
MATH71000, Spring 2024 Renato Ghini Bettiol

Homework #2

Due: Mar 1, 2024

1. Prove that
(
(a, b) × S1, dr2 + f(r)2dθ2

)
, where f : (a, b) → R is a smooth positive

function, embeds isometrically in R3 as a surface of revolution, i.e., via a map of the
form φ : (a, b)×S1 → R3, φ(r, θ) = (f(r) cos θ, f(r) sin θ, z(r)), if and only if |f ′(r)| ≤ 1.

From the above formula for φ : (a, b)× S1 → R3, we compute

φ∗dx = f ′(r) cos θ dr − f(r) sin θ dθ

φ∗dy = f ′(r) sin θ dr + f(r) cos θ dθ

φ∗dz = z′(r) dr

so φ∗(dx2 + dy2 + dz2) =
(
f ′(r)2 + z′(r)2

)
dr2 + f(r)2dθ2. If |f ′(r)| ≤ 1, then setting

z(r) =

∫ r

a

√
1− f ′(t)2 dt

we have that φ becomes the desired isometric embedding. If |f ′(r0)| > 1 for some r0,
then ∂

∂r has length > 1 with respect to φ∗(dx2+dy2+dz2) for r near r0 for any choice of

z(r), so φ cannot be made isometric, as ∂
∂r has length 1 with respect to dr2 + f(r)2dθ2.

2. Let π : (M, g)→ (N, h) be a Riemannian submersion.

a) Prove that if γ : [a, b]→M is a piecewise smooth curve, then Lh(π ◦ γ) ≤ Lg(γ).

b) Conclude that π does not increase distances, i.e., disth(π(p), π(q)) ≤ distg(p, q).

a) At each p ∈ M , let Vp = ker dπ(p) be the vertical subspace and Hp = (Vp)⊥g

be the horizontal subspace, so that TpM = Hp ⊕ Vp is a g-orthogonal direct
sum. Wherever it is defined, decompose γ̇(t) ∈ Tγ(t)M into horizontal and vertical
components, say γ̇(t) = γ̇(t)hor + γ̇(t)ver, with γ̇(t)hor ∈ Hγ(t) and γ̇(t)ver ∈ Vγ(t).
Then,

‖(π ◦ γ)′(t)‖h = ‖dπ(γ(t))γ̇(t)‖h = ‖γ̇(t)hor‖g ≤ ‖γ̇(t)‖g,
where the second equality holds because π is a Riemannian submersion. Integrat-
ing the above over t ∈ [a, b], it follows that Lh(π ◦ γ) ≤ Lg(γ).

b) Recall that distances are defined as follows:

distg(p, q) = inf{Lg(γ) : γ piecewise smooth path joining p and q}
disth(π(p), π(q)) = inf{Lh(α) : α piecewise smooth path joining π(p) and π(q)}

Thus, given ε > 0, there exists a piecewise smooth path γ joining p and q such that
Lg(γ) < distg(p, q) + ε. By part a), we have that π ◦ γ is a piecewise smooth path
joining π(p) and π(q) such that Lh(π ◦ γ) ≤ Lg(γ). Since disth(π(p), π(q)) is the
infimum of lengths of all such paths, disth(π(p), π(q)) ≤ Lh(π ◦γ) < distg(p, q)+ε.
The conclusion follows by letting ε↘ 0.



3. Let M be a smooth manifold and ∇ be a connection on TM . Given vector fields X
and Y on M , show that

(∇XY )(p) =
d

dt
P−1t (Y (γ(t)))

∣∣∣
t=0

,

where γ is an integral curve of X with γ(0) = p, and Pt : TpM → Tγ(t)M is the parallel
transport along γ according to ∇. (Therefore, a connection ∇ determines parallel
transport maps P ; conversely, parallel transports P determine ∇.)

Since γ̇(t) = X(γ(t)) for t ∈ (−ε, ε) and γ(0) = p, we have that

(∇XY )(p) = ∇X(p)Y = ∇X(γ(0))Y = ∇γ̇(0)Y =
D

dt
Y (γ(t))

∣∣∣
t=0

, (1)

where D
dt denotes the covariant derivative of vector fields along γ(t). Let { ∂

∂xi
} be a

basis of TpM and set Ei(t) := Pt
(
∂
∂xi

)
for all t ∈ (−ε, ε), which form a basis of Tγ(t)M .

