# Geography of pinched 4-manifolds

Renato G. Bettiol





### "Classical" Geography Problem

Given <u>a group G</u>, which points  $(\sigma(M), \chi(M)) \in \mathbb{Z}^2$  can be realized by a 4-manifold with  $\pi_1(M) \cong G$ ?

#### **Definition**

 $(M^n, g)$  is  $\delta$ -pinched if either

- $\delta \leq \sec_M \leq 1$  ,
- $-1 \leq \sec_M \leq -\delta$ .



Map by Nicolaes Visscher II, ca. 1689

#### Pinched Geography Problem

Which  $(\sigma, \chi) \in \mathbb{Z}^2$  are realized by  $\delta$ -pinched 4-manifolds?

# Topology of simply-connected 4-manifolds

$$b_1(M)=b_3(M)=0$$

 $M^4$  closed,  $\pi_1(M) = \{1\} \implies All information in intersection form <math>Q_M \colon H_2(M) \times H_2(M) \longrightarrow \mathbb{Z}$ 

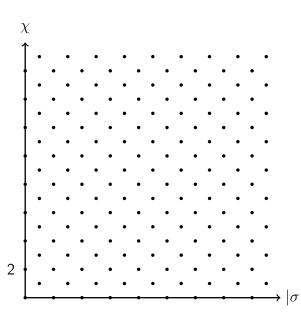
Parameter 
$$Q_M$$
 has  $b_+(M)$  positive eigenvalues  $b_-(M)$  negative eigenvalues  $b_2(M) = \operatorname{rank} Q_M = b_+(M) + b_-(M)$  
$$\chi(M) = 2 + b_+(M) + b_-(M), \quad \sigma(M) = b_+(M) - b_-(M)$$

► Thus: 
$$\chi(M) \equiv \sigma(M) \mod 2$$
 , and  $\chi(M) \geq |\sigma(M)| + 2$  .

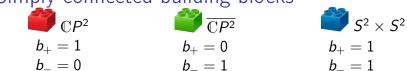
► If *M* is smooth, by Hodge Theory:

$$b_{\pm}(\mathit{M}) = \dim \left\{ lpha \in \Omega^{2}(\mathit{M}) : \Delta lpha = 0, *lpha = \pm lpha 
ight\}$$





# Simply-connected building blocks



By Freedman, Donaldson, Atiyah–Singer, Hirzebruch, ...

#### Theorem

If 
$$(M^4, g)$$
 is closed,  $\pi_1(M) = \{1\}$ , and  $\underline{\quad \text{scal} > 0 \quad }$  then

Conversely, any connected sum of  $\mathbb{C}P^2$ ,  $\overline{\mathbb{C}P^2}$ ,  $S^2 \times S^2$  has:

- ► Gromov–Lawson 1980; Schoen–Yau 1979: <u>scal > 0</u>
- ► Sha-Yang 1993; Perelman 1997: Ric > 0

#### Geography Problem for scal > 0 and Ric > 0

Any  $(\sigma, \chi)$  with  $\chi \equiv \sigma \mod 2$  and  $\chi \geq |\sigma| + 2$  is realized:

$$M = \#^r \mathbb{C} P^2 \#^s \overline{\mathbb{C} P^2}, \ r = \frac{\chi + \sigma - 2}{2}, \ s = \frac{\chi - \sigma - 2}{2}.$$

### Conjecture (Folklore)

$$(M^4, g)$$
 closed,  $\pi_1(M) = \{1\}$ ,  $\Longrightarrow M^4 \cong_{diffeo} \underline{S^4 \text{ or } \mathbb{C}P^2}$ .

#### Question

How small can we make  $\delta > 0$  and prove:

$$(M^4, \mathrm{g})$$
 closed,  $\pi_1(M) = \{1\}$ ,  $\Longrightarrow M^4 \cong_{\substack{diffeo? \ homeo?}} S^4$  or  $\mathbb{C}P^2$ .

#### Homeomorphism Question has 2 parts

$$\underbrace{b_{-} = 0}_{\text{definite}} \& \underbrace{2 - b_{+} = \chi - 2\sigma > 0}_{\text{geography problem}} \Rightarrow \underbrace{M^{4} \cong_{\text{homeo}} \underline{S^{4} \text{ or } \mathbb{C}P^{2}}}_{\text{geography problem}}$$

# <u>0</u> ... δ ...

Suppose  $(M^4, g)$  has  $\pi_1(M) = \{1\}$  and is positively  $\delta$ -pinched.

