Exploring flat worlds

Renato G. Bettiol

More important than any theorems in this talk...

What many people told me when I was a PhD student:

More important than any theorems in this talk ...

What many people told me when I was a PhD student:
(and I sort of believed them

More important than any theorems in this talk ...

What many people told me when I was a PhD student:
(and I sort of believed them; turns out they were right)

More important than any theorems in this talk...

What many people told me when I was a PhD student:
(and I sort of believed them; turns out they were right)

- Find a problem you are passionate about, and study it
"I would not dare to say that there is a direct relation between mathematics and madness, but there is no doubt that great mathematicians suffer from maniacal characteristics, delirium and symptoms of schizophrenia."
J. Nash

More important than any theorems in this talk...

What many people told me when I was a PhD student:
(and I sort of believed them; turns out they were right)

- Find a problem you are passionate about, and study it
- Once in a while, check if you are still on Earth

More important than any theorems in this talk...

What many people told me when I was a PhD student:
(and I sort of believed them; turns out they were right)

- Find a problem you are passionate about, and study it
- Once in a while, check if you are still on Earth
- All other things (papers, jobs, grants) sort themselves out

More important than any theorems in this talk...

What many people told me when I was a PhD student:
(and I sort of believed them; turns out they were right)

- Find a problem you are passionate about, and study it
- Once in a while, check if you are still on Earth
- All other things (papers, jobs, grants) sort themselves out
- Have fun doing Mathematics!

Flat worlds

Definition
A metric space $\left(X, d_{X}\right)$ is locally isometric to $\left(Y, d_{Y}\right)$ if

Flat worlds

Definition
A metric space $\left(X, d_{X}\right)$ is locally isometric to $\left(Y, d_{Y}\right)$ if $\forall x \in X$,

Flat worlds

Definition
A metric space $\left(X, d_{X}\right)$ is locally isometric to $\left(Y, d_{Y}\right)$ if
$\forall x \in X, \exists U \subset X$ neighborhood of x,

Flat worlds

Definition
A metric space $\left(X, d_{X}\right)$ is locally isometric to $\left(Y, d_{Y}\right)$ if
$\forall x \in X, \exists U \subset X$ neighborhood of x, and $\phi: U \rightarrow Y$ so that

$$
d_{Y}(\phi(p), \phi(q))=d_{X}(p, q), \quad \forall p, q \in U
$$

Flat worlds

Definition
A metric space $\left(X, d_{X}\right)$ is locally isometric to $\left(Y, d_{Y}\right)$ if
$\forall x \in X, \exists U \subset X$ neighborhood of x, and $\phi: U \rightarrow Y$ so that

$$
d_{Y}(\phi(p), \phi(q))=d_{X}(p, q), \quad \forall p, q \in U
$$

Definition
A flat manifold is a metric space locally isometric to \mathbb{R}^{n}.

Flat worlds

Definition
A metric space $\left(X, d_{X}\right)$ is locally isometric to $\left(Y, d_{Y}\right)$ if $\forall x \in X, \exists U \subset X$ neighborhood of x, and $\phi: U \rightarrow Y$ so that

$$
d_{Y}(\phi(p), \phi(q))=d_{X}(p, q), \quad \forall p, q \in U
$$

Definition
A flat manifold is a metric space locally isometric to \mathbb{R}^{n}. (always smooth!)

Flat worlds

Definition
A metric space $\left(X, d_{X}\right)$ is locally isometric to $\left(Y, d_{Y}\right)$ if $\forall x \in X, \exists U \subset X$ neighborhood of x, and $\phi: U \rightarrow Y$ so that

$$
d_{Y}(\phi(p), \phi(q))=d_{X}(p, q), \quad \forall p, q \in U
$$

Definition
A flat manifold is a metric space locally isometric to \mathbb{R}^{n}. (always smooth!)
A flat orbifold is a metric space locally isometric to \mathbb{R}^{n} / Γ, where $\Gamma<\mathrm{O}(n)$ is a finite group of (linear) isometries.

