MATH71000, Spring 2024 Renato Ghini Bettiol

Homework #1

DuEe: FEB 7, 2024

1. Prove that two Riemannian metrics g and h on the circle $' are isometric if and only
if ($1,g) and ($',h) have the same length.

Clearly, if ($',g) and ($',h) do not have the same length, then they are not isometric.
For the converse, suppose ($1, g) and (S!, h) have the same length. Write g = f1(0)? d§?
and h = f5(#)%d#?, where 6: (0,27) — $' is a coordinate chart for $* = [0, 27]/ ~ whose
image is the complement of a point. By assumption, the lengths coincide, i.e.,

21 21

f1(0)do = f2(0)d0 = 27r, for some r > 0.
0 0

Let ¢;: [0,27] — [0, 277] be the increasing smooth functions ¢;(6) = foe fi(t) dt, which
induce diffeomorphisms ¢;: St — [0,277]/ ~, for i = 1,2. Let ds? be the metric on
[0, 277/ ~ induced by the Euclidean metric on [0, 27r]. Then ¢ids? = g and ¢3ds? = h,
so we have an isometry (¢5 ' o ¢1)*h = (¢1)*((p51)*h) = g.

2. Let g11, 812, €22 be real numbers such that g;; > 0 and g11822 — g%Q > (0. Prove that the
“constant” Riemannian metric g = g1 du®42g12 dudv+gas dv? on R? is isometric to the
“usual” Euclidean metric gpuq = da? +dy? by finding an explicit linear diffeomorphism
¢: R?> = R? such that ¢*gpua = g.

If ¢: R?> — R? is a linear diffeomorphism given by

=2 0

then ¢*grua = (a? + ¢) du? + 2(ab + cd) dudv + (b% + d?) dv?.

Thus, solving ¢*grua = g under the above assumptions, we find
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3. Let f: U C R" — R be a smooth function. Find the coordinate expression (g;;’s) of
a Riemannian metric g such that the embedding ¢: (U,g) — (R"*!, ggua) given by
¢(z) = (z, f(x)) is isometric. Show that the volume of (U, g) is

/\/1+HVf||2dx1...dxn,
U
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where ||V f]? =, <§—i) is the square norm of the Euclidean gradient of f.



The pullback metric g = ¢*(ggua) With respect to ¢ = (¢1,...,6n): M — RY is
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so, with N =n+1, we set ¢q(z) = x4 for 1 < a <n and ¢,41(x) = f(x), and find that
the pullback metric is
of of

87331837]
In other words, g = Id + Vf ® Vf where, as a matrix, V/ @ Vf =Vf- (V)T if V[ is

a column vector. From basic Linear AlgebraE det(Id + vw®) = 1 + (v, w) for column
vectors v, w, so

gij = 0ij +

det(g) = det (Id+ Vf @ Vf) =14 [|Vf]?

hence the volume form of (U,g) is volg = \/1+ ||V f|[?dz; ...dz,, so the formula for
the volume follows.

4. A few different ways to see the unit round metric on the open hemisphere:

(a) Use the previous exercise to find a coordinate expression for the metric g® induced
on the hemisphere {(x,y,2) € R3 : 22+4?+2? = 1,2 > 0} and compute its volume.

(b) Compute the volume of the unit ball in R? with g(®) = m(dw2 +dy?).

(c) Rewrite g in polar coordinates (x,y) = (rcosf,rsinf) and reparametrize the
radial direction by arclength to obtain an (isometric) metric g(®) = dp?+sin? p d§2.
Compute its volume once again, but now in the coordinates (p, 6).

(a) Let U = {(z,y) € R?: 22 + y?> < 1} and f: U — R be f(z,y) = /1 — 22 — 32

Then, Vf(z,y) = = —_— |, so by the previous exercise
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Moreover, the volume form of g is
22 + 32 1
VOlg(a) = \/1 + m d.’lﬁ'dy = m d.’L’dy,

from which we compute

1 o 1 F
(a)y — _ — S =
Vol(U, g'*) //U — dzdy /0 /0 - rdrdf = 2.