Theorem (Berger 1960, Klingenberg 1961)

$$\delta > \frac{1}{4} \implies M \cong_{homeo} S^4$$

Theorem (Brendle-Schoen, 2009)

$$\delta > \frac{1}{4} \implies M \cong_{\textit{diffeo}} S^4$$

Theorem (Berger 1983; Petersen-Tao, 2009)

$$\exists \varepsilon > 0$$
,  $\delta > \frac{1}{4} - \varepsilon \implies M \cong_{diffeo} S^4$  or  $\mathbb{C}P^2$ 

Theorem (Ville, 1989)

$$\delta \geq \frac{4}{19} \cong \underline{0.2105} \implies M \cong_{homeo} S^4 \text{ or } \mathbb{C}P^2.$$

Theorem (Seaman, 1989)

$$\delta \geq \frac{1}{3\sqrt{1+(2^{5/4}/5^{1/2})}+1} \cong 0.1883 \implies M \cong_{homeo} S^4 \text{ or } \mathbb{C}P^2.$$

$$0$$
 ......  $\delta$ 

$$0 \dots \delta$$

0... 
$$\delta$$
 ...  $\delta$  ...  $\delta$ 

### Theorem A (B., Kummer, Mendes)

In the form A (B., Number, Wiendes)

If  $(M^4, g)$  has  $\pi_1(M) = \{1\}$  and is positively  $\delta$ -pinched,

$$\delta \geq \frac{1}{1+3\sqrt{3}} \cong \underline{0.16139},$$

then  $M \cong_{homeo} S^4$  or  $\mathbb{C}P^2$ .

#### MATHEMATICIANS ARE WEIRD





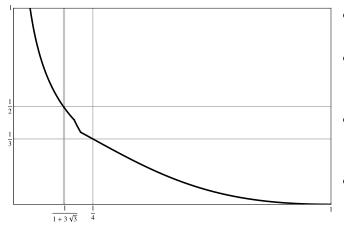




# Actually, there's much more behind it...

#### Theorem B (B., Kummer, Mendes)

For all  $\delta > 0$ , if  $(M^4, g)$  is closed, oriented, and  $\delta$ -pinched, then  $|\sigma(M)| \leq \lambda(\delta) \chi(M)$ , where  $\lambda \colon (0,1] \to \mathbb{R}$  is an **explicit function**.



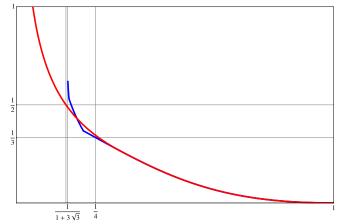
• 
$$\lim_{\delta \searrow 0} \lambda(\delta) = +\infty$$

• 
$$\lambda(1) = 0$$
  
cf.  $\sigma(M_{\kappa}^4) = 0$ 

• 
$$\lambda\left(\frac{1}{1+3\sqrt{3}}\right) < \frac{1}{2}$$
cf. Thm A

• 
$$\lambda(\frac{1}{4}) = \frac{1}{3}$$
 [Ville, 1985]

$$\lambda(\delta) = \begin{cases} \frac{\sqrt{\frac{24}{\delta} + 8 - 8\delta + \delta^2} + \delta - 4}{6(3 - \delta)}, & \text{if } 0 < \delta < 0.069, \\ \frac{4}{3\sqrt{15}} \frac{1 - \delta}{\sqrt{\delta(\delta + 2)}}, & \text{if } 0.069 \le \delta < 0.191, \\ \frac{26\delta^2 + 8\delta + 2 - 2\sqrt{3}\sqrt{55\delta^4 + 40\delta^3 + 6\delta^2 + 8\delta - 1}}{3(1 - \delta)^2}, & \text{if } 0.191 \le \delta \le 0.211, \\ \frac{8(1 - \delta)^2}{24\delta^2 - 12\delta + 15}, & \text{if } 0.211 \le \delta \le 1. \end{cases}$$



# Different methods:

[BKM, 2021]

Any  $0 < \delta \le 1$ 

[Ville, 1985, 1989] 
$$\delta = \frac{1}{4}$$
,  $\delta = \frac{4}{19}$   $\rightsquigarrow 0.163 \le \delta \le 1$ 