Note that P−1t Ei(t) = Ei(0). There exist functions yi(t) such that, for t ∈ (−ε, ε),

Y (γ(t)) =
n∑
i=1

yi(t)Ei(t), and so P−1t (Y (γ(t))) =
n∑
i=1

yi(t)Ei(0). (2)

Moreover,

D

dt
Y (γ(t)) =

n∑
i=1

y′i(t)Ei(t) + yi(t)
D

dt
Ei(t) =

n∑
i=1

y′i(t)Ei(t). (3)

Therefore, by (3) and (2), we have

D

dt
Y (γ(t))

∣∣∣
t=0

=
n∑
i=1

y′i(0)Ei(0) =
d

dt
P−1t (Y (γ(t)))

∣∣∣
t=0

. (4)

The conclusion follows from (1) and (4).

4. Let (M, g) be a Riemannian manifold, γ : I →M be a smooth path, where 0 ∈ I ⊂ R,
and Pt : Tγ(0)M → Tγ(t)M , t ∈ I, be the result of parallel transporting vectors along
γ with respect to the Levi-Civita connection. Show that Pt is a linear isometry for all
t ∈ I and, if M is oriented, then Pt preserves orientation.

Recall that Pt(v) = V (t) is the unique vector field along γ(t) solving the ODE DV
dt = 0

with initial condition V (0) = v. Given v, w ∈ Tγ(0)M and λ ∈ R, let V (t) = Pt(v) and

W (t) = Pt(w), and note that D
dt(V+λW ) = DV

dt +λDWdt = 0, and V (0)+λW (0) = v+λw,
so Pt(v + λw) = V (t) + λW (t) by uniqueness of solutions to ODEs with same initial
conditions. Moreover, by metric compatibility, we have

d

dt
gγ(t)(V (t),W (t)) = gγ(t)

(
DV

dt
,W

)
+ gγ(t)

(
V,
DW

dt

)
= 0,
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so gγ(t)(Ptv, Ptw) = gγ(t)(V (t),W (t)) = gγ(0)(V (0),W (0)) = gγ(0)(v, w) for all t ∈ I,
i.e., Pt is a linear isometry.

If M is oriented, let {e1, . . . , en} be a positively oriented basis of Tγ(0)M , e.g., set

ei = ∂
∂xi

∣∣
γ(0)

to be coordinate vector fields at γ(0). There are smooth functions aij(t)

such that Ptei =
∑

j aij(t)
∂
∂xj

∣∣
γ(t)

, and aij(0) = δij . The function f : I → R given by

f(t) = det(aij(t)) is continuous and nowhere vanishing, because Pt is invertible for each
t ∈ I, so f(0) = 1 implies that f(t) > 0 for all t ∈ I. Thus, Pt is an oriented isometry.

5. (Foucault) Let γ be any latitude on the unit round sphere S2, i.e., there exists 0 < ρ < π
such that, in polar coordinates, γ(θ) = (ρ, θ) for θ ∈ [0, 2π]. Describe explicitly the
map Pθ : Tγ(0)S

2 → Tγ(θ)S
2 given by parallel transport of vectors along γ with respect

to the Levi-Civita connection of S2. By Problem 4, we know P2π : Tγ(0)S
2 → Tγ(0)S

2

is an orientation-preserving isometry of Tγ(0)S
2 ∼= R2, hence a rotation of angle α(ρ).

Compute α(ρ) explicitly in terms of ρ.

Hint: Embed S2 isometrically in R3, and note that there is a unique cone C ⊂ R3

tangent to S2 along the latitude γ. Show that parallel transport along γ is the same,
whether with respect to the Levi-Civita connection on S2 or the flat connection on C.

