
MATH71000, Spring 2024 Renato Ghini Bettiol

Homework #1

Due: Feb 7, 2024

1. Prove that two Riemannian metrics g and h on the circle S1 are isometric if and only
if (S1, g) and (S1,h) have the same length.

Clearly, if (S1, g) and (S1,h) do not have the same length, then they are not isometric.
For the converse, suppose (S1, g) and (S1,h) have the same length. Write g = f1(θ)

2 dθ2

and h = f2(θ)
2 dθ2, where θ : (0, 2π)→ S1 is a coordinate chart for S1 = [0, 2π]/∼ whose

image is the complement of a point. By assumption, the lengths coincide, i.e.,∫ 2π

0
f1(θ) dθ =

∫ 2π

0
f2(θ) dθ = 2πr, for some r > 0.

Let φi : [0, 2π] → [0, 2πr] be the increasing smooth functions φi(θ) =
∫ θ
0 fi(t) dt, which

induce diffeomorphisms φi : S
1 → [0, 2πr]/ ∼, for i = 1, 2. Let ds2 be the metric on

[0, 2πr]/∼ induced by the Euclidean metric on [0, 2πr]. Then φ∗1ds
2 = g and φ∗2ds

2 = h,
so we have an isometry (φ−1

2 ◦ φ1)∗h = (φ1)
∗((φ−1

2 )∗h) = g.

2. Let g11, g12, g22 be real numbers such that g11 > 0 and g11g22− g212 > 0. Prove that the
“constant” Riemannian metric g = g11 du2+2g12 dudv+g22 dv2 onR2 is isometric to the
“usual” Euclidean metric gEucl = dx2+dy2 by finding an explicit linear diffeomorphism
φ : R2 → R2 such that φ∗gEucl = g.

If φ : R2 → R2 is a linear diffeomorphism given by

φ(u, v) =

(
a b
c d

)(
u
b

)
,

then φ∗gEucl = (a2 + c2) du2 + 2(ab+ cd) dudv + (b2 + d2) dv2.

Thus, solving φ∗gEucl = g under the above assumptions, we find

φ(u, v) =
1
√

g11

(
g11 g12

0
√

g11g22 − g212

)(
u
v

)
.

3. Let f : U ⊂ Rn → R be a smooth function. Find the coordinate expression (gij ’s) of
a Riemannian metric g such that the embedding φ : (U, g) → (Rn+1, gEucl) given by
φ(x) = (x, f(x)) is isometric. Show that the volume of (U, g) is∫

U

√
1 + ‖∇f‖2 dx1 . . . dxn,

where ‖∇f‖2 =
∑

i

(
∂f
∂xi

)2
is the square norm of the Euclidean gradient of f .



The pullback metric g = φ∗(gEucl) with respect to φ = (φ1, . . . , φN ) : M → RN is

gij =

N∑
a=1

∂φa
∂xi

∂φa
∂xj

,

so, with N = n+ 1, we set φa(x) = xa for 1 ≤ a ≤ n and φn+1(x) = f(x), and find that
the pullback metric is

gij = δij +
∂f

∂xi

∂f

∂xj
.

In other words, g = Id +∇f ⊗∇f where, as a matrix, ∇f ⊗∇f = ∇f · (∇f)T if ∇f is
a column vector. From basic Linear Algebra,1 det(Id + vwT ) = 1 + 〈v, w〉 for column
vectors v, w, so

det(g) = det
(
Id +∇f ⊗∇f

)
= 1 + ‖∇f‖2,

hence the volume form of (U, g) is volg =
√

1 + ‖∇f‖2 dx1 . . . dxn, so the formula for
the volume follows.

4. A few different ways to see the unit round metric on the open hemisphere:

(a) Use the previous exercise to find a coordinate expression for the metric g(a) induced
on the hemisphere {(x, y, z) ∈ R3 : x2+y2+z2 = 1, z > 0} and compute its volume.

(b) Compute the volume of the unit ball in R2 with g(b) = 4
(1+x2+y2)2

(dx2 + dy2).

(c) Rewrite g(b) in polar coordinates (x, y) = (r cos θ, r sin θ) and reparametrize the
radial direction by arclength to obtain an (isometric) metric g(c) = dρ2+sin2 ρdθ2.
Compute its volume once again, but now in the coordinates (ρ, θ).

(a) Let U = {(x, y) ∈ R2 : x2 + y2 < 1} and f : U → R be f(x, y) =
√

1− x2 − y2.

Then, ∇f(x, y) =

(
−x√

1−x2−y2
, −y√

1−x2−y2

)
, so by the previous exercise

g(a) =

(
1 +

x2

1− x2 − y2

)
dx2 +

2xy

1− x2 − y2
dxdy +

(
1 +

y2

1− x2 − y2

)
dy2.

Moreover, the volume form of g(a) is

volg(a) =

√
1 +

x2 + y2

1− x2 − y2
dxdy =

√
1

1− x2 − y2
dxdy,

from which we compute

Vol(U, g(a)) =

∫∫
U

√
1

1− x2 − y2
dxdy =

∫ 2π

0

∫ 1

0

√
1

1− r2
rdrdθ = 2π.

