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“Classical’ Geography Problem
Given a group G , which points
(o(M), x(M)) € Z? can be realized
by a 4-manifold with mw (M) = G ?
Definition
(M",g) is d-pinched if either

> 0 <secy <1 |,

> —1<secy < —9.
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Map by Nicolaes Visscher Il, ca. 1689

Pinched Geography Problem
Which (o, x) € Z? are realized by §-pinched 4-manifolds?



Topology of simply-connected 4-manifolds
bi(M) = bs(M) =0

» M* closed, (M) = {1} = |All information in intersection form
QMZ HQ(M) X HQ(M) — 7

» Qu has b, (M) positive eigenvalues
b_(M) negative eigenvalues

by(M) = rank Qu = by (M) + b_(M)

X(M) = 24 b,(M)+b_(M), o(M)= bi(M)—b_(M)

» Thus: x(M)=o0(M) mod2 ,and x(M)>|oc(M)|+2 .

» If M is smooth, by Hodge Theory:

bi(M) =dim{a € Q*(M) : Ao = 0,*a = ta}






Simply-connected building blocks

T,
CP? &Y cp V.-
b_|_ = 1 b+ = O b+ = ].
b_. =0 b =1 b =1
By Freedman, Donaldson, Atiyah-Singer, Hirzebruch, ...

Theorem
If (M*,g) is closed, w1 (M) = {1}, and __scal >0 then
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Conversely, any connected sum of CP?, CP?, 52 x 52 has:
» Gromov-Lawson 1980; Schoen—Yau 1979: scal >0
» Sha-Yang 1993; Perelman 1997: Ric > 0



Geography Problem for scal > 0 and Ric > 0
Any (o, x) with x =0 mod 2 and x > |o| + 2 is realized:
M = #CP2#5CP?, r = X122 s =

Conjecture (Folklore)

(M*, ¢) closed, (M)

secy > 0

Question
How small can we make § > 0 and prove:

(M*, g) closed, (M)

positively §-pinched

x—0—2

2

homeo?

Homeomorphism Question has 2 parts

=1 = M* Yo _S* or CP? .

= {1 = M* 2 jifeor _S* or CP? .

bo=0|&|2—b, =y —20>0
—— N ~~ o
definite geography problem
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S% or CP?
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Suppose (M*, g) has m1(M) = {1} and is positively §-pinched.
Theorem (Berger 1960, Klingenberg 1961)

o> zl; — Mghomeo 54

Theorem (Brendle=Schoen, 2009)

§>3 = Mg, S*

Theorem (Berger 1983; Petersen—Tao, 2009)

de > 0, 5>%—8 — Mgdiffeos4 OI’(DP2

Theorem (Ville, 1989)
0>+ 02105 = M Zpopme S* or CP2

Theorem (Seaman, 1989)

1 &= ~ 4 2
5 Z 3\/1+(25/4/51/2)+1 - M — M —homeo 5 or CP .







Theorem A (B., Kummer, Mendes)
If (M*,g) has w1 (M) = {1} and is positively §-pinched,

1
5> ~ 0.16139 ,
1433 —

then M =2} 5me0 S* or CP?.



MATHEMATICIANS ARE WEIRD

YOU KNOW
THAT THING THAT
WAS 2372%642°

1GOTIT
DAWN TO
23728634,

embc -COM\VCE . COM



Actually, there’'s much more behind it...

Theorem B (B., Kummer, Mendes)

For all 6 > 0, if (M*,g) is closed, oriented, and §-pinched, then
lo(M)| < A\(0) x(M), where A: (0,1] — R is an explicit function.

e lim A\(J) = +o0
SN0

e \(1)=0
cf. o(M}) =0

3 \ ° )\<1+;\/§> < %
cf. Thm A
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if 0 < & < 0.069,
if 0.060 < § < 0.191,

if 0.191 < 4§ <0.211,
if 0.211 <§ < 1.
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Different methods:

[BKM, 2021]
Any0<d<1

[Ville, 1985, 1989]

=1 5=4
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~ 0.163<6 <1

1+3V3



Positive d-pinching
lo(M)] < A(9) x(M)

gives new information only if
A1) 20052 <d <t —e.

Theorem C (BKM)

If (M*, ) is positively §-pinched,

oriented, then M =g S* or

> x(M) < E(:-1)7,
> lo(M)] < & (3-1)°

Gromov: x(M) < 10™40

Corollary

Explicit list of homeotypes for
positively §-pinched 4-manifolds.

Negative d-pinching
lo(M)] < A(6) x(M)

gives new information for all
0<d<1.

