
Lecture9 Applications of Toponogor I 3/23/2023

· Recall Toponogor triangle comparison (Triangle & Hinge) and comments
on proof

Preliminaries X =TIM acts freely on the universal covering M,
-

and Mr=M. Lifting a Riem. Metrics from M,
differ

the projection map p. (Mig) -> (M,8) becomes a
local

n

isometry, and the action of Nou M is isometric,
~

so M/rismM.

DefAenteldomaineinter
agrigtee

Fix FcM a fund, domain for
the action NM, e.g., fix

otM and take F =1 [x+M:distlo,x) <distlo, g.x)}
get ~"Dirichlet Fundamental domain"

Exercise:Verify that F is a fund, domain...ge Hef:get is smell if g.F 1FFP.

-Frg. FD E F and g.
F are adjacent

F g. F (buttheir interiors are disjoint!)

ted.Lop:If M is compact, then isM is finitely genera
II. By the triangle inequality, g.

F cBadiam r)(8) for eny small ger

Since Eg. lintF)3geW are disjointand have equal volume, only finitely

many
can fitinside Badiam(F) (w), so there are only finitely many small

elements get.
Claim:i is generated by small elements.
--

Indeed, given get, choose a
minimal geodesicI from a

to
g.o.
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e
Then I is covered by finitely many fundamental domains

⑱ g. F=F, g,
F, gzF, ---, grF=gF sit. git and gitiF are

W adjacent, i.e., ggitIEN is smell. Thus, we have that

I
g=gzigg.Etang is a productof small

elements.

E
-small

:18mmbetelygenerate.
We

<---Ci

but these manifolds do not have metrics withsec, 0:

Im (Gromor 1978). If 1M78) has sec, 0, then FigM can be generated
by Si. 2" elements. If (MYg) has secs - he and diam (M)= D, then

isM can be generated by 1mi (2+2coch (24C))*.Hbeme,en

18:(Case W =0). Fix ocM and consider the isometric action of

N =isM, by deck transformations (see preliminaries). Define displacementof get:

Igl=dist(0,g.0). Clearly, a min, good, from a to g.o
in projects

based at plol-M, which has

-go
to gewelesic loop

-

or

anyminimal lengthin
its homotopy class.I

-o
given R20,

there are only finitely many0
o M

-

I get withIglER,
because otherwise al

p(0)D infinite seq. giet with Igil
ERwould produce

11 M which
p(g,o) an infinite seq. gis of

points in BR(o),

pigol has a limit and contradicts the covering property.

Thus, we can define geeh s.6. Igal-mirig), and getwith 71

~"short basis
L

Igzl=min Ig); inductively, define a sequence 91,92,--.
eN of generators

get(g,)
with 192) = 182)t...

and Igital-min 181. (keep adding elements gi untila
gerKgz, ...,gi) set of generators is achieved.)62



gio Setlij=dist(gi.0,gj.0) for all isj. Then

lij, 19j), for otherwise g =gig,would have

·

Ye 181 =bij <19j) and 181,--gi, ..,9j) = (g,, . . .,gi,---,g)
Sec,0

hence contradictthe min, choice of g;above.

Note that all sides of the triangles o,g:0,gjo are
min geodesics.

· By toponrgor, applied to the hinge based at

~

gi.o,
we have that dijdij

Law of cosines in R2:

li=1gil+15;12-21gillgjl osij
Igil -1g;) = lijif i<j

=>coslais) -iseigs-Ise
=>hij ij .3

Let victor be the unit vector tangent to the min, good, from
o to gio. By

the above, the distance (on the unitsphere in ToM)
between vi and Vsis hij, I, so the balls of redius
centered at vi and is

must be disjoint. (Thisalready proves

there can be only finitely many vi's, hence finitely many gis- So R=MIM is finitely generated). Moreover, as Igit)=1gil,
we must also have thatdistance from -vi to vi is
> Iif icj, therefore the number of vis is:

ToM Ive."CTOM.
~ is

#9gi3 =#(vi)itwereneedsites



Volume of spherical ball of radius or is
Standard computations give: >volume of Euclidean

ball of radius sin r.

-
in-1

· Vor (Biy, (r)) >,Vol(Bi(0)) = n-z IN =Gamma function)
log-concavityof 5:

· Ver(Rpr-(II) =EVal($
-

(11):I ) he
I

so #9gi3=#vi]<-)2.2.r()

For case sec-42, edept the argument above w/ Law of
Cozines in

the comparison space of constant curvature 2: Igil -1gj)=lijificj

cos (ii) =cortish(x185))
-

coh(e)emergisinh((gil) sinh(k1gj)
bound here!

- hngianDeere
Thus, by toponogor, dij, hij), arcos(ha)
Estimate volume of spherical ball of the above redius (from below) by volume of

Erdiclean ball of radius sinarcos (w?1)] to get
estimate on #98:3.

Amk:Bounds above are never sharp. [

Imx:[I =orientable hyperbolic surface of genusg.
Then sec=-1 and

is([5) =[as,ba, azibz,...,agbg)[ab]... [egi by]= 1) has Ig generators. As go+8, then
keeping sec=- Aforms diem + 0. (or if diameD thensec = -42 -0) 64



Recentdevelopments surrounding the above:

· If N is finitely generated, fix a finite generating set G,
with eCG and G2=G. Then define rothfunction for Pi

NY =#2gER: g =gyr--gx, withgieG3
↑

# of group
elements that can

be written as product of a generators
in the fixed generating setG.

· If Gis another choice of generating set for was above, then

NIN and N Ni*for some constants C,D>0,

so can ignore
choice of gen.

SetG for questions below.

· Q:How does No grow
with ? Polynomially?Exponentially?

t (Milnor' 68). If (Mig) is complete andhas Rico, then

any finitely generated abgroup NCFIM has

tomas growth"I

1:Choose of, and let V(r)=Vol(BrId)). By Bishop Volume comp,

v(r)_Vel(BYol) = I) v. LetG =982, ...,8p3 be the

fixed generating set for JTgM and
M
=mex dist(0, g,0).
1i2P

Then By lo) has at leastN,distinct points
Mi

of the form go,
withget. Choose 970 sit.

g. B,(0)1 Bg(0)
=bifgee. Then Buxta(o) has at least

N disjointsubsets of thefirm g. Balo), so
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ve(H g. Bs(0)) =NE.V(z) =V(mx+2). Go
9=g,...g ⑳Balo
gieG

0
&

Thus News) - = c. W E

Thm(Milnor' 68. If (Mig) is a closed Riem. Inflel with sea co, and

41 M =G7, 1910, thenafor some as1.

X i.e., "exponential growth"
Ex:Fundamental group of hyperbolic monnfold ["has

exponential growth;thus, cannot be its of mifedl w/Ric 0.
So, cannot "improve"the above thin to scalco, as [xS"(9) has seeko

for 24and 250 solf. small,if I is a hyperbolic surface.

· The following is currently still open for n-4:

ture(Milnor). If (M19) is complete and has pics,0, then

HIM is finitely generated.