Flat worlds

Definition
A metric space $\left(X, d_{X}\right)$ is locally isometric to $\left(Y, d_{Y}\right)$ if $\forall x \in X, \exists U \subset X$ neighborhood of x, and $\phi: U \rightarrow Y$ so that

$$
d_{Y}(\phi(p), \phi(q))=d_{X}(p, q), \quad \forall p, q \in U
$$

Definition
A flat manifold is a metric space locally isometric to \mathbb{R}^{n}. (always smooth!)
A flat orbifold is a metric space locally isometric to \mathbb{R}^{n} / Γ, where $\Gamma<\mathrm{O}(n)$ is a finite group of (linear) isometries. (only smooth where $\Gamma=\{1\}!$)

Flat worlds

Definition

A metric space $\left(X, d_{X}\right)$ is locally isometric to $\left(Y, d_{Y}\right)$ if $\forall x \in X, \exists U \subset X$ neighborhood of x, and $\phi: U \rightarrow Y$ so that

$$
d_{Y}(\phi(p), \phi(q))=d_{X}(p, q), \quad \forall p, q \in U
$$

Definition
A flat manifold is a metric space locally isometric to \mathbb{R}^{n}. (always smooth!)
A flat orbifold is a metric space locally isometric to \mathbb{R}^{n} / Γ, where $\Gamma<\mathrm{O}(n)$ is a finite group of (linear) isometries. (only smooth where $\Gamma=\{1\}!$)

- Recall: $\mathrm{O}(n)=\left\{A \in M_{n \times n}(\mathbb{R}): A^{t} A=\operatorname{Id}\right\}$

Flat worlds

Definition

A metric space $\left(X, d_{X}\right)$ is locally isometric to $\left(Y, d_{Y}\right)$ if $\forall x \in X, \exists U \subset X$ neighborhood of x, and $\phi: U \rightarrow Y$ so that

$$
d_{Y}(\phi(p), \phi(q))=d_{X}(p, q), \quad \forall p, q \in U
$$

Definition
A flat manifold is a metric space locally isometric to \mathbb{R}^{n}. (always smooth!)
A flat orbifold is a metric space locally isometric to \mathbb{R}^{n} / Γ, where $\Gamma<\mathrm{O}(n)$ is a finite group of (linear) isometries. (only smooth where $\Gamma=\{1\}!$)

- Recall: $\mathrm{O}(n)=\left\{A \in M_{n \times n}(\mathbb{R}): A^{t} A=\mathrm{Id}\right\}$
- In this talk: only compact manifolds and orbifolds.

Two-dimensional flat manifolds

- Local model: \mathbb{R}^{2}

All points have neighborhoods isometric to a subset of \mathbb{R}^{2}

Two-dimensional flat manifolds

- Local model: \mathbb{R}^{2}

All points have neighborhoods isometric to a subset of \mathbb{R}^{2}

- Compact: $\max _{x, y} d(x, y)<+\infty$

Two-dimensional flat manifolds

- Local model: \mathbb{R}^{2}

All points have neighborhoods isometric to a subset of \mathbb{R}^{2}

- Compact: $\max _{x, y} d(x, y)<+\infty$
- Only possibilities are:

Torus T^{2}

Klein bottle K^{2}

Two-dimensional flat orbifolds

Local models: \mathbb{R}^{2} / Γ, where $\Gamma<\mathrm{O}(2)$ is a finite subgroup

Two-dimensional flat orbifolds

Local models: \mathbb{R}^{2} / Γ, where $\Gamma<O(2)$ is a finite subgroup

Theorem (Leonardo Da Vinci)
$\Gamma<\mathrm{O}(2)$ is a finite subgroup

Theorem (Leonardo Da Vinci)
$\Gamma<\mathrm{O}(2)$ is a finite subgroup $\Longrightarrow \underbrace{\Gamma \cong \mathbb{Z}_{k}}_{\text {cyclic }}$ or $\underbrace{\Gamma \cong D_{k}}_{\text {dihedral }}$