'\"‘>b1<1+)\ lb++>\+1b_

Theorem D (BKM)
If (M*,g) is negatively §-pinched,
closed, oriented, then:

> (M) < ﬁVoI(M,g) ,

M)| < 22 Vol(M, g).

> Jof

Corollary

Quantify Gromov's volume and
diameter bounds for negatively

d-pinched M with o(M) # 0.



Bounding the geography of d-pinched 4-manifolds
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Curvature operator

Eigenspaces of Hodge star
NTM =N TM & A2 TM
Curvature operator canonical form, using O(4) ~ A2 TM
R: N> TM — A*TM

. UId —+ W+ C 2 2
R= ( e W) € Sym2(A2TM)

Scalar curvature: u = % scal

Weyl tensor: W, = diag(wi", w5, w3")

Traceless Ricci: C =Ric

R diagonal < C= 0 <= M is Einstein




Chern—Gauss—Bonnet, Hirzebruch

Integral formulas for topological invariants:

) == [ xR o) = [ o(R)

T2 T2
Integrands are indefinite and SO(4)-invariant quadratic forms:

X, o Symp(A’RY) — R
X(R) = §(6u” + |W, >+ |W_]> = 2|C[?)

(R) = 35 (IW4[* — [W_]?)

19

Since there are no linear terms:

X(=R)=x(R),  a(=R)=2a(R)



Blackbox optimization lemmas (more on this later)

Definition
Qs := {R € Symj(A*R*) : § < secg < 1}

Lemma A
Ifé > 1+3f then Rrrglgg X(R)—2¢(R) > 0.
Lemma B

Forall § >0, and t € [-1,1],

W, |2 W_I? = &(1 — §)2.
max [W,[* 4 ¢ |W_ | = §(1 - )

In particular,
(t =+1) max |W|* =
ReQs

(t=—1) max o(k) =



Proof of Theorem A

Let (M* g) be simply-connected and positively d-pinched,

= (0.16139.

5> _ L
~1+3V3

Theorem (Diégenes—Ribeiro, 2019) EhbE &
M*is definite ,ie, b (M)=0

Lemma A L P
x(M)—-20(M) > 0.

b =0&|2—by=x—20>0|= M o S*or CP?

—— ~ -
definite geography problem



Proof of Theorem C (Euler Characteristic)
Let (M*, g) be positively §-pinched and oriented.

Theorem (Chang—Gurksy—Yang, 2003)
/f/ |W|2 <47T2X(M), then M =gifeo S4.
M

Thus, if M %diffeo G4 , then:

Lemma B ® <= §(1 — 6)? Vol(M)

) ; 1
Bishop Volume Comparlson} < 8(1 . 5)2 Vol (51 (

Diameter Sphere Theorem

4
valss (5) ~55] =3




Proof of Theorems C & D (Signature)

Let (M* g) be positively or negatively §-pinched and oriented.

dm:iﬁdm

2
12
Lemma B . <= 5(1 —6)? Vol(M)

™

- stop here if negatively pinched —

Bishop Volume Comparison B 4 <L>)
Diameter Sphere Theorem} = 2 9(1 0)° VOI(5+ NG

- 2
s ()-5] -H(3-).

Proof of Theorem D (Euler Characteristic)
Analogous: max x(R) < max g 2 (607 + [W P+ |W_?) =
clls —




Inside the blackbox

-

> g: Sym;(A?R*) — R quadratic form
g(R)=R'-A, R+ b, R+,

> Qs C Sym;(A%RR*) is a compact spectrahedral shadow
(Thorpe's trick / Finsler's Lemma)

R—0ld+ax >0

Reyy <— da,peR, [d—R+B% =0

» If A, is indefinite, “brute force” semidefinite programming
on Q5 does not work, nor do other convex methods

min g(R) =7 max q(R) =7

ReQ;s ReQs



The Einstein simplex

Proposition

The set of §-pinched Einstein curvature operators

Es := DiagN Qs is a 5-simplex , and proj(Q2s) = E5 ,
where proj: Sym?(A2R*) — Diag.

Proposition

The set of modified §-pinched Einstein operators
Es:={(R,a)e EExR:R—6ld+ax =0} isa 6-simplex .

ORga + E(RiCPZ — R54)

Vertices are affine functions of 6:  Rgs + e(Rycpz + Rse), € € {0, 103



Quadratic optimization on simplices

Lemma
A" = conv(V) C R” simplex, q: R" — R quadratic form, A; = Hess q
A, indefinite = maxq = maxq (induction on n...)

A, positive-semidefinite —> max ¢ = max q

Aq negative-definite — Use Calculus to find max g

Proof of Lemma B.
For all 6 > 0, and t € [—1, 1], since proj(2s) = Es,

manc WL [+ ¢ | WP =y max | W, [* + t|W_?
CIt(R)

Lemma 8(1 _ 5)

Need to inspect faces of dimension < ind(A,,) =2 if t <O0. O



Integrand in Lemma A depends on |C|?...

Lemma
Given \; >0, i; > 0, C = (),

3
diag(\)) C 2
< i[bi.
( ct diag(uf)> =0 = s ;M'
Proof.
» Schur complements: D = (dj;) = (¢;j/\/Aipj) € B
> |C]> = 37, Aipydi is maximal |f D e 0O(3) c B™
» Birkhoff-von Neumann Theorem: D, = (dj) € &3 O

Corollary
If R € Qs is such that R — 0Id + a*x = 0, then
3

|C|2§Z(u—5+w,+—|—a)(u—5+wi_—a)
i=1

=3(u—0)* -3+ (W,, W.).



Proof of Lemma A

> Let § > ReQs, andac Rst. R—6ld+ax = 0.

1+3f'
> Recall that proj(€s) = Es, hence (proj(R), a) € E;.

» Use Corollary to eliminate |C|?:

8(x(R) — 20(R)) = 6u® — W, [2 + ZIW_ —2|CP
> LWL+ WP - 2(Wy, W)
+602 + 12u6 — 652

a(proi(R),)

J/

q: Es — R indefinite quadratic form, ind(Aq) = 3.

» Optimize g on the 6-simplex E; as before, obtaining

—2 > mi .
8 min x(R) —2a(R) = ming. > 0
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Bonus: Hopf Conjecture

Conjecture (Hopf)
M?d compact: +secyy >0 = (£1)x(M) >0

Algebraic version: £seck >0 = x(R) >0
» _True if 2d =4 (Milnor / Chern, 1955)
» _False if 2d > 6 (Geroch, 1976)
Proof (2d = 4).
If £secr >0, then £R + ax = 0 for some o € R. Thus:

8X(£R) = 61 + |W. > + [W_|> — 2|C|?
(Corollary) > 607 + |Wo >+ |W_|? — 2(W,, W_)
=602 + |W, — W_|”
>0,
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Vertices of Einstein simplices Es and Es
The Einstein simplex E; C IR® is the convex hull of the rows

i

+

wy wy W;r wy Wy, wyz u
2 2 2 2 4 4
Lhil 0 o o L
$5-4 25422 25 0 0o 1542
0 0 0 46-%-25+2 —26+2 1542
2 2 2 2 4 4 2 1
0 0 0 0 0 5
0 0 0 0 0 0 1
The simplex Es C RO is the convex hull of the rows of
Wf W; W3 Wl W2 W3 u (0%
4 4 2 2 2 2 1 2 2 2
géfg 72§5+2§ 3735 0 0 0 §5+§ —§5+§
30-3 30-3 3730 O 0 0 30+3 —30+3
0 0 0 %6-% -25+2 —25+2 16+2 25-2
2 2 2 2 4 4 2 1 1 1
0 0 0 30-3 30-3 —30+3 30+3 30—3
0 0 0 0 0 0 5 0
0 0 0 0 0 0 1 -1
0 0 0 0 0 0 1 —s+41
+ o+ - + + +
Recall only need columns wi™, wy", u, since wy- = —w; — w;



Values of g: Es » R at vertices and critical points in interior
of faces of Es, as functions of § > 0.




Zoom near 6 =2 0.16139
Change of sign at:

5= % (9\/% - 199)
>~ 0.1564



Mixing up red, green, blue
What about il ?

CP?#(5? x 5?) 2gitreo #2CP*#CP?
>
Similarly for E7MM, since S2 x 52 o0 S2 X S2.

All have Ric > 0!
Recall that, conjecturally, very few have sec > 0...

sS4 CP?
[ |

2

=



Remark: Nothing else to squeeze from ax + bo.

Lemma B:  Vs>0, x(M)<2(5- 1)2 (s+3)—sa(M)




A walk on the wild side: secy < 0, |m(M)| = o0

Theorem (Ville)
If M* is X-pinched, 71(M) = m;1(CH?/T), then M = CH?/T .

Theorem (Gromov)
If M is (V)-pinched with Vol(M) < V, then M has sec = —1.

Gromov—Thurston examples (o = 0, non-explicit)
V5 1, AM* 5-pinched that cannot have sec = —1 .
V8 N\, 0, IM* with sec < 0 that cannot be §-pinched .

Examples of Mostow—Siu, Ontaneda (cf. A\(1) = 0)
(Explicit) compact Kihler mfld, Vs 21, IM* §-pinched
sec <0, 7 = 128 — )(0.303). manifolds with o # 0.

— a7

~- “unpinchable” past § =0.303  ~ A\(0) \\0 = x 40