· For n =3, itwas proven by [Lin,2013] andindep. (Pan, 2017].
↑

Inventiones paper,

*

Crelle paper,

uses minimal surfaces
Uses Cheeger=Colding
theory and Riccio

me Geometric GroupTheory limit spaces

Thm (Gromov'81) If N is finitely generated and has polynomial growth,
then O is virtually milpotent:5N* milpotent with(iN] <0.

↳Wilkingzood:If there is a counter-example M to Milnor's long, then

ithas a covering space M-M with no abelian and not finitely generated.
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Lecture 10 Applications of Toponogor II 3/30/2023

Rep.Toponogov triangle comparison for seck, N.

Frangle: Hinge:
Bo
14

acyin t Sel-I
Sec = k

I
-

·Pro.Ire· P

d xii rigiality...

Im (Gromov'78). If (Mig) is a possibly noncompact) complete manifold with
E Enit. 2"-2 elements.

secs,p, then HIM can be generated by (similar resetif Se, -2, diem ID.)

· DiscussMilner's earlier contributions about AIM if Mis0 and growthfunction.

KingVolumeCampantpolofortriangle compassionalpointee
Thm (Gromor' 1981).
i) If (MY, 5) is a complete infed with secs, then Eby(m) =((r).
ii) If MYg) is a closed rifle withsec, -x2 and diamD, then Eb(m)_C(n)****
Cannot replace the hypothesis sec,0 to RCO because:

"Docking station"

crafIm (Sha-Yong'90s). VCEN, #B2x2 and #*KP*#Rip" have Ric> 0.

- also HeS"x sm for any nimx2, K1.

thm. (Perelman '97). FCEN, #KPI has a metric with Ric 0, diam=1 and Vel>,V>0.

Thus, since by (#5) =20 and be(***P#P2) =x+e, one I A
e:scalo is

3
preb surgenesfinelymany of these manifolds can have seek, o. Currently,7 of codimension3.

-
Rela

meld thatadmits-asi"zwarwerehaveanareaandi
(double diski 14)

with secco and sex0. Nte:As CP+N, Perelman's #CP converge to BYUB4 flat67



An application of Toponogor to closed geodesics in surfaces:

Th (Toponogor). I1 (Mig) is a closed oriented surface withseaand I
2π

is a simple closed geodesic, then length (s) -Moreover, if length-I
then (Mig) is isometric to the round sphere. (F)

1:CutMMig) along I to obtain a disk D
with geodesic boundary.

(Note thatI bounds a dist because, by Gauss-Bonnet, Menomes?)
Assume x=1, general case is obtained by recaling.

Suppose 2:(0,13 -> M, so 10)=r 11) and j(0)=j11).
W ·

V(z)
sec,0, the disk DCM with 2D =0 is

N/2π FL Since

ex:min, geoel, between xy
eD are contained

⑭ in D. Indeed, if not,
then can

⑯DiI eodesics byI produce a variation of g 11

=I? ((%) application of Rauch I by "pushing inward

g(0) and these world have shorter length-
sect, 1 contradicting minimality of the geodesic cannot be

that deports from D. minimizingthe
Let y be min God, from 510) to W(Y), which is

g entirely
contained in D. Since is minimizing, length (iz)=I by Myers.Bl

If length (pyr z length (s), then lugth(s) 225 so we are done. If not,

then let upand ak, be
min good, from 20) to 21) and 81%), these

are also entirely in D. J Toponogor (Hinge) applied to the hingesB

at 2107 withsides 14442
and Byzip.

We get a comparison

quadrangle in $() which has all internal

w/ side lengths:
convex

-Iinde enseestoandisMerefore
arein

-

in 2

⑳ langth (By4), must bequatre
e

" contained

· d length (1[Y,4]) nemisphere!Yo Thus has

Sec =1 perimeter
· lugth(3x) -2.

SCC=1
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Since this quadrangle is convey, itmustbe containedin a
⑫

hemisphere of Sid), thus its perimeter is a hit, hence

length (44) +length (KY, 13) -lugth (V1(Ye,3) + length (Box) =
-

Toponogov -lugtn((4) +d, +dz +length(e) 2π.

If Py =N1[0.)
and
*

=UI,17,
then the above proves

length (2) =Ti. If, however, 8/90,13 or 21(1.1) are not min
-

then we further subdivide, see picture. Once again,
we obtain

a comparison polygon (hexagon) in" which is conex by toponogor,

↳di
since internal angles are [I

·
V(z) and has perimeter =2K

contained in a hemisphere ofMy-aable
it is conversare

1 x
$"(1). If By

=V1[0.48] and

Bx =W/[718, is, then we are done,
g(0)

since

sect, 1 Sec =1 lustly) =Pecopateort)=
If not, keep subdividing. Eventually, the min, good. BYz and-

with 8190,2] and WICI-Yen, 3
end then We

Bl-Y lagreeisregionlabelled"?"is empty

will have length(s)-perimeter of comparison polygon - I by toponogor
andconvexity of the comparison polygon, which, itself, also follows

from toponogor (comparison angles are - uftel angles =4)
The rigiditystatementin

the equalitycase follows from rigidity
in Toponogor (we did not

discuss thisapplied to the disk DCM and

↳then toMID.

Aim:This result has been
reproven recently withPDE techniques,

in a way
that allows to show ability of the conclusion under

Gromor-Harsdorff & Intrinsic Flat convergence (see paper of Hunter Stufflebeam)
6a



Final application of Toponogor:critical pointtheory for distance functions

A
- -0 c index 2

21:Apply Mouse theory to p(x):distx,o):

I critical points of I due topology-sm) in:M- indexo

Roblem:
p

is notsmooth. He does nothave actual flow...
--

Ref:ApointqEM is regular for p(x) =dist(x,p) of IveTqM sit, all wingood.
from p too make an angleswithv.

moving in
direction vis called I takes afarther away fromp!)P "gradient-like"

i.e. if 8:[0,2] -M is min. good from I top,
then (10),v) <0. The point q is

called critical if itis notregular,ie, if there does not exist a direction

cannot move

v to move farther away from p. recigfartheraway,
Lame. Regular points for play form an open subset (cf. Serd's theorem).
Within

any region between sublevesets p"((a,b3) withoutcritical
points
which late an atopdefine

a

gradientative vertified forRegular register
-A:No analogue to
Morse Lemme, which says-how to "build"p((-w,b]) from p()-a,a]) if

there is a critical point of in p-((a,b);

namely attache cell of dimension given by the
indexof the critical point.

Tm (Grove-Shiohema'ft). If (MYg) is a Riem. mfld. Withsec, ICO and

diam (M,g) > Ediem($"(4/r))= then Miners".
(sharp blc of IRP2(4/).)