First, consider the northern hemisphere 0 < ρ < π
2 , and let C be the unique cone in

R3 that is tangent to the unit sphere S2 ⊂ R3 along γ(θ) = (ρ, θ). Note C is the cone
with apex A = (0, 0, sec ρ) and aperture angle φ = π

2 − ρ, obtained rotating around the
z-axis the straight line through A and γ(0) in the figure below.

z

x0

A

γ(0)

ρ

φ
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In particular, C is isometric to an Euclidean wedge in R2 with apex at the origin and
angle 2π sinφ = 2π cos ρ, see figure below (where the dotted lines indicate points that
are identified). The circular arc of radius tan ρ in this wedge (shown as the thick blue
curve below) is mapped to γ(θ), and C is tangent to S2 along the image of this curve.

tan ρ
A

2π cos ρ

γ(0)

γ̇(0)

γ(θ)

γ̇(θ)

Pθγ̇(0)

γ(θ)
γ̇(θ)

Pθγ̇(0)

γ(2π)

γ̇(2π)

P2πγ̇(0)

Parallel transport along γ only depends on the Riemannian metric along γ up to first
derivatives. Since the round metric of S2 and the Euclidean metric on C are tangent to
one another along γ, their metrics agree up to first derivatives. Thus, parallel transport
along γ is the same, whether with respect to the Levi-Civita connection on S2 or the
Euclidean connection on C. Parallel transport with respect to the latter is the constant
map Pθv = v. This is illustrated by the red vectors above, which are the result Pθγ̇(0)
of parallel transporting the vector γ̇(0) along γ(θ), θ ∈ [0, 2π], which traces the arc
[0, 2π cos ρ] 3 t 7→ (cos t, sin t) ∈ R2, with initial velocity (0, 1). In particular, Pθγ̇(0) is
a (clockwise) rotation of γ̇(θ) by the angle θ cos ρ, for each θ ∈ [0, 2π]. From the previous
exercise, we know that Pθ : Tγ(0)S

2 → Tγ(θ)S
2 is an oriented isometry, therefore it is a

(counterclockwise) rotation of angle −θ cos ρ on every vector.

The southern hemisphere, where π
2 < ρ < π, is isometric to the northern hemisphere

via the reflection ρ 7→ π− ρ about the equator, which reverses orientations. Thus, for a
latitude with π

2 < ρ < π, the parallel transport map Pθ is a counterclockwise rotation
of angle θ cos(π − ρ) = −θ cos ρ. Altogether, for any 0 < ρ < π, the parallel transport
map Pθ : Tγ(0)S

2 → Tγ(θ)S
2 is a (counterclockwise) rotation of angle −θ cos ρ on every

vector. In particular, α(ρ) = −2π cos ρ.

Alternatively, setting (a, b) = (0, π) and f(r) = sin r in the computation of Christoffel
symbols from the next exercise, we see that the vector field V (θ) = v1(θ)

∂
∂r + v2(θ)

∂
∂θ
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is parallel along γ(θ) = (ρ, θ) if and only if

v′1(θ) = sin ρ cos ρ v2(θ)

v′2(θ) = − cot ρ v1(θ).

Thus, v′′2(θ) = − cot ρ v′1(θ) = − cos2 ρ v2(θ), which implies that, if v′2(0) = 0, then

v2(θ) = v2(0) cos(θ cos ρ).

Thus, given the initial condition V (0) = ∂
∂θ , the unique solution to the above is

PθV (0) = V (θ) = sin ρ sin(θ cos ρ) ∂∂r + cos(θ cos ρ) ∂∂θ ,

which directly shows that Pθ is a counterclockwise rotation of angle −θ cos ρ.

The name Foucault is attached to this exercise due to its relation with Foucault’s
pendulum1 as explained in Shifrin’s notes2 (p. 71); transcribed below with our notation:

Foucault observed in 1851 that the swing plane of a pendulum located on the
latitude circle γ(θ) = (ρ, θ) precesses with a period of T = 24/ cos ρ hours.
We can use the result [above] to explain this. We imagine the Earth as fixed
and “transport” the swinging pendulum once around the circle in 24 hours.
If we make the pendulum very long and the swing rather short, the motion
[of the tip] will be “essentially” tangential to the surface of the Earth. If we
move slowly around the circle, the forces will be “essentially” normal to the
sphere. In particular, letting R denote the radius of the Earth (approximately
3960 mi), the tangential component of the centripetal acceleration is

(R sin ρ) cos ρ

(
2π

24

)2

≤ 2π2R

242
∼= 135.7 mi/hr2 ∼= 0.0553 ft/sec2 ∼= 0.17% g.