The Vitruvian Man

Theorem (Leonardo Da Vinci)
$\Gamma<\mathrm{O}(2)$ is a finite subgroup $\Longrightarrow \underbrace{\Gamma \cong \mathbb{Z}_{k}}_{\text {cyclic }}$ or $\underbrace{\Gamma \cong D_{k}}_{\text {dihedral }}$

Theorem (Leonardo Da Vinci)
$\Gamma<\mathrm{O}(2)$ is a finite subgroup $\Longrightarrow \underbrace{\Gamma \cong \mathbb{Z}_{k}}_{\text {cyclic }}$ or $\underbrace{\Gamma \cong D_{k}}_{\text {dihedral }}$

Theorem (Leonardo Da Vinci)
$\Gamma<\mathrm{O}(2)$ is a finite subgroup $\Longrightarrow \underbrace{\Gamma \cong \mathbb{Z}_{k}}_{\text {cyclic }}$ or $\underbrace{\Gamma \cong D_{k}}_{\text {dihedral }}$

Theorem (Leonardo Da Vinci)
$\Gamma<\mathrm{O}(2)$ is a finite subgroup $\Longrightarrow \underbrace{\Gamma \cong \mathbb{Z}_{k}}_{\text {cyclic }}$ or $\underbrace{\Gamma \cong D_{k}}_{\text {dihedral }}$

Theorem (Leonardo Da Vinci)
$\Gamma<\mathrm{O}(2)$ is a finite subgroup $\Longrightarrow \underbrace{\Gamma \cong \mathbb{Z}_{k}}_{\text {cyclic }}$ or $\underbrace{\Gamma \cong D_{k}}_{\text {dihedral }}$

Theorem (Leonardo Da Vinci)
$\Gamma<\mathrm{O}(2)$ is a finite subgroup $\Longrightarrow \underbrace{\Gamma \cong \mathbb{Z}_{k}}_{\text {cyclic }}$ or $\underbrace{\Gamma \cong D_{k}}_{\text {dihedral }}$

Theorem (Leonardo Da Vinci)
$\Gamma<\mathrm{O}(2)$ is a finite subgroup $\Longrightarrow \underbrace{\Gamma \cong \mathbb{Z}_{k}}_{\text {cyclic }}$ or $\underbrace{\Gamma \cong D_{k}}_{\text {dihedral }}$

Theorem (Leonardo Da Vinci)
$\Gamma<\mathrm{O}(2)$ is a finite subgroup $\Longrightarrow \underbrace{\Gamma \cong \mathbb{Z}_{k}}_{\text {cyclic }}$ or $\underbrace{\Gamma \cong D_{k}}_{\text {dihedral }}$

Theorem (Leonardo Da Vinci)
$\Gamma<\mathrm{O}(2)$ is a finite subgroup $\Longrightarrow \underbrace{\Gamma \cong \mathbb{Z}_{k}}_{\text {cyclic }}$ or $\underbrace{\Gamma \cong D_{k}}_{\text {dihedral }}$

Theorem (Leonardo Da Vinci)
$\Gamma<\mathrm{O}(2)$ is a finite subgroup $\Longrightarrow \underbrace{\Gamma \cong \mathbb{Z}_{k}}_{\text {cyclic }}$ or $\underbrace{\Gamma \cong D_{k}}_{\text {dihedral }}$

Theorem (Leonardo Da Vinci)
$\Gamma<\mathrm{O}(2)$ is a finite subgroup $\Longrightarrow \underbrace{\Gamma \cong \mathbb{Z}_{k}}_{\text {cyclic }}$ or $\underbrace{\Gamma \cong D_{k}}_{\text {dihedral }}$

Theorem (Leonardo Da Vinci)
$\Gamma<\mathrm{O}(2)$ is a finite subgroup $\Longrightarrow \underbrace{\Gamma \cong \mathbb{Z}_{k}}_{\text {cyclic }}$ or $\underbrace{\Gamma \cong D_{k}}_{\text {dihedral }}$