1:Up to rescaling, assume n=1, andlet p.qeM be points sit.

dist(p,q) =diam (M45) realize the diameter of M.
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am1. If qEM is st. dist(p,q1)=diam (Mig) >. theygl=G.
Pf By toponogor Triangle comp,- p

if q, qeM satisfy
dist(p, q) =dist(p,q) =diem (Mig)fthem the distance from See,1

p toany x in the min.
⑧

good, joining I to 'would ·diam(M,g)
exceedthe diameter of Migh, this q =g'

*

I =istl,dst,I)
2. If x tpand xeg, then xis regular for p(x)=eist(x,p).
48If xp and xeq,theregood. .......
X to p and to q

Sec =1

of length12 and I,both

sensefeat
<I by spherical
trigonometry, so as E by toponogov. <Ebyof

cosines on S.et

This the velocity vector of the min.
cos li-cost cost

<O
Sin e. Sin tz

good, from xto a proves x is regulara
whatitMetipe fore

can build a vector field on MIBs(p)UBalf) which isBy Lemme, gradient-like
never zero, so M(Bs(p)UBa17)) =(a,b] xs"- * and hence Miner." Ihomeo

:It is not known if such M is torphic to i", since above proof

only shows itis a "twisted sphere."Currently, no exotic sphere is known to have senso.

However, Gromoll-Meyer Sphere [I has sec, 0;actually seco on open dense
subset

for. If (Mig) has sec, xc0 andVol(M,gK EVd(S"(*/r)), then Minew"
11: Exercise (Bishop Volume Comparison!)

71



Thm (Perelman '94). Fux2, 5Sn)0s.1. if (Mig) has Rick,M-1); and
Vot (m,g) = (1- Sn). Vol( S"(11), then MYnew"
As mentioned before, the following is open:

ture. If (Mig) has Ricx M-1).g and vol(MigK I Vel(S" (1)), then
(Mig) is homeomorphic?differmorphic?to ?"

Atrivial step towards it is to show thatsuch (Mig) is connected
Exercise we discussed earlier, using Bishop Volume Comparison).

Also, there can'tbe an "almost maximal" diameter theorem withRicn-1:

thm(Anderson). 7Riem. metrics on CPU with Rick,M-1lg and diam>, i-2.-

I and
many

othermanifolds which are not spheres...

Lecture 11 Bochner technique
sometimes written ErS(TM)

4/20/2023
I

Def:Given an oriented Riem, manifold (MY,9), define the orthogonal membundle Fr(TM) ->M

where the fiber Fr(TM)p= [K1, ..., en)e(TpM)":g(ei,ej) =Sij] is the set of
orthonormal bases of TPM.
eoriented

i.e. GeP-B where GAP is a free transitive
~ I yePx,

right-action of a lie sp)C preserving the fibers
and s.t. UxeB, GEgreyge4xEG is a diffeomorphism

Note this is a principalbundle, since SO(n) acts freely and transitively
on the setof oriented orthonormal bases of R.As a bundle, sola) -> Fr(TM) - M

emple: MY3) =(S",ground then Fr(TM) = S0(n+1), Since J0(u)-SO(n+) aS" and

I
I !...) - lea, ..., en) orthonormal frame of TpS"=p.So(n+1)-P
11 Ex: SO(z) -> FrITS2) -> Se is equivalent to the

arthonormal columns Hopf bundle SF-RP-S2, obtained as Syn-SY2* S2
~= Rp3

Ate:M is parallelizable (ie. TM =MxR" is trial) of and only of
-

Fr(TM) has a desection. 72



Ex:Sr is parallelizable if and only if n=0,1,3,7 see(Bott-Mienor] 3-page paper

because it is a real division algebra off M=0,1,3,7."
On the parallelizability of the spheres".

1958.

indeed, z =a+bi +cj +d

E.g., n
=3 SCHERRY= span?1,2, j, k3 ·

2
then iz =ai-b+ cx-dj

If z=5Tz S = z
t=
span [ iz, jz, hz}

so(z,iz) = - ab +ab - cd +cd =0

similarly (z,jz)
=<z,xz) =0. and

I

Siz, jz,kz] is a.n.b.
So we get a global section:Sc-zi (iz, jz,k() eFr(Ts) ofTzS=2c H./

showing thatTS=S*xRY.

Here we only discuss the particular case

tealbundle construction Iwhere the principal bundle
G-eP-BI

is the frame bundle S0(n) -> FrITM)-M.

Let E be a vector space and
: SO(n) -> SoCE) be a representation of solu,

ie, a linear
action SO(n) NE. Then we can define the associated

bundle

E- Er -M, where ET :=Fr(TM) xxE
=
Frim) + E/so(w)

is the quotientspace of the action So(v) AEr(TM)
+E

g. (f.v)
=(f.g, (g) r) feFrliM), veE.

-Examples
Zepresentation Associated bundleI

-Vector ↳:=Fr(AM)xiE

defining representationerminethe(1R") So(u)ar(M)* (RY*TM*- MA

1"- ATM - M

0 =P = n
A. (Vea ...Vp) =Ava

---Avp

I bundle of p-vectors
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A -did* 1PR")*

1P (RRY* NRY* NPT M* - M-din--ndrllun.ex)=x,(av).n) bundle of p-forms

SymPR"
it=Symbid er SynY" SymPRY-SymP+M- M
A.(V2V...vVp) =Av, V...vAup I-

Similar

A=SymPiel*
A SymY(w)

*EsymPRY* I
A.(b,r...dr) (ve,--,ve) =f,(AV)--pufStuY*SqT*Mfor Sym?

Straseless)
etc etc etc.

e.g., given
two such bundles Ex, Ean, we can construct

Ex,Erz =E!T2 SynP En =Esquir
Ea, *ETz=Ex, az &PEx =Ex

and iterate these, e.g., Ens*Syn" (Sym"(Er,*Et) ...

Note:Since we have a Riem. metric,
we often identify TM*=

TM

hence also NPTM=APTMY, SymPTM =SymY TRY, etc.
So-YM =P(ATM).)

Glacians 1: N(Ex) -> P(En)
The above bundle often have a "natural"Laplace operator;e.g.,

· RM:Hodgetoplin
A =d8 +6d =(d +6)2

H

0P<
where dirM-R***M exterior derivative

n(p- 1) +1

8:M - **M codifferential 6 =(-1) *dA

Iformal L-adjointof Dis D*:

· SymPTM:Lrowicz(eption:1
=F*5 (D*4,4) =(9,447,V,L

trized coveriantwhere *:(SymPtM) -> W(SymYTM) is the (fuely) symmederivative. 74



· Sym(ATM):LwicLepletion:Ac:
***

where 5:MSyn(M)) -> NTM* *SyMYTM)) is a

symmetrized covariant derivative set. If ReF(Sy(nim)), then

also Act eP(Sym2(ATM)

&:Why care about there Laplacions?

A:Harmonic sections are geometrically/topologically relevant:
-

For example:

·Hetheory:If (M2g) is a closed Riem. mfld, then

H(MY,) = [weRM:Anw =03.
Ide Rham cohomology) (Harmonic p-forms)

In particular, the pth Betti number is by (M) =dim her (BH(r+(m)

·fitingtensors: Let M,8) be a Riem. nufld, and DiM -Ma

1-parameter subgrap of differmorphisms, i.e., Po-id,
Pas:Btops. Then

&:(m,3) - Mi8) Xe(-(M), Xp =4(p) (t
=0

are isometries: >
is a killing field- -

in**g =g rivelenHyL xg =0, or,e

* indeed, letting 0(Y) =g(X,Y),

(2xg)(Y,z) =2g(x, X,z) -z) shertie
symmetric sewsymmetric,A2X =0.

so Gxg =0 If DX is skew-symmetric 75



In particular, dim Iso(Mig) =dim [X=N(TM):
DLX=03.