# Positive $\delta$ -pinching $|\sigma(M)| \leq \lambda(\delta) \chi(M)$ gives new information only if

$$\lambda^{-1}(1) \cong 0.052 < \delta < \frac{1}{4} - \varepsilon.$$

# Theorem C (BKM)

If  $(M^4, g)$  is positively  $\delta$ -pinched, oriented, then  $M \cong_{diffeo} S^4$  or

$$\chi(M) \leq \frac{8}{9} \left(\frac{1}{\delta} - 1\right)^2,$$

$$|\sigma(M)| \leq \frac{8}{27} \left(\frac{1}{\delta} - 1\right)^2.$$

$$|O(NI)| \leq \frac{1}{27} \left(\frac{1}{\delta} - 1\right)$$

Gromov:  $\chi(M) \leq 10^{1440}$ .

# Corollary

**Explicit list** of homeotypes for positively  $\delta$ -pinched 4-manifolds.

# Negative $\delta$ -pinching $|\sigma(M)| \leq \lambda(\delta) \chi(M)$

gives new information for all  $0 < \delta \le 1$ .

$$\rightsquigarrow b_1 \leq 1 + \frac{\lambda-1}{2\lambda}b_+ + \frac{\lambda+1}{2\lambda}b_-.$$

# Theorem D (BKM)

closed, oriented, then:  $\chi(M) \leq \frac{3}{4\pi^2} \text{Vol}(M, g)$ ,

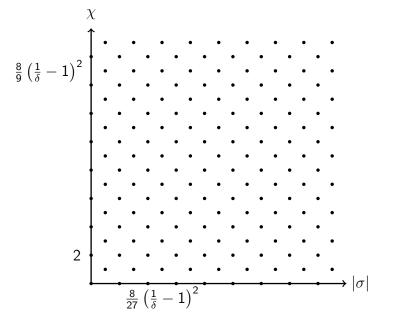
If  $(M^4, g)$  is negatively  $\delta$ -pinched,

$$ightharpoonup |\sigma(M)| \leq rac{2(1-\delta)^2}{9\pi^2} \operatorname{Vol}(M, g).$$

# Corollary

Quantify Gromov's volume and diameter bounds for negatively  $\delta$ -pinched M with  $\sigma(M) \neq 0$ .

# Bounding the geography of $\delta$ -pinched 4-manifolds



# Curvature operator

Eigenspaces of Hodge star \*

$$\wedge^2 TM = \wedge_+^2 TM \oplus \wedge_-^2 TM$$

Curvature operator canonical form, using  $O(4) \curvearrowright \wedge^2 TM$ 

$$R: \wedge^2 TM \longrightarrow \wedge^2 TM$$

$$R = \begin{pmatrix} u \operatorname{Id} + W_{+} & C \\ C^{t} & u \operatorname{Id} + W_{-} \end{pmatrix} \in \operatorname{\mathsf{Sym}}_{b}^{2}(\wedge^{2}TM)$$

Scalar curvature:  $u = \frac{1}{12}$  scal

Weyl tensor:  $W_{\pm} = \operatorname{diag}(w_1^{\pm}, w_2^{\pm}, w_3^{\pm})$ 

Traceless Ricci:  $C = \overset{\circ}{Ric}$ 

R diagonal  $\iff$   $C = 0 \iff M$  is Einstein

## Chern-Gauss-Bonnet, Hirzebruch

Integral formulas for topological invariants:

$$\chi(M) = \frac{1}{\pi^2} \int_M \underline{\chi}(R), \qquad \sigma(M) = \frac{1}{\pi^2} \int_M \underline{\sigma}(R).$$

Integrands are *indefinite* and SO(4)-*invariant* quadratic forms:

$$\underline{\chi}, \underline{\sigma} \colon \operatorname{Sym}_{b}^{2}(\wedge^{2}\mathbb{R}^{4}) \longrightarrow \mathbb{R}$$

$$\underline{\chi}(R) = \frac{1}{8} \left( 6u^{2} + |W_{+}|^{2} + |W_{-}|^{2} - 2|C|^{2} \right)$$

$$\underline{\sigma}(R) = \frac{1}{12} \left( |W_{+}|^{2} - |W_{-}|^{2} \right)$$

Since there are *no linear terms*:

$$\underline{\chi}(-R) = \underline{\chi}(R), \qquad \underline{\sigma}(-R) = \underline{\sigma}(R)$$

# Blackbox optimization lemmas (more on this later)

#### Definition

$$\Omega_{\delta} := \underbrace{\left\{R \in \mathsf{Sym}_b^2(\wedge^2\mathbb{R}^4) : \delta \leq \mathsf{sec}_R \leq 1\right\}}$$

#### Lemma A

If 
$$\delta \geq \frac{1}{1+3\sqrt{3}}$$
, then  $\min_{R \in \Omega_{\delta}} \underline{\chi}(R) - 2\underline{\sigma}(R) > 0$ .