Thus, the “swing vector field” is, for all practical purposes, parallel along the
curve. Therefore, it turns through an angle of α(ρ) = −2π cos ρ in one trip
around the circle, so it takes 2π

(2π cos ρ)/24 = 24
cos ρ hours to return to its original

swing plane.

6. (Clairaut) Let
(
(a, b) × S1,dr2 + f(r)2dθ2

)
, where 0 ≤ a < b ≤ +∞, S1 = [0, 2π]/ ∼,

and f : (a, b)→ R is a positive smooth function.

a) Compute the Christoffel symbols Γkij , 1 ≤ i, j, k ≤ 2, of the Levi-Civita connection.

b) Explicitly write the geodesic equation for a curve γ in the coordinates (r, θ), i.e.,
γ(t) = (r(t), θ(t)), as a coupled system of second order ODEs on r(t) and θ(t).

1https://en.wikipedia.org/wiki/Foucault_pendulum
2https://math.franklin.uga.edu/sites/default/files/inline-files/ShifrinDiffGeo.pdf
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c) Use b) to obtain two special types of geodesics: all meridians γ(t) = (t, θ0) for
fixed θ0, and, possibly, some parallels γ(t) = (r0, t) for fixed r0 ∈ (a, b). What
does such an r0 need to satisfy?

d) Multiply the equation θ̈(t) + · · · = 0 by f2 to obtain a first integral3 of this ODE
system, i.e., a preserved quantity. Recognize this quantity as g

(
γ̇, ∂∂θ

)
and conclude

that it is constant along γ. (This is called the Clairaut relation.)

e) Show that the equation r̈(t) + · · · = 0 is equivalent to γ having constant speed,
i.e., g(γ̇, γ̇) being constant along γ, provided ṙ 6≡ 0.

f) Show that if a unit speed geodesic γ is not a meridian, then we can globally invert
θ(t) and write γ(t) = (r(t), θ(t)) as γ(θ) = (r(θ), θ). What ODE does r(θ) satisfy?

g) Show that if a unit speed geodesic γ is not a parallel, then we can locally invert
r(t) and write γ(t) = (r(t), θ(t)) as γ(r) = (r, θ(r)). What ODE does θ(r) satisfy?

a) The Christoffel symbols Γkij , 1 ≤ i, j, k ≤ 2, of the Levi-Civita connection are

Γkij = 1
2

∑̀
gk`
(
∂
∂xi

g`j + ∂
∂xj

gi` − ∂
∂x`

gij
)
.

As g11 = 1, g12 = 0, g22 = f(r)2, the only nonvanishing Christoffel symbols are

Γ2
12 = Γ2

21 =
f ′(r)

f(r)
and Γ1

22 = −f(r)f ′(r).

b) Using the above, the geodesic equation for γ(t) = (r(t), θ(t)) is the following
coupled system of 2 second order ODEs, where we denote by ẋ the derivative dx

dt :

r̈ − f(r)f ′(r)θ̇2 = 0

θ̈ + 2
f ′(r)

f(r)
ṙθ̇ = 0

c) A meridian has r(t) = t and θ(t) ≡ θ0, hence clearly satisfies the above system of
ODEs. A parallel has r(t) ≡ r0 and θ(t) = t, so it satisfies the above system of
ODEs if and only if f ′(r0) = 0, i.e., if and only if r0 ∈ (a, b) is a critical point of f .

d) Multiplying θ̈ + 2f
′(r)
f(r) ṙθ̇ = 0 by f(r)2, we find

0 = f(r)2θ̈ + 2f(r)f ′(r)ṙθ̇ = d
dt(f(r)2θ̇),

so the quantity f(r(t))2θ̇(t) ≡ C is constant4 along the geodesic γ = (r, θ). This
quantity is precisely g

(
γ̇, ∂∂θ

)
= f(r)2θ̇.

3Such a first integral for this system of 2 second order ODEs allows us to reduce it to a single first order
ODE, see f) and g). If |f ′(t)| ≤ 1, then γ describes the trajectory of a particle moving along a surface of
revolution in R3 without external forces, and this preserved quantity is the angular momentum of γ.