1See e.g., https://en.wikipedia.org/wiki/Matrix_determinant_lemma.
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(b) The volume form of g(b) = 4
(1+x2+y2)2

(dx2 + dy2) is

volg(b) =
4

(1 + x2 + y2)2
dxdy,

from which we compute

Vol(U, g(b)) =

∫∫
U

4

(1 + x2 + y2)2
dxdy =

∫ 2π

0

∫ 1

0

4

(1 + r2)2
rdrdθ = 2π.

(c) Using polar coordinates (x, y) = (r cos θ, r sin θ), we have

x = r cos θ

y = r sin θ

and hence

dx = cos θ dr − r sin θ dθ

dy = sin θ dr + r cos θ dθ

and

dx2 = cos2 θ dr2 − 2r sin θ cos θ drdθ + r2 sin2 θ dθ2

dxdy = sin θ cos θ dr2 + r(cos2 θ − sin2 θ) drdθ − r2 sin θ cos θ dθ2

dy2 = sin2 θ dr2 + 2r sin θ cos θ drdθ + r2 cos2 θ dθ2

Substituting the above into the expression for g(b) we find

4(dx2 + dy2)

(1 + x2 + y2)2
=

4

(1 + r2)2
(dr2 + r2dθ2) =

(
2

1 + r2

)2

dr2 +

(
2r

1 + r2

)2

dθ2.

To reparametrize the radial coordinate r by arclength, we introduce

ρ(r) =

∫ r

0

2

1 + t2
dt = 2 arctan r

so that dρ = 2
1+r2

dr and hence dρ2 =
(

2
1+r2

)2
dr2. Since r = tan ρ

2 , we find(
2

1 + r2

)2

dr2 +

(
2r

1 + r2

)2

dθ2 = dρ2 +

(
2 tan ρ

2

1 + tan2 ρ
2

)2

dθ2 = dρ2 + sin2 ρ dθ2,

which is g(c), as desired. Note that 0 < r < 1 corresponds to 0 < ρ < π
2 . Finally,

the volume form of the above metric is

volg(c) = sin ρdρdθ,

from which we compute

Vol(U, g(c)) =

∫ 2π

0

∫ π
2

0
sin ρdρdθ = 2π.
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X. (Will not be graded) The metric tensors g(a), g(b), and g(c) from the previous exercise are
not equal to one another, but you have plenty of reason to suspect they are isometric
to one another. In fact, g(b) and g(c) are isometric by construction, but it remains
unclear (at this moment) why they are also isometric to g(a). Try to find an explicit
diffeomorphism φ of the unit ball in R2 such that φ∗(g(a)) is equal to either g(b) or g(c).

Owing to spherical coordinates in R3 and some geometric intuition, namely the fact
that ρ in g(c) is the distance to the north pole, we are led to consider the diffeomorphism

φ :
(
B(c), g(c)

)
→
(
B(a), g(a)

)
φ(ρ, θ) = (cos θ sin ρ, sin θ sin ρ)

where, to be very precise, B(a) = {(x, y) ∈ R2 : x2 + y2 < 1} \ {(x, 0) : 0 ≤ x < 1} and
B(c) = {(ρ, θ) : 0 < ρ < π

2 , 0 < θ < 2π}. (Generally, one pretends φ is defined globally.)

Let us check that φ∗(g(a)) = g(c). Setting (x, y) = φ(ρ, θ), that is,

x = cos θ sin ρ

y = sin θ sin ρ
(1)

we have

φ∗dx = cos θ cos ρ dρ− sin θ sin ρ dθ

φ∗dy = sin θ cos ρ dρ+ cos θ sin ρ dθ

and hence

φ∗dx2 = cos2 θ cos2 ρ dρ2 − 2 cos θ cos ρ sin θ sin ρdρdθ + sin2 θ sin2 ρdθ2

φ∗dxφ∗dy = cos θ sin θ cos2 ρdρ2 + (cos2 θ − sin2 θ) cos ρ sin ρdρdθ

− sin θ cos θ sin2 ρdθ2

φ∗dy2 = sin2 θ cos2 ρ dρ2 + +2 sin θ cos ρ cos θ sin ρ dρdθ + cos2 θ sin2 ρdθ2.

(2)

Replacing (1) in the first step below, and then (2) in the last step below (and patiently
simplifying the result a lot),

φ∗(g(a)) = φ∗
((

1 +
x2

1− x2 − y2

)
dx2 +

2xy

1− x2 − y2
dxdy +

(
1 +

y2

1− x2 − y2

)
dy2
)

=

(
1 +

cos2 θ sin2 ρ

cos2 ρ

)
φ∗dx2 +

2 cos θ sin θ sin2 ρ

cos2 ρ
φ∗dxφ∗dy

+

(
1 +

sin2 θ sin2 ρ

cos2 ρ

)
φ∗dy2

= dρ2 + sin2 ρdθ2,

so we obtain the desired conclusion φ∗(g(a)) = g(c). (To make computations more
concise, usually one omits the symbol “φ∗” in intermediate steps, e.g., in the left-hand
side of (2), simply writing dx = cos θ cos ρdρ− sin θ sin ρdθ instead of φ∗dx = . . . .)
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