For all 
$$\delta > 0$$
, and  $t \in [-1, 1]$ ,

$$\max_{R \in \Omega_c} |W_+|^2 + t |W_-|^2 = \frac{8}{3} (1 - \delta)^2.$$



$$\begin{array}{l} (t=+1) \max_{R \in \Omega_{\delta}} |W|^2 = \frac{8}{3}(1-\delta)^2, \\ (t=-1) \max_{R \in \Omega_{\delta}} \underline{\sigma}(R) = \frac{2}{9}(1-\delta)^2. \end{array}$$





#### Proof of Theorem A

Let  $(M^4, g)$  be simply-connected and positively  $\delta$ -pinched,

$$\delta \geq \frac{1}{1+3\sqrt{3}} \cong 0.16139.$$

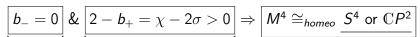
#### Theorem (Diógenes-Ribeiro, 2019)

 $M^4$  is \_\_definite\_\_, i.e., \_\_ $b_-(M) = 0$ \_\_.



# Lemma A

$$\chi(M) - 2\,\sigma(M) > 0.$$





# Proof of Theorem C (Euler Characteristic)

Let  $(M^4, g)$  be positively  $\delta$ -pinched and oriented.

Theorem (Chang-Gurksy-Yang, 2003)

If 
$$\int_{M} |W|^2 < 4\pi^2 \chi(M)$$
, then  $M \cong_{diffeo} S^4$ .

Thus, if  $M \ncong_{\text{diffeo}} S^4$ , then:

$$\chi(M) \le \frac{1}{4\pi^2} \int_M |W|^2$$

$$\le \frac{1}{4\pi^2} \frac{8}{3} (1 - \delta)^2 \operatorname{Vol}(M)$$

 $\begin{array}{l} \text{Bishop Volume Comparison} \\ \text{Diameter Sphere Theorem} \end{array} \} \leq \frac{1}{4\pi^2} \frac{8}{3} (1-\delta)^2 \ \text{Vol} \left( S_+^4 \left( \frac{1}{\sqrt{\delta}} \right) \right) \end{array}$ 

$$\operatorname{Vol}\left(S_{+}^{4}\left(\frac{1}{\sqrt{\delta}}\right)\right) = \frac{4\pi^{2}}{3\delta^{2}} \qquad = \frac{8}{9}\left(\frac{1}{\delta} - 1\right)^{2}.$$

$$=\frac{8}{9}\left(\frac{1}{8}-1\right)^2$$

# Proof of Theorems C & D (Signature)

Let  $(M^4, g)$  be positively or negatively  $\delta$ -pinched and oriented.

$$\sigma(M) = \frac{1}{\pi^2} \int_M \underline{\sigma}(R)$$
 Lemma B 
$$\leq \frac{1}{\pi^2} \frac{2}{9} (1 - \delta)^2 \ \text{Vol}(M)$$
 
$$- \text{stop here if negatively pinched} -$$
 Bishop Volume Comparison 
$$\text{Diameter Sphere Theorem}$$
 
$$\leq \frac{1}{\pi^2} \frac{2}{9} (1 - \delta)^2 \ \text{Vol} \left( S_+^4 \left( \frac{1}{\sqrt{\delta}} \right) \right)$$

$$\operatorname{Vol}\left(S_{+}^{4}\left(rac{1}{\sqrt{\delta}}
ight)
ight)=rac{4\pi^{2}}{3\delta^{2}} \qquad =rac{8}{27}\left(rac{1}{\delta}-1
ight)^{2}.$$

#### Proof of Theorem D (Euler Characteristic)

Analogous:  $\max_{R \in \Omega_{\delta}} \underline{\chi}(R) \leq \max_{R \in \Omega_{\delta}} \frac{1}{8} \left(6u^2 + |W_+|^2 + |W_-|^2\right) = \frac{3}{4}$ .