4Note that the values of the constant C may be different for different geodesics.
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e) We have g(γ̇, γ̇) = ṙ2 + f(r)2θ̇2. This quantity is constant along γ if and only if

r̈ṙ + f(r)f ′(r)ṙθ̇2 + f(r)2θ̈θ̇ = 0.

Using the equation for θ̈, i.e., the Clairaut relation, the above can be rewritten as

0 = r̈ṙ + f(r)f ′(r)ṙθ̇2 + f(r)2θ̇
(
− 2f

′(r)
f(r) ṙθ̇

)
= ṙ
(
r̈ − f(r)f ′(r)θ̇2

)
.

f) If γ is not a meridian, then θ̇ 6≡ 0, i.e., the constant C such that f(r)2θ̇ ≡ C
is nonzero. Thus, θ(t) has nowhere vanishing derivative, hence is monotonic and
admits a global inverse t = t(θ), so we can write γ(θ) = (r(t(θ)), θ). Since γ has
unit speed geodesic, ṙ2 + f(r)2θ̇2 = 1. Solving for ṙ we find

ṙ = ±
√

1− f(r)2θ̇2 = ±

√
1− C2

f(r)2
.

By the Chain Rule,
dr

dθ
=
ṙ

θ̇
=
ṙ f(r)2

C
,

so we conclude that r(θ) satisfies the first order ODE

dr

dθ
= ±

f(r)
√
f(r)2 − C2

C
.

g) If γ is not a parallel, then ṙ 6≡ 0 but it may have zeros, so r(t) need not be
monotonic. Restricting to an interval around t0 such that ṙ(t0) 6= 0, we may locally
invert t = t(r) and write γ(r) = (r, θ(t(r))). Since γ has unit speed geodesic and
f(r)2θ̇ = C, as in the previous item (except that, here, C may be zero), we have

ṙ = ±

√
1− C2

f(r)2
.

By the Chain Rule,
dθ

dr
=
θ̇

ṙ
=

C

ṙ f(r)2
,

so we conclude that θ(r) satisfies the first order ODE

dθ

dr
= ± C

f(r)
√
f(r)2 − C2

.

Note that the right-hand side of the above is a function of r, so we may integrate:

θ(r) = ±
∫

C

f(r)
√
f(r)2 − C2

dr.
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X. (Will not be graded) Use Problem 6 to find all unit speed geodesics of S2, R2, and H2.

For S2, use f(r) = sin r in the above and conclude that the only parallel which is a
geodesic is the equator r = π/2; all other geodesics are either meridians or given by
γ(r) = (r, θ(r)) with

θ(r) = ±
∫

C

sin r
√

sin r2 − C2
dr = ± arctan

( √
2C cos r√

1− 2C2 − cos 2r

)
+ θ0.

Writing γ(r) in Euclidean coordinates (cos θ(r) sin r, sin θ(r) sin r, cos r) ∈ S2 ⊂ R3 it
becomes clear that γ(r) is contained in a linear subspace of R3, i.e., is a great circle.

For R2, use f(r) = r in the above and conclude that no parallels are geodesics; geodesics
are either meridians (lines through the origin) or given by γ(r) = (r, θ(r)) with

θ(r) = ±
∫

C

r
√
r2 − C2

dr = ± arctan

(√
r2 − C2

C

)
+ θ0.

Writing γ(r) in polar coordinates (r cos θ(r), r sin θ(r)) ∈ R2 it becomes clear that γ(r)
is a straight line.

For H2, use f(r) = sinh r in the above and conclude that no parallels are geodesics;
geodesics are either meridians or given by γ(r) = (r, θ(r)) with

θ(r) = ±
∫

C

sinh r
√

sinh r2 − C2
dr = ± arctan

( √
2C cosh r√

−1− 2C2 + cosh 2r

)
+ θ0.

Writing γ(r) in Lorentzian coordinates (cos θ(r) sinh r, sin θ(r) sinh r, cosh r) ∈ H2 ⊂
R2,1 it becomes clear that γ(r) is contained in a linear subspace of Minkowski space
R2,1, i.e., is a great hyperbola.
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