Imk:In fact, if (MY,8) is complete, then Iso(M.8) is a lie group

and[Xc(M):dxg =03 is its Lie algebra. (Note ([x,438=(2x.24] g)

·aicurvatureoperators (Mig) with R: NAM - ATM s.t.

AR =0 are special cases of Yang-Mills fields.

Weitzenbackformulae
Each of the above replacious on

the associated bundle Eix ->M satisfies

1 =
D*x ++k(R,i)

where tell, D*D is the "connection Laplacian" inducedby the connection

in Ex-M determined by the Levi-Civita connection of TM - M, and

identifying AM" = swln), letting [Xe]
be an orthonormal bars,

k(B, i) = - [di(R.Xa) odi(Xa)=-[Rab di(Xalodi(Xb)
a a,b

where R =[Rab Xa*Xb cSym? (n RY).
a,b

· In the above, 5: Solul -> SOCE), so di: swIl=AR" -- solE)

In particular, dii(X):
E - Eis a skew-symmetric endomorphism

for each Xe solu), hence WCR, i):Ex-> Ex is a symmetric endomorphism:

(k(R, i) y, b) = - [Reb <di(Xe) odi(Xx) 4. b)
a,b

-Reb (da(Xa)4,di(Xb)b)
76



· Moreover, sym (NRYC- R WCR,n)
-> Sym (En) is linear and
-

so() - equivariant, where sola) A SymeRY) via A.R =SnRebeAdCA-

and SO(n) Sym (E) via A.T =di(A)oTodiCA-Y. Ad(A)X=AXA-l

21:(A. R, i) = - Reb dir(Ad(AlXa)odi(Ad(Al
Xb)

-- [Reb di(AXeA)-di (A XxA")
ab

=-[Reb di(A) daIXalA-(A)di(Xb) di (A-)
a,b

-diA))Es Reb di(Xe)-di(Xb)) daCA")

=A. W(R, i).

· Clearly, h(R, F1 T2)
=h(R, is) * K(R, T2) and WCR, x*) =WCR, i)*.

· Also from the above, thenh(R,i) <0.

18:Since R:AAM-ATM is symmetric, we
can diagonalize it.

Let[Xe] be an
o.n.b. of eigenvectors, ie. RXa=Va

Xa
-

*

Note:We need not
be "decomposable"

Since RDO, we have re-0,and: is. Xe= vnw for some v,welR?
In general, Xa:

VAW,+...+VAW

(k(R, i) b,b) =- [(di)RXa) -di(Xe) b, b)
a

-[Va. Ild(Xa)dll, 0
a

Note:If a has no fixed vectors, ie. Kerdi= 903, then R40 implies
(B) <0.

In general, R20 only implies K(R,a)>0.
77



Example:Defining representation it =id:Solu) - Soln) is sit.

diT =id:so (r)-> so(2)

W(R, id) =Rick

11: Computation:((R, iel) =- [d4(RXa) dia)= - [(RX). Xe
& 2

RidvSexVanRickquiveriesto
11

112
- traceless Riccitensor- RSymlRY

R *SymM" AWON4 . R
=Ric-saId

So by Schur's Lemma, WR, id) =a scal. Id+ b Ric for some a,
bell.

Compute it atR
=Id andanother example with this to and scal=0, e.g.,

R =(*-t.... a Id to find out a =t, b =1, so thatX(R, id)=Ricp

↑
Kulkarni-Nomizu

product

Bonus discussion of research related
to algebraic nature of (R,n)<0:

-

Im(Hitchin). R>0 > h(Rin) < 0 for all montrivial finite-dim irreducible

SO(n) - representations it:Solal- SO(E).

Thm (B.- Mendes). Sec,P0 ET WIR, SymPR4 >, 0, Fp>, 2.

Actually, IR, id)=Ricp

Trivially, RicpLO h(R, id), 0 = ↓(R,xs) = Id.

scal 20 E> X(R,Ts),0, where its:Spin(n) -> S

is the spiror repeation.-

&Whatother curvature conditions can be characterized in terms of

X(R, i) 30 for some family of representations
it?
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Relevense: · "Organize"algebraically/representation - theoretically curvature conditions.

· A =ERcSym2AR2:(D, i) >0] is a speedron, so optimizing
linear functions on A is "easy" with semidefinite programming

Back to the Bochner technique: A =D* D +t k(R,i)
-

Suppose t 30 andk(B, i) < 0, or + 0 and (R,) <0.

Then if $tP(E) is amonic:

0 =((1+,0) =((x+Dd,y) +t(X(n,n)y,y)

=SmA +)b,b)
7,0 30

so other (R, i) =502, ie. 8=0."All harmonic sections mustvanish identically!"

example:Ex =TM (r =id) t =2 and X(R, id) =Ric

Ex =TM*(F =id) t = -2 and WIR, id*)=Ric*

Thus, the above implies the following:

Ihm(Bochner1946). If (Mig) is a closed mamfold, then:

· if Rico, then all harmonic 1-forms on M vanish identically;

in particular, by(M) = 0. (By Myers' thm, H(M) =0 b/c H(M) =(+1m)
*
is finite)

· if Ric JO, then all killing vector fields vanish identically;
in particular, Iso (MYg) is finite.
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Lecture 12 Bochner technique II 4/27/2023
or Spin(n) if M is spin,

Recall basic elements of Booner technique
or G-bundle, GCSO(n)

(Mis) closed oriented Rieu. mfld if MY has "special holonomy".e
L

Fr(TM) frame brudle (solu) - principal bundle)
~or GSO(n),

or Spin(n)

⑮: Sr) -- So(E) Ex =Fr(TM)xiE

unitary representation us associated bunelle

Laplacin A =x +t) acts on sections of Ex-

A
connection

*

quree
-

both are determined

by Levi-Civite connection, so

refinately, by metric g.
W(R,x) = - [diCRXe)-dit(Xe), [Xe3 o.m.b. of solu)=A"

dit:so(n) -> so(E)

top:1) If t. WR,i), 0, then her 1 =2 4 =P(E):4b =03.
In particular, dim her 1 = dimE.

(ii) If t.k(B,) > 0, or, more generally, t. k(R,) >0
and IpeM with(t.W(Rix)p<0, then her B =303.

19. (i) If peers, the0 = (mSBb.b:Sm"WR.i)4.1).
70

Thus DO =0, and DEKewthIR, i). Note beNEn) is

determined by its value at a pointxeM, b(x)c[Eny,
Since fly) is obtained by parallel transport along a path
from xtoy, so dim her 1 <dim E,namely, 80



the linear map f(x) =Y(x)4(3)
=4(y)

er:her 1 (Eilx is>
0 if(x)

is injective, since f(x) =4(x) for D.Weber I implice

b =x everywhere on M, by parallel transportfrom
X.