#### Inside the blackbox



 $ightharpoonup q: \operatorname{Sym}_{b}^{2}(\wedge^{2}\mathbb{R}^{4}) \longrightarrow \mathbb{R}$  quadratic form

$$q(R) = R^t \cdot A_q \cdot R + b_q \cdot R + c_q$$

ho  $\Omega_{\delta} \subset \operatorname{Sym}_{b}^{2}(\wedge^{2}\mathbb{R}^{4})$  is a compact spectrahedral shadow (Thorpe's trick / Finsler's Lemma)

$$R \in \Omega_{\delta} \iff \exists \alpha, \beta \in \mathbb{R}, \begin{array}{l} R - \delta \mathrm{Id} + \alpha * \succeq 0 \\ \mathrm{Id} - R + \beta * \succeq 0 \end{array}$$

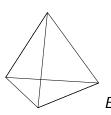
If  $A_q$  is *indefinite*, "brute force" semidefinite programming on  $\Omega_\delta$  does not work, nor do other *convex* methods

$$\min_{R\in\Omega_{\delta}}q(R)=?\qquad \max_{R\in\Omega_{\delta}}q(R)=?$$

# The Einstein simplex

#### Proposition

The set of  $\delta$ -pinched Einstein curvature operators  $E_{\delta} := \operatorname{Diag} \cap \Omega_{\delta}$  is a  $\underline{\text{5-simplex}}$ , and  $\underline{\text{proj}}(\Omega_{\delta}) = E_{\delta}$ , where  $\operatorname{proj} \colon \operatorname{Sym}_{b}^{2}(\wedge^{2}\mathbb{R}^{4}) \longrightarrow \operatorname{Diag}$ .



#### Proposition

The set of modified  $\delta$ -pinched Einstein operators  $\widetilde{E}_{\delta} := \{(R, \alpha) \in E_{\delta} \times \mathbb{R} : R - \delta \mathrm{Id} + \alpha * \succeq 0\}$  is a 6-simplex .

 $\delta R_{S^4} + \varepsilon (R_{\pm \mathbb{C}P^2} - R_{S^4})$  Vertices are affine functions of  $\delta$ :  $R_{S^4} + \varepsilon (R_{\pm \mathbb{C}H^2} + R_{S^4})$ ,  $\varepsilon \in \{0, \frac{1-\delta}{3}\}$ 

# Quadratic optimization on simplices

#### Lemma

$$\begin{array}{lll} \Delta^n = \operatorname{conv}(V) \subset \mathbb{R}^n \ \text{simplex, } q \colon \mathbb{R}^n \to \mathbb{R} \ \text{quadratic form, } A_q = \operatorname{Hess} q \\ A_q & \underline{indefinite} & \Longrightarrow & \max_{\Delta^n} q = \max_{\partial \Delta^n} q \quad (\text{induction on } n...) \\ A_q & \underline{positive\text{-semidefinite}} & \Longrightarrow & \max_{\Delta^n} q = \max_{V} q \\ A_q & \underline{negative\text{-definite}} & \Longrightarrow & \textit{Use Calculus to find } \max_{\mathbb{R}^n} q \end{array}$$

#### Proof of Lemma B.

For all  $\delta>0$ , and  $t\in[-1,1]$ , since  $\operatorname{proj}(\Omega_\delta)=E_\delta$ ,

$$\max_{R \in \Omega_{\delta}} |W_{+}|^{2} + t |W_{-}|^{2} \stackrel{\mathsf{Prop}}{=} \max_{R \in E_{\delta}} \underbrace{|W_{+}|^{2} + t |W_{-}|^{2}}_{q_{t}(R)}$$

$$\stackrel{\mathsf{Lemma}}{=} \frac{8}{3} (1 - \delta)^{2}.$$

Need to inspect faces of dimension  $\leq \operatorname{ind}(A_{a_t}) = 2$  if t < 0.



