the oriented Grassmannian Gr+2 (TpM) ⊂ ∧2TpM to the unit sphere S2 ⊂ TpM ; an
oriented 2-plane σ ∈ Gr+2 (TpM) is mapped to its positively oriented unit normal.

Since R : ∧2TpM → ∧2TpM is symmetric, there exists an orthonormal basis {α1, α2, α3}
of ∧2TpM on which it is diagonal, i.e., 〈R(αi), αj〉 = νiδij . Let ei = ∗αi ∈ TpM , and
note that {e1, e2, e3} is an orthonormal basis because ∗ : ∧2 TpM → TpM is a linear
isometry. Since dimM = 3, we have that σ ∧ σ = 0 for all σ ∈ ∧2TpM , so the oriented
Grassmannian of 2-planes in TpM is a sphere Gr+2 (TpM) = {σ ∈ ∧2TpM : ‖σ‖ = 1}.
The image of a 2-plane σ ∈ Gr+2 (TpM) by ∗ is the (positively oriented) unit normal
~n = ∗σ ∈ TpM to σ. If σ = c1α1+c2α2+c3α3 ∈ Gr+2 (TpM), then ∗σ = c1e1+c2e2+c3e3,
and hence ci = g(ei, ~n). Thus, the sectional curvature of such a 2-plane σ is given by

sec(σ) = 〈R(σ), σ〉 =
∑
i,j
〈R(ciαi), cjαj〉 =

∑
i,j
cicj〈R(αi), αj〉 =

=
∑
i,j
cicjνiδij =

∑
i
c2i νi = ν1 g(e1, ~n)2 + ν2 g(e2, ~n)2 + ν3 g(e3, ~n)2.

Note that the above is invariant under the involution ~n 7→ −~n which reverses orientation
of σ, hence descends to the sectional curvature function sec : Gr2(TpM) → R on the
(unoriented) Grassmannian of 2-planes in TpM , given by the same expression.

Since sec : Gr2(TpM)→ R coincides with the restriction of the quadratic form

Q : R3 → R, Q(c1, c2, c3) = ν1c
2
1 + ν2c

2
2 + ν3c

2
3

to the sphere S2 = {(c1, c2, c3) ∈ R3 : c21+c22+c23 = 1}, it follows that its extremal values
are minGr2(TpM) sec = minS2 Q = min νi and maxGr2(TpM) sec = maxS2 Q = max νi.

X. (Will not be graded) Give an example of a Jacobi field along a geodesic which is not
the restriction of an ambient (local) Killing field, cf. Problem 2.

The reasoning here is that Jacobi fields infinitesimally preserve geodesics, while Killing
fields infinitesimally preserve the whole Riemannian metric. Thus, to find an example
of an ambient vector field which is not Killing but restricts to a Jacobi field along a
geodesic, it suffices to find a vector field that infinitesimally preserves geodesics but
not the metric. For instance, in Euclidean R2, any family of linear transformations
preserves the geodesics of R2 since it maps straight lines to straight lines, but only
orthogonal linear transformations preserve the metric. Take, e.g., the radial vector field
X = x ∂

∂x + y ∂
∂y , which is clearly not Killing since its flow φt = (t + 1)Id is not by

isometries of R2, but φt : R
2 → R2 maps straight lines to straight lines. The restriction

of X to any straight line in R2 is a Jacobi field along that geodesic which is not the
restriction of an ambient Killing vector field.

1https://en.wikipedia.org/wiki/Hodge_star_operator
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