More precisely dim New 1 =dim Er, where I Ex is the

maximal parallel distribution in En

(ii) If, furthermore, JPM with 1.x(R.A) > 0 On peM,

hence on Bald) by continuity, then other implies

0 =(m(Bb,b) =(n 4x4 +(+ x(R,i)p.p) SBa**R+)b,4
>0 unless

E
I =0

thus b= D on Belp),otherwise the above RHS world be 0.

Since Db =0, in particular IDP = cost, itfollows G =00M.

I

cationformenanHodgeRepetieneelemen
t =2

P
=1:KIR,ARY =RR

Bochner If (MY,1) is a closed oriented Diem. mfled, then-

i) If Risp, then every
hormonic 1-form is parallel.

In particular, by(M) = n and by(M) =n ifand only if
M" is a flat tours.

(ii) LandRipCO, then every hormonic 1-form vanishes-I

sidentically. In particular, by(M) =0. 18. Myer's theoremt
-:

These manifolds also admit metrics wr/Ric >0 everywhere [Ehrlich, 1976]
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: Only the last statement in it requires proof,
the restfollows

from the preceding discussion.

If by(M)=n, then there are a limerly independent parallel

Iforms or MM4,g), here a linearly independent parallel vector fields

on (Mig). Thus (Mig) is flat. Pulling back these vector fields

to (M,5)=RY, we have a constant vector fields that

are invenient under the deck transformations action its(M) tR"

Therefore, 51(M) most consistentirely of translations, for

any
other isometry of IP does not preserve in lineouty

independentconstantrector fields.
This itchy is finitely

generated, abolion, and forsion-free, so TyMEX for some

x =n. If k <n,
then rsMWR" would not be cocompact,

so k=n and M2=RYx=Tr I

Remark There are many
non-isometric flat forin every dim,

-

namely the modulespace of flat for:T"is 0(n)\*((n)/GLPH:
which is an orbifold of dimension n(n+A)/2. Other closed flat

monifolds are quotients of flat forby a free action of a

finite group, identified with the holonomy group (Bieberback Thu).

Thm (Gromov 80, Gallot 81). J1 (MY,g) is a closed oriented Riem. infed,

Ric M-1). 4 and diam(M) ID, then by (M) =< (n. W.D2,

where ((.5) is a function satisfying a ((n,3) =4. In

particular, 72(r)>0 s.6. M.D, - 2(2) implies by(M) =2.

i.e., can also handle some manifoldsw/enegative Riccid
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9>2:WIR, ARY is more complicated to write down

/but there are explicitformulas using weberni-NounterMatt
member at

Special cases:R>0=> NCR,NRY) > 0 (Gallot, Meyer]
CUNY GC!

13 I (7)

so if (MY, 1) is a closed oriented Rien. Mild withi
Note:There are examples of

· RCO, then bp (M) =0 for all 1<P=M;
~

rational homology spheres w/

L

i.e., M" is a homologysphere. uncelaforenson,
· R>0, then bp(M)<(p) for all 12p<h.

e.g. Bespan B==
501550
moximal

These results have been improved substantially using
Ricciflow:

Thm (Bohm-Wilking 2006). If RCo, then Mays"
If R>D, then M is isometric to a product of Evelideon space,

sphere w/Rxx, compact irreducible symmetric space, compactI I
kohler manifold bihoomorphic to CPU with R30 on real (1.A)-forms.

A very recent refinement is the following:
Thm (Petersen-Wink, 2021). Given 1=P=(E), suppose that R is

M-p)- positive, ie the sum of any u-p eigenvalves of R is positive

Then bp(M) =bn-p(M) =0. In particular, if R is 7-positive,

then M2 is a rational homology sphere.

Of course, there are also versions for non negative curvature and by (m) <(y).
Even morerecently, the above was generalized to other representations:
Thm (B. - Goodman'2022). If it:SOI) - SOLE) is irreducible, withhighest
weight 1, then (R, i) IX. (ret... +Krs+(N-2rs) Ysts). Id, where

r-, p is the half-sum of provitive roots, and 5,-..., the eigenvaluesof R.. 83



Similarly to the above improvements toslightly negative curvature:

Ihm (Meyer-Gallot 1970s). If R >x. Id and diam (M) ID, then

by (m) =(y) .exp(C (m,w.pi)psn-1))
In particular, 59(n)<0 s.t. X.D, - a(n) implies bp(M) =(%)

Detersen - Wink also improved the above, replacing Ry x. Id by the weaker

hypothesis 2+-.-+n-p> (n-p). 4, where V2E...U are eigenvalues of R.

Question:Does SxS admita metricw/ seck??

Naive Bochner technique approach would be to try to show that seaso
R

implies W(B, MiRY) 20 hence b2M4 =0. However, this is clearly false:

CP has seco and by= 1.

slightly more refined Booner technique approach uses:

Finder-thorpe trick R:NIR4- MIR4 5ZEIR s.t.

- * R+3*>0
has sec> 0

and the computation that, splitting ***:AIR** NIRPthen/

"Self-dual""anti-self-dual"

x =(*-)
& (A, M14) =14 Id. e.g., *(2,192= 23124)

=I(e,nez=e3re4)

Thus, if sec0 and 330, then, since Ste WIS,i) is linear and

S30 => h/S, i) < 0, we get:

k(B, d?RY) =x(R+3x, 1214) - 6.1")
- 4Id

=X(R +2x, x=14) + 43 Id >0
e

>0 84



Such positivityimplies venishing of harmonic sections of AITM, called

anti-self-dral 2-forms. Similarly, if instead to 20, then use NITM.

b(M) =dix Wer B1-I(M), b: (M) =b
=

(M) +bi (m).

As SS has bi =b5=1, it follows that:
same for any

"indefinite"4-mfld,
e.g. CP* #RPY

Thm (B. - Mendes, 2012). If (S5ig) has senso, then the subset

EpeSS:Rpis notpositive - definitely a SS" has at least2

connected components of non-empty interior.

&1:Because by 30, 2:M-R mustchange -R+0.x>0

sign, so [b=0374. On a neighborhood of #
36 =03, we have RC0. 6406 =0330

Other results towards answering the Hopf Question:

th(siony-kleinerWilkingt (M*8) is closed,simplybere
-eq.diff. have secto=>(Isom(M) 1 =+ 0. and SAMY

If (MY3) is closed, simply-comn, Sec,
O and SIAMP isometrically, then

/

M" .EgS". 4PY,ERY
or
4G#KP2

*All are known to
have see, o and Strum?

Gr:If (554g) has see, then (Isom(ss;9)/< 0.
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Lecture 13 Manifolds withsymmetries 5/4/2023

.joinanarea,asafitinit?
Ire

isom (M,g) =[XeC(M):Xis Hilling, i.e., g(D,X,z) + g(Y,Y: 03
We discussed these ↑

lectures.
in previous

:

·R" has Isom(R") =A**. F(x) =Ax +V, Ac0(n)

translations rotations/ VERY

reflections
n+1

⑧ SYCR has Isom(S") =0(n+1). F(x) =Ax,x -0(n +1)

EuclideanNote:0(n+1) =2 E: 1Rn+1_1n+1: <F(x),F(x)metric
are the linear isometries of RV+1

· HCIR" has Isom (HY =0 (n,1) =[F: **- R"*(F(x), f(x)) =(x,x)3
whereRV =Ex= (x1,-xn, xwx)3 is the Minkowskispace w/ the Lorentz

metric (.) =dx+-..+dxn-dx, H2=ExeRM1 :(X,x) = - 13.
lif n =3, these are often called "Lorentz transformations"

Drop.If (Mig) is connected andcomplete, then dim Isom (Mig) AM1).
Equality holds iff (M18) has constant curvature (cf. about.