# Integrand in Lemma A depends on $|C|^2$ ...

#### Lemma

Given 
$$\lambda_i \geq 0$$
,  $\mu_i \geq 0$ ,  $C = (c_{ij})$ ,

$$\begin{pmatrix} \operatorname{diag}(\lambda_i) & C \\ C^t & \operatorname{diag}(\mu_i) \end{pmatrix} \succeq 0 \implies |C|^2 \leq \sum_{i=1}^3 \lambda_i \mu_i.$$

#### Proof.

Schur complements: 
$$D=(d_{ij})=(c_{ij}/\sqrt{\lambda_i\mu_j})\in B_1^{\operatorname{spec}}$$

$$ightharpoonup |C|^2 = \sum_{ij} \lambda_i \mu_j d_{ij}^2$$
 is maximal if  $D \in O(3) \subset B_1^{ extsf{spec}}$ 

$$lacksquare$$
 Birkhoff–von Neumann Theorem:  $D_2=(d_{ij}^2)\in\mathfrak{S}_3$ 

#### Corollary

If 
$$R \in \Omega_{\delta}$$
 is such that  $R - \delta \mathrm{Id} + \alpha * \succeq 0$ , then

$$|C|^2 \le \sum_{i=1}^{3} (u - \delta + w_i^+ + \alpha)(u - \delta + w_i^- - \alpha)$$
  
=  $3(u - \delta)^2 - 3\alpha^2 + \langle W_+, W_- \rangle$ .

#### Proof of Lemma A

- ▶ Let  $\delta \geq \frac{1}{1+3\sqrt{3}}$ ,  $R \in \Omega_{\delta}$ , and  $\alpha \in \mathbb{R}$  s.t.  $R \delta \mathrm{Id} + \alpha * \succeq 0$ .
- lackbox Recall that  $\operatorname{proj}(\Omega_\delta) = E_\delta$ , hence  $(\operatorname{proj}(R), \alpha) \in \widetilde{E}_\delta$ .
- ▶ Use Corollary to eliminate  $|C|^2$ :

$$8(\underline{\chi}(R) - 2\underline{\sigma}(R)) = 6u^{2} - \frac{1}{3}|W_{+}|^{2} + \frac{7}{3}|W_{-}|^{2} - 2|C|^{2}$$

$$\geq -\frac{1}{3}|W_{+}|^{2} + \frac{7}{3}|W_{-}|^{2} - 2\langle W_{+}, W_{-} \rangle$$

$$+6\alpha^{2} + 12u\delta - 6\delta^{2}$$

$$q(\text{proj}(R),\alpha)$$

 $q \colon \widetilde{E_{\delta}} \longrightarrow \mathbb{R}$  indefinite quadratic form,  $\operatorname{ind}(A_q) = 3$ .

lackbox Optimize q on the 6-simplex  $\widetilde{E}_{\delta}$  as before, obtaining

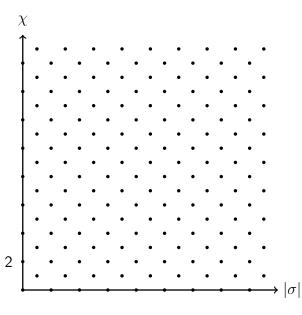
$$8 \min_{R \in \Omega_{\delta}} \underline{\chi}(R) - 2\underline{\sigma}(R) \geq \min_{\widetilde{E}_{\delta}} q > 0.$$





Thank you for your attention!





# Bonus: Hopf Conjecture

#### Conjecture (Hopf)

$$M^{2d}$$
 compact:  $\pm \sec_M \ge 0 \implies \underline{(\pm 1)^d \chi(M)} \ge 0$ 

Algebraic version: 
$$\pm \sec_R \ge 0 \implies \underline{\chi}(R) \ge 0$$

- ▶ True if 2d = 4 (Milnor / Chern, 1955)
- **False** if  $2d \ge 6$  (Geroch, 1976)

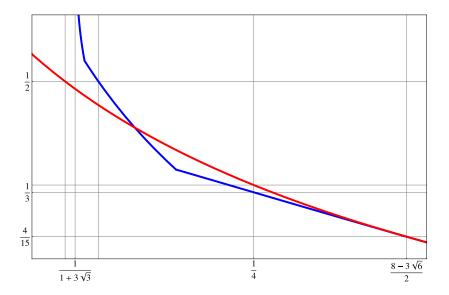
Proof 
$$(2d = 4)$$
.