Theorem (Leonardo Da Vinci)
$\Gamma<\mathrm{O}(2)$ is a finite subgroup $\Longrightarrow \underbrace{\Gamma \cong \mathbb{Z}_{k}}_{\text {cyclic }}$ or $\underbrace{\Gamma \cong D_{k}}_{\text {dihedral }}$

Theorem (Leonardo Da Vinci)
$\Gamma<\mathrm{O}(2)$ is a finite subgroup $\Longrightarrow \underbrace{\Gamma \cong \mathbb{Z}_{k}}_{\text {cyclic }}$ or $\underbrace{\Gamma \cong D_{k}}_{\text {dihedral }}$

Theorem (Leonardo Da Vinci)
$\Gamma<\mathrm{O}(2)$ is a finite subgroup $\Longrightarrow \underbrace{\Gamma \cong \mathbb{Z}_{k}}_{\text {cyclic }}$ or $\underbrace{\Gamma \cong D_{k}}_{\text {dihedral }}$

Theorem (Leonardo Da Vinci)
$\Gamma<\mathrm{O}(2)$ is a finite subgroup $\Longrightarrow \underbrace{\Gamma \cong \mathbb{Z}_{k}}_{\text {cyclic }}$ or $\underbrace{\Gamma \cong D_{k}}_{\text {dihedral }}$

Theorem (Leonardo Da Vinci)
$\Gamma<\mathrm{O}(2)$ is a finite subgroup $\Longrightarrow \underbrace{\Gamma \cong \mathbb{Z}_{k}}_{\text {cyclic }}$ or $\underbrace{\Gamma \cong D_{k}}_{\text {dihedral }}$

Theorem (Leonardo Da Vinci)
$\Gamma<\mathrm{O}(2)$ is a finite subgroup $\Longrightarrow \underbrace{\Gamma \cong \mathbb{Z}_{k}}_{\text {cyclic }}$ or $\underbrace{\Gamma \cong D_{k}}_{\text {dihedral }}$

Theorem (Leonardo Da Vinci)
$\Gamma<\mathrm{O}(2)$ is a finite subgroup $\Longrightarrow \underbrace{\Gamma \cong \mathbb{Z}_{k}}_{\text {cyclic }}$ or $\underbrace{\Gamma \cong D_{k}}_{\text {dihedral }}$

Theorem (Leonardo Da Vinci)
$\Gamma<\mathrm{O}(2)$ is a finite subgroup $\Longrightarrow \underbrace{\Gamma \cong \mathbb{Z}_{k}}_{\text {cyclic }}$ or $\underbrace{\Gamma \cong D_{k}}_{\text {dihedral }}$

Theorem (Leonardo Da Vinci)
$\Gamma<\mathrm{O}(2)$ is a finite subgroup $\Longrightarrow \underbrace{\Gamma \cong \mathbb{Z}_{k}}_{\text {cyclic }}$ or $\underbrace{\Gamma \cong D_{k}}_{\text {dihedral }}$

Theorem (Leonardo Da Vinci)
$\Gamma<\mathrm{O}(2)$ is a finite subgroup $\Longrightarrow \underbrace{\Gamma \cong \mathbb{Z}_{k}}_{\text {cyclic }}$ or $\underbrace{\Gamma \cong D_{k}}_{\text {dihedral }}$

Theorem (Leonardo Da Vinci)
$\Gamma<\mathrm{O}(2)$ is a finite subgroup $\Longrightarrow \underbrace{\Gamma \cong \mathbb{Z}_{k}}_{\text {cyclic }}$ or $\underbrace{\Gamma \cong D_{k}}_{\text {dihedral }}$

Theorem (Leonardo Da Vinci)
$\Gamma<\mathrm{O}(2)$ is a finite subgroup $\Longrightarrow \underbrace{\Gamma \cong \mathbb{Z}_{k}}_{\text {cyclic }}$ or $\underbrace{\Gamma \cong D_{k}}_{\text {dihedral }}$

Theorem (Leonardo Da Vinci)
$\Gamma<\mathrm{O}(2)$ is a finite subgroup $\Longrightarrow \underbrace{\Gamma \cong \mathbb{Z}_{k}}_{\text {cyclic }