/:The family [Isom (MY), KEIRis actually a "bundle of Lie groups"!
0(n.1) IRYO(n) O(nH)3 s↓c0k=0*

model sp. w/ Sec=X 86



Lemme (from Diff Goom Ore Course). If 1,4: (M,g) -> (M,g) are isometies

and Jpe M s. 6. 4(p) =2(0) and d4(p) =d4(p) (ie.d4p (v) =dYp(V), freTpM)
then 6-2. Equivalently, if X, Y are killing fields on (Mig) and

IpeM s.6. Xp=Y and AXp=(XYp, then X = Y.

1.The set[XGM:4(A =4(x), d4(x)=d4(x)] is clearly closed and

houempty. Moreover, as exp,iT,MM is a local differ and

0(exp xv) =expy(x)df(x) =exp((x) dY(x)
=Y (exp,v)

it follows this set is also open, thus all of
M by connectedness.

For Killing fields version, recall X is Willing SRX
is skew2x8 =0.
-

Since [X+(M):2xg = 0] is a vector space, if
linearinxe

suffices toshow Xp =0, (DXp =0 => X=0. Again, by connectedness,

can do this locally around p. Since Xp=0, the flow butfixesp;
& d(dp =id, UteR;indeed:

b12
dt
4*(p) =Xp =0. Moreover,

[X,Yp =(DxY- DyXp =0 and so 0 =KxY-V, veto
Thus withv=d4E(Y),

ofxddyp=ododd.)-ai:toy,bY-hdy-dee
By previous part, Iid, Vt, sine Pp=p and do (0)= id, hence X =0. -

=Eskew linear maps ontpM]

Prop. LetFp:isom (Mig) -> TpM* soltoM). Note thatEpis
X b(X,, (DX)p)

a well-defined linear map (DX is skew ble X is killing) and, by
the Lemme, I is injective. Thus dimisom (Mig)=n+) willP

87



Moreover if dime ison(MYg)=N), then Fp is also surjective up,

so FT ecoCTPM), XeCt(M) Willing field w/Xp =0. (DXp=T.

The flow by fixes p, and d6(p) =exp(AT):TpM -sTpM.

is a 1-porem. subgroup of orthogonal transformations ofTPM,
with arbitrary infinitesimal generator, so sea(s) =seals") for

all 2-planes 8, 6ctpM, ie., sec=. o

C can final
+

s.6.exp(t) maps vw to

viwl) tenthence =Spon Er,w3 to 01-spendr, w'.

etokedown the symmetrics:
e.g.,

dim Isom(MY,g) reux Isom(MYg) dim M/G

"degree of symmetry" "symmetry rown" "cohomogeneity"--

M4,g) is a horsspace if GrM transitively, GIsom(MY,8).
inMc=Ept3,so dim Mc = 0

"cohomogeneity zero

Stropy
of PEM is Gp=HCG, and M =G(p) =G/H

11

[gEG: g.p =p]
7
Iaction/representation:I ATpM YM

~..
H -orbits ⑳

L

-Example

Gates).Avarisasolute
e

At other points, isotropy is conjugate to H.
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2n+2

· U(n+1) No GN+=R and hence UIn+1) A S2N+A quit sphere)

Thisaction is also native, andhas isotropy [(**)GUIn+1I] UI)lat entic (N+1

Thus, SInA_U(n+A)/UIn). Also, coved do the same with Swint...

· Sp1ut) b H+=(R
4n+4

and here Spintd) o S4n (unit aphore

This action is also transitive, andhas isotropy lat entic H+)):

[(-9)eSp(n+] =Sp(r)
Thus, S4n+=Sp(nti)/Sp12).

~connected

theorem (Montgomery- Semelson- Born, 50).The only groups acting fransitively
on a sphere

Sd are given
in the table below:

-here repr.decompotionGroup Isotropy

50(n+1) So(u) Su lined)def. reSU(n+1) swin gent

V(n +1) W(u) gent eSp(n+) Sp(n) 94n+3
L C

54n+3
Sp(n+1)Sp(1) Sp(u)Sp(1)
Sp(n+ U() Sp(n) U(l)

S4n+3 E
Spin (9) Spin() -15

irred

Spun ()
G2 St slired)

-

Gr SU(B) 56
-

lined)

The above leads to the classification of homogeneous metrics on spheres,

recelling thatthere is a matural corresponotence:

E Girveriot how- [Ad(H)-in, inner products on are
Md(H) is precisely the isotropy

representation at ett -G/H. 89



Indeed, Ad(H) - invenience is the requirement to coherentlydefine
a tensor on G/H by using left-translations

from Tex 4I =4/h.-

a [see e.g. Cheeger-Ebum, or
Alexandrino- Battiol]

Thus, e.g. on SEA, there is a 2-parameter family of metrics

invenientunder the transitive U1n+1) - ection:

Leg.Berger metre"). Let g be the quilt round metricon stri

andwrite g=glnortglver according to horizontal/vertical space

for the Hopf fibration 34-Si*->KPYThen

&sit
= sg/nortglver, Sit>0, is Vin+1) - inverent.

Up to global rescaling (homothaty), consider g(t) =91.7. Geometrically,

+54 - (92n
+

g(t) - KP2

it is obtained "shrinking"the fibers of the Hopf bundle, i.e.,

rescalingby to the vertical directions.

Similarly for 5- (S4, hi)
->HP" and Ste(S45xx) -> SYY2).

-

egion =SU(2)
Cor Up tohomothetics, homog. Matrics

on spheres are the above:
-

2n+1

I-poram, family on S, 3-paromfamily of 54nt3, Epor femly on
S

I parameter family of
E.g., on 915: g(t) 9

SU(8)-inv. Komog. metrics

attmetric S homog, Metrics

(S0(16) - invariant) 1 pavemeter family of
of spin (9)-inr, homogeneous metris

90



Geometric realization of Berger metrics (Bourguignon-Kercher)

Consider distance sphere. Sp(r) =3 x =M:dist(x,1) =r3 oh

KPY, HIP" and KaPY and onAand Kett
2

-
compact rout one- moucompactrent one

symmetric space
deals symmetricspace

s, two S(r) S(i(z) =(ut(p) +

dm (two ⑧sin
(noncompact)

0 <r<
I Hopf fibers) r >0
I I wereare

Berger metrics gsitiks, sit, given by sglnortglver, where gluortglver is the

unit round metric, are realized for all site as distance spheres S(r):

s =sin r

S(r) ckpYA is isometric to (S2n+A, gs,t) E↓:sinv cosr
S(r) < Hlprit is isometric tn (S4n+3, hs,t)
S(r) < DoP" is isometric to (815, ks,t) /

s= sinh v

S(r) C CH is isometric to (S2n+A, gs,t)
S(r) < HIM is isometric to (S4nt3, hs,t) Sr.
S(r) < Ceft" is isometric to (845, ksit)

Recall RP*:g2nty is the orbit space of SAIRNAA given by
eid. (Zo, --,zu) =(eizo, ---, eizu)

In+ 1
UIn+1)bS commutes withsagent so desands toU(n+1)IDP"
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Similarly, Splita) A Sintcommuter w/ SS"so descends to Splatter HP
ganl

Th (Oniscin' 60s). The only group,sting fransitively on a projective

Space
RPY, HP2, Keph are

given
in the table below:

Group Isotropy pace pyrepr.-

-

SU(n+1) S(W(u)U(1) kP" Q (irred)def. rep.