'See e.g., https://en.wikipedia.org/wiki/Matrix_determinant_lemma.
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(b) The volume form of g(?) = 0 da? + dy?) is

1+m2+y )2 (
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from which we compute

2
Vol(U, g // T x2 dxdy = / / vy rdrdf = 2m.

(c) Using polar coordinates (z,y) = (7" cosf,rsinf), we have

T =7rcosf
y =rsinf
and hence
dx = cosOdr — rsinf do
dy = sinfdr + rcos 0 db
and

dz? = cos? 0 dr? — 2rsin 0 cos 6 drdf + r? sin® 0 d6?
dzdy = sin 6 cos @ dr? + r(cos? § — sin? §) drdf — r? sin 6 cos 0 d§*
dy? = sin? 0 dr? + 2rsin @ cos @ drdd + r? cos 6 dh*

Substituting the above into the expression for g® we find

4(dz? + dy?) 4 s oo 2\ ., 2r \?. .,
5 g = 22(dr + r4dh°) = 5 dr + 5 do~.
(14 22+ 4y?) (1+172) 1+ 1+r

To reparametrize the radial coordinate r by arclength, we introduce

2

s
p(r) = /0 T e dt = 2arctanr

so that dp =

2
dr and hence dp? = ( 2 ) dr?. Since r = tan §, we find

1+ 1+r2 1412

2 >2 2 ( 2r )2 2 2 ( 2tan § )2 2 2 | 2 2
dr® + do* = dp” + df* = dp® + sin” pdo~,
<1+r2 1+r2 1+ tan? £

which is g(©), as desired. Note that 0 < 7 < 1 corresponds to 0 < p < 5. Finally,
the volume form of the above metric is

volg(c) = sin pdpdé,

from which we compute
21
Vol(U, g / / sin pdpdf = 2.
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X. (Will not be graded) The metric tensors g® o®) and gl© from the previous exercise are
not equal to one another, but you have plenty of reason to suspect they are isometric
to one another. In fact, g and g(© are isometric by construction, but it remains
unclear (at this moment) why they are also isometric to g® . Try to find an explicit
diffeomorphism ¢ of the unit ball in R? such that ¢*(g(®) is equal to either g®) or g(©).

Owing to spherical coordinates in R? and some geometric intuition, namely the fact
that p in g is the distance to the north pole, we are led to consider the diffeomorphism
b (B(C),g(c)) N (B(a),g(a))
¢(p,0) = (cosBsin p, sin @ sin p)
where, to be very precise, B® = {(z,y) € R? : 2% + 3> < 1} \ {(2,0) : 0 <z < 1} and
B© ={(p,0):0< p<Z,0<0<2r}. (Generally, one pretends ¢ is defined globally.)
Let us check that ¢*(g®) = g(©). Setting (z,y) = ¢(p, ), that is,

x = cosfsinp
_ indsi (1)
y =sinfsinp
we have

¢*dx = cosfcos pdp — sinfsin pdé
¢*dy = sin @ cos pdp + cos O sin p df
and hence
¢*da? = cos? 0 cos? pdp? — 2 cos O cos psin O sin pdpdf + sin® 0 sin? p d§>
¢*dx ¢*dy = cos sin @ cos® pdp? + (cos?  — sin? 0) cos psin p dpdd @)
— sin 6 cos 0 sin? p d6?
¢*dy? = sin® 0 cos? pdp? + +25sin 0 cos p cos O sin p dpdf + cos? 0 sin? p dh?.
Replacing in the first step below, and then in the last step below (and patiently
simplifying the result a lot),
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(14 cos? fsin? p 5rda? + 2 cos 6 sin 0 sin? pd)*dx 5 dy
cos? p cos? p
c 2 2
sin” 6 sin
+ (1 + 2/)) ¢*dy?
cos? p

= dp? + sin? pd6?,
so we obtain the desired conclusion ¢*(g®) = g(©. (To make computations more
concise, usually one omits the symbol “¢*” in intermediate steps, e.g., in the left-hand
side of , simply writing dax = cosf cos pdp — sin @ sin p df instead of ¢*dz = ....)