If  $\pm \sec_R \ge 0$ , then  $\pm R + \alpha * \succeq 0$  for some  $\alpha \in \mathbb{R}$ . Thus:

$$8\underline{\chi}(\pm R) = 6u^2 + |W_+|^2 + |W_-|^2 - 2|C|^2$$
(Corollary) 
$$\geq 6\alpha^2 + |W_+|^2 + |W_-|^2 - 2\langle W_+, W_- \rangle$$

$$= 6\alpha^2 + |W_+ - W_-|^2$$

$$\geq 0.$$



# Vertices of Einstein simplices $E_{\delta}$ and $E_{\delta}$

The Einstein simplex  $E_\delta \subset \mathbb{R}^5$  is the convex hull of the rows

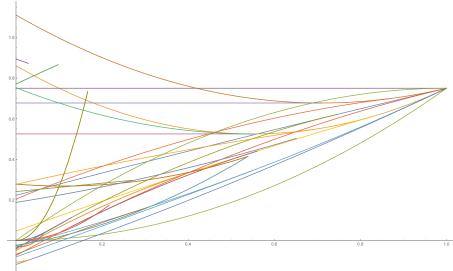
| $w_1^+$                           | $w_2^+$                           | $w_3^+$                           | $w_1^-$                           | $w_2^-$                            | $w_3^-$                            | и                                 |
|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|------------------------------------|------------------------------------|-----------------------------------|
| $\frac{2}{3}\delta - \frac{2}{3}$ | $\frac{2}{3}\delta - \frac{2}{3}$ | $\frac{4}{3} - \frac{4}{3}\delta$ | 0                                 | 0                                  | 0                                  | $\frac{2}{3}\delta + \frac{1}{3}$ |
| $\frac{4}{3}\delta - \frac{4}{3}$ | $-\frac{2}{3}\delta+\frac{2}{3}$  | $\frac{2}{3} - \frac{2}{3}\delta$ | 0                                 | 0                                  | 0                                  | $\frac{1}{3}\delta + \frac{2}{3}$ |
| 0                                 | 0                                 | 0                                 | $\frac{4}{3}\delta - \frac{4}{3}$ | $-\frac{2}{3}\delta + \frac{2}{3}$ | $-\frac{2}{3}\delta + \frac{2}{3}$ | $\frac{1}{3}\delta + \frac{2}{3}$ |
| 0                                 | 0                                 | 0                                 | $\frac{2}{3}\delta - \frac{2}{3}$ | $\frac{2}{3}\delta - \frac{2}{3}$  | $-\frac{4}{3}\delta + \frac{4}{3}$ | $\frac{2}{3}\delta + \frac{1}{3}$ |
| 0                                 | 0                                 | 0                                 | 0                                 | 0                                  | 0                                  | δ                                 |
| 0                                 | 0                                 | 0                                 | 0                                 | 0                                  | 0                                  | 1                                 |

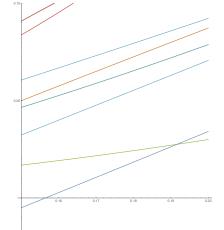
The simplex  $\widetilde{E}_{\delta} \subset \mathbb{R}^6$  is the convex hull of the rows of

| $w_1^+$                           | $w_2^+$                            | $w_3^+$                           | $w_1^-$                           | $w_2^-$                            | $w_3^-$                            | и                                 | $\alpha$                           |
|-----------------------------------|------------------------------------|-----------------------------------|-----------------------------------|------------------------------------|------------------------------------|-----------------------------------|------------------------------------|
| $\frac{4}{3}\delta - \frac{4}{3}$ | $-\frac{2}{3}\delta + \frac{2}{3}$ | $\frac{2}{3} - \frac{2}{3}\delta$ | 0                                 | 0                                  | 0                                  | $\frac{1}{3}\delta + \frac{2}{3}$ | $-\frac{2}{3}\delta + \frac{2}{3}$ |
| $\frac{2}{3}\delta - \frac{2}{3}$ | $\frac{2}{3}\delta - \frac{2}{3}$  | $\frac{4}{3} - \frac{4}{3}\delta$ | 0                                 | 0                                  | 0                                  | $\frac{2}{3}\delta + \frac{1}{3}$ | $-\frac{1}{3}\delta + \frac{1}{3}$ |
| 0                                 |                                    |                                   | $\frac{4}{3}\delta - \frac{4}{3}$ | $-\frac{2}{3}\delta + \frac{2}{3}$ | $-\frac{2}{3}\delta + \frac{2}{3}$ | $\frac{1}{3}\delta + \frac{2}{3}$ | $\frac{2}{3}\delta - \frac{2}{3}$  |
| 0                                 | 0                                  |                                   | $\frac{2}{3}\delta - \frac{2}{3}$ | $\frac{2}{3}\delta - \frac{2}{3}$  | $-\frac{4}{3}\delta + \frac{4}{3}$ | $\frac{2}{3}\delta + \frac{1}{3}$ | $\frac{1}{3}\delta - \frac{1}{3}$  |
| 0                                 | 0                                  | 0                                 |                                   |                                    | 0                                  |                                   |                                    |
| 0<br>0                            | 0<br>0                             | 0                                 | 0                                 | 0                                  | 0                                  | 1                                 | $\delta$ -1                        |
| 0                                 | 0                                  | 0                                 | 0                                 | 0                                  | 0                                  | 1                                 | $-\delta + 1$                      |