Sp(n+1) Sp(u) sp(1) HP In fired.) elf.rep.

Sp(n+1) Sp(n) Ull 4p2n+
#

"* lifed.)

Fu Spin(al kaP2 & (irred.I

Note:If HCXCG, then
there is a natural fibration

x/r -> Gr -> G/x

gH -gk

the above
give

the additional Hopf-like bundles:

So - gen-- epranU() - swinging salvilS(U(n3U(I)

So- gi- HP"a SplI) - SpirilYspcal- Sp(n+/p(n)Sp11)

d I ·id ·und Ilsente HP" Sn SpINI -> SpInt/sp(aiUl -e Sp(niYsp(y) sp31)
Spin(8)

->
Sp>m(9)
Spini
- pinat- -

- SYY) Eas ~ Spin(8)
spenE

Note:Kap" is notthe base of a sphere
brudte S4-Kap!
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efication
- verydo relateenteratEgF. Ga

classical exceptional

What does it mean to eesity homogeneous space?

· Given M, classify all GroM transitive actions (mey e.g. estee connected).
-- done above for spheres

&up to differ, homeo...? and projective spaces.

· Given m, classifyall n-elim. Komog, spaces. 2

up to differ. Etijasome

(done form =6) E.g., for n=2, only have: 5, RP, T2 k*
klein bottle.

homogeneous?
became ebraic

·
Good testground, all

PDEs/ODEs alg-

can compute cohomology ring systematically?Bovel).

Ate:(Mig) homog,f: M-Rinverent
under isometries -> f=cost.

For instance, on a homog. space, the following
scalar-valued geometric

quantities are trivially constant:scol, (Rick, IRP, IDR2, ...

All mouscular geometric quantities, e.g., see, Ric,
...

are gebraic

E.Suppose we want to find Einstein metrics is. Dic =xg.

On a homog. space, this
becomes a matrixequation on text.

In fact, if the isotropy repr. is reducible, then every

Komog. metric is Einstein:

H A TenG/H irred
Schurslemme T:Ten PH -> Tex GH-

I H-equiveriant
linear map

Technically, this works for amplexrepresentations... then T=x.Id. (Xt1R)

HerVirred Velvector op. s HAVD=V*RK
and HrVDis irreducible if Up is of "redtype" As bothg and Ria define
Then, by Schur's Lemme, Hom"(V,V)=R. id;as desired H- equivariant

linear maps,

#te:Adjointrepr. of compact semisimple (ie gps are always
as ebove!

they must be multiples.-

else, HAVD splits as WAWY, W*=W "quaternionic tye"I W* IW "complex type" I 93



As a consequence,"the"homog. metrics on

are unique up tohomothetics,
and never RPU cever" APY Kept

6 Round metric:

g":Ric = (n-1)g Sec =1

· Fubini-Study metric:

<PY:Ric =2(n+1)g 1 =Sec 14 PES(Yz).

Hp":Ric =4(n+2) g
1 Sec 14 HIP* S4(Y)

isom.

DaP:Riz =368 & Ese=4 ⑭P*EmS).

Among the remaining homog. Metrics on compactrent one symmetric

spaces (SY, MPY, RPY, AlPY, Kap2], we
have:

4n+3
Jensen metric 85= glhortat Elver on S is Einstein

(Sp(nt) - invariants

Bourguignon-Karcher metric gBx*Elnart 8lve-on
545 is Einstein

(Spin (9) - invertent)
2n+1Ziller metric gz:Ersthortgrslver on IPis Einstein

(Sp(ur)) - invariant)

Ziller showed these are all possibilities. (Math. Ann. 1982)

*step down the symmetryladder, as measured by cohomogeneity:

mogeneityone manifolds are those with GM, GcIsom(M,g)

dim M/G= 1. (>M For. R, [0,+s), SY ar [0,2])
More about this next time ...

94



Lecture 14 Cohomogeneity one manifolds 5/12023

GAM isom action, cohomogeneity is dim M/G. "isotropy"or "stabilizer"
at PCM.

L

· ogeneity0:M/G=3pt] ie. M =G(0) = G/ where H = Gp < G

Adjoint action GN. Ad(x) =dLgodRg-(x) =a98inmentalg

(45(4) =gh,Rg(h) =hg)adx(3) =d(Ade) x 13) =(x,y3 left/righttranslations

HiG-GA is G-equivariant:gy(gf) =(829)H. :G-eG/H

gagH di:4 -4/

if hell, then high-high't, so Adn:4-* leaves by it.G
and, differentiating hexp(x)H =hexp/xh'H in too, we get dLnk)=di[Adn(x]

Ad-invenient complement, meTeHG/H= [AdnIm* =40m M

Ad ⑭ isotropy repr.
④

E 3 AdH-inv inner 3Giurmetrics are products on in

G 1- 3.) =g/TeHG/H*TeHG/H is Ady-inv. by

Conversely, if J) is AdH-inr, let g,143)= (dLgix, dLg-]), xyetg4/H.
then it is well-defined (indep of representative in cost gH) and left-
inv, so G-homogeneous. I

Arp:T(G/) =GXAM is the associated bundle to H-prima ball H-G-4/;ring
Add to M.

Es on M that are G-invariant become algebraic e.g.,-

Ricciflow 2 =-2Riclgt) fu) Evolution equation (ODE)

Fix 2.) = golterGI"TenG14
and letPt:M-M be

symm
automorphism s.t. gt(x,7) =go(PtX,y)

RF: ↓ Pt
dt

-... ODEin Pt 95



If M is impact, then GCIson(M,g) is compact, so itadmits

a siverient metric &:4* 4- R st. LandRy are isometric.

can take m=4+wirt. 4,then 4:ham
is Adn-inv.

Eat:(G,0) has seco

Indeed, [xY= =[X,Y] FX,YE, so RIX,Yz=I[(X,Y3,E]
sec(XaY) =I 70.

II XY IR

#2:If it:(M, g) -- (N,Y) is a Riem. submersion, then

secp (XaY) <secm (XnY)

So:
every compact homogeneous space GM has see, 0.

Ihm. The mochilispace of G-inv matrice on GIH with sec,o is

poth-connected. normal homog.
Imetric.

18. In some sense, itis "starshaped"around Almam. (↑(inverse linear path)

Compact
Ihm. GH admits a G-inv. Metric w/Ric>0 (T1(4/H)/ < 0
f
(E)Bonnet- Myers
(E) Ric(X,X,0 Yem wrk normal homog. metric Olmam

=0 Xem1z)0 in(8It) is finite
Lie algebre.

setimes concomsensetosee,among homogenous meter
in

↑

rarely... 96



Thm (Berger, Wallach, Aloff- Wallach, Beard-Bergery. Wilking-Ziller).
If MEG/H is a compact homog, space with seco, and #1M= 313,

then it is isometric to:

1. CROSS:SY, KPY Hp? KePY (homog. metrics discussed last time!)

2. Welloch flag mfld:W6=SU)/2, W12 =sp()/sp()Sp(Spl), W- */spin(8)
3. Alot-Welloch spea:Wie =SW()/si.e Wix =SUB S01)/U12)
4. Berger space:B=50(5)/sol), B* =SU15)/s'. spil

*

:If dim MD25, then M is a CROSS!

Ate:Some (butnot all!) Komog. metrics on the above have seaso,

andfinding out exactly which (modulo spon) is notalways easy;
buthas been done in most (all?) cases.

Thm (Hsieng-Hsiang'69). If M= G/4 compact homog. p. is homeomorphic to S, then Mess
lie, no exotic spheres can be homogenes but they can be "biquotients"

or cohomogeneity one!

Def:degsymm(M) =max dim G:GCDiff (M) compactsubgrap].

e.g. deg synm(St) = 4+1) =dim O(n+1).

Namely, (HH'69) show that is [", 42,40, is an exotic sphere, then

degsymm([") -8 (n+7)
-
matter than dim of any go acting

bound a parallelizable transitively on m-dim sphereif (i)- mfld. (see table from last lecture).
=SebPnt is a kervaire sphere

(n =1 mod 4)
Improvements by [Straume' 94), e.g., degsymm([4) =5 (n2-4n+11) if n=3 mod4, and [EbPres

and degsgum ([") <I(n+1) if ["kbPrts. 97



· mogeneity1:dim M/G=1=> MinSY(0.2), R, [0,10)
-

assume G is M compactM noncompact
compact throughout!

e.g.:
M =RRY, G =0(n), M/c =[0.+6)"redia"

G-orbits are G(P)=ExcH2:1x1=1p113 round sphereS

Ma x(0) =303 singular orbits
principal or bets

0

CM =S",G =0(n). M/a =[0,π] da
G-arbits;parallels (principal orbits) &

⑮

SINS (singular orbits)

In general, H:M
- M/G bi of the "Slice Theorem"

principal orbitsas interior points Tub (610) =GxapPp*3non-principal orbitsI boundary points
Sain=0Dp

die

(singular or exceptional) Ep
space of in colom A thisdirections E
im M/G is either 1 or2 pts;

↳ accordingtobeare
pointin M/G
-8

G(p)

So if M/G=S4 or R, then Adorbits are principal, it, all isotropies

are conjugate, say toH =GpG, and
hence M is the total space of a bundle

GH - M - St or GA - M-IR

More interesting cases are M/G= [0,17 or [0,50), where not all orbits

are principal. We focus on the firstcase;the second is quite similar

if one imagines (- +0, so the orbiti'lL)"disappears"at 0.
98



M Glat LetpcTi(0), h ==Gp,

d I and V:(0L] -M be arefer horizontal geodesic wi

Ma=(0.2).- 210) =p. then
L Gr=Hif t = (0.2)

Riem. metric:g
=dt+81, where (91)-clo2)" Gr =h +

ift =h.
-

a d-Porem, family of G-inv. metrics on G/H.

top,the groups
HCNICG are

such thatNI/H=Sd
G
-

and the "group diagram" kee x+demines M up
to

-

G-equir, differm. (up to atNIM, beG, and repleng &1.H

with ba-b", bub", abx+ bat). Conversely, given HCH+<G

wI=Sdt, there exists a cohort rifled given by
we know
the possible
H,k=(if connected M =(Gxx- Dd

-+) Way (GxxD4
++1)

whose updiagram is as above.

Just like for homog. sp. G/H, the gp. diegram HCK1<G can

be used to compute the topology of M;e.g., H*(M, #) etc.
e.g., X(M) =x (G/x-) +x(4/x+) - x(z/H).

Exercise (Hopf-Semetson Thu). X(CIA)0 for eny compact homog.sp-
and 30 Es nkH=r4G

SO(u)
:SO(n) AS" -I k = =G (ring, orbits are xd pts!)

solul solul

soln- 8s -dtgge unit roundmetric
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*Th5, K2 create [13 x32
,
*

1923
(eid,ei). (z,w) =(eiOz, e"Yw) -13/
WHA =(cost, sint) k==G(V10) =[13x51 unitsound metric:

x
+=G(U(T)) =S' x513g

=dtcodx
It

Ex:Brieskhorn varietyMY" KU+A defined by
20 +2 +- - -

+z =0

E Izo+R,P+ ..-+zn=1
n, d odd -> MY""wwSE-1
2n-1= 1 mod 8 -> MYS" is an tic sphere!

Chervaire sphere)
obi,Hsiory:G =SOL). SO(n) for MEY"cohom & action:

idO

fei, A). (zo,z,, -, zn) =(eizo, e Alz,,-,zut)

principal isotropy;H =72xSoln-2) =[(4, dieg/5,2, Al),
dodd

(9, dieg(1, 1, Al), d even

where9 ==1, A -S0(n-2)

this G. St TISn-9, where Taght- is the unittangent
bundle of Sn-A

singular orbits are:X-=S0(2) SO(n-2) =(e- i, die(R(d0), Al)

x
+=[**det degreeisseen

3 ==1, BeOlu-1), B'esoln-). 100



Ihm (Grove -Filler, 2002). A compactwhom.
I meld (M,3) has an

invenient metric with RicC0 if T1M) isfinite.

Mum (Verdieni, Grove-Wilking- Ziller. Verdieni-Zitter). Apartfrom CROSSes,

compact simply-connected whom I mifles with seats are equin differm
to:

itruly birdsin
3 under cohom 1 action

3. Bezaikin spots B8 =SU(s)//58.Sp(2)
4.Candidates PI. Qi aside from Pa,P2,s, these are infinite families

currentlyiknowntohave setarevengethe
some O's are differ to Eschenburg spaces (?)

Note:P2 mmeTIS"but not differmorphic toit:"exotic TIS""!

What about colom> 1 for seco?

thu. (Withing, 2006). If Mig) has seo andcolom-4, with n1814+A),
then M is homotopy equivalent to a CROSS.

isnew examples ry large dim. com only occur w/large
color:

useful framework
if nt h.e. to cross, then=18(x+1)2

I e generalize results

"rodial"solutions

InColom A:PDEin 1 "space"variable

e.g., Ricaflow becomes PDEin St, r3. that

time &
&

chom 1 its to ergrnderd
of flow variable

I
preserved;e.g., J

remains horizontal good.egt-2Rigtwe PDE on components of colon & metric...
etc.

I(B-hsures.O