Recall only need columns  $w_1^\pm, w_2^\pm, u$ , since  $w_3^\pm = -w_1^\pm - w_2^\pm$ 

Values of  $q \colon \widetilde{E}_{\delta} \to \mathbb{R}$  at vertices and critical points in interior of faces of  $\widetilde{E}_{\delta}$ , as functions of  $\delta > 0$ .





Zoom near  $\delta\cong 0.16139$ 

Change of sign at:

$$\delta = \frac{1}{71} \left( 9\sqrt{545} - 199 \right)$$
$$\cong 0.1564$$

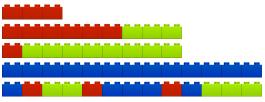
# Mixing up red, green, blue

What about ?

$$\mathbb{C}P^2 \# (S^2 \times S^2) \cong_{\mathsf{diffeo}} \underline{\#^2 \mathbb{C}P^2 \# \overline{\mathbb{C}P^2}}$$

$$\cong_{\mathsf{diffeo}} \underline{}$$

Similarly for  $\overline{S^2 \times S^2} \cong_{\text{diffeo}} S^2 \times S^2$ .



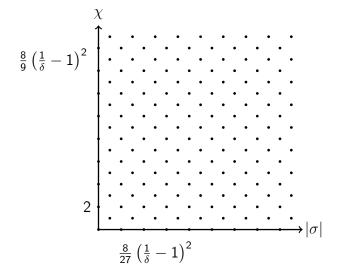
All have Ric > 0!

Recall that, conjecturally, very few have  $\sec > 0...$ 

$$S^4$$
  $\mathbb{C}P^2$   $\overline{\mathbb{C}P^2}$ 

# Remark: Nothing else to squeeze from $a\underline{\chi} + b\underline{\sigma}$ .

Lemma B: 
$$\forall s \geq 0, \quad \chi(M) \leq \frac{8}{27} \left(\frac{1}{\delta} - 1\right)^2 (s+3) - s \, \sigma(M)$$



# A walk on the wild side: $\sec_M < 0$ , $|\pi_1(M)| = \infty$

#### Theorem (Ville)

If  $M^4$  is  $\frac{1}{4}$ -pinched,  $\pi_1(M) \cong \pi_1(\mathbb{C}H^2/\Gamma)$ , then  $M = \mathbb{C}H^2/\Gamma$ .

# Theorem (Gromov)

If M is  $\delta(V)$ -pinched with  $Vol(M) \leq V$ , then M has  $\underline{\sec \equiv -1}$ .

# Gromov–Thurston examples ( $\sigma=0$ , non-explicit)

 $\forall \delta \nearrow 1$ ,  $\exists M^4$   $\delta$ -pinched that cannot have  $\underline{\sec \equiv -1}$ .

 $\forall \delta \searrow 0$ ,  $\exists M^4$  with sec < 0 that cannot be  $\underline{\quad \delta\text{-pinched} \quad}$ .

Examples of Mostow–Siu, Ontaneda (cf.  $\lambda(1)=0$ )

(Explicit) compact Kähler mfld,  $\forall \delta \nearrow 1$ ,  $\exists M^4$   $\delta$ -pinched sec < 0,  $\frac{\sigma}{\chi} = \frac{128}{447} = \lambda(0.303)$ . manifolds with  $\sigma \neq 0$ .

 $\leadsto$  "unpinchable" past  $\delta = 0.303$   $\leadsto \lambda(\delta) \searrow 0 \implies \chi \nearrow +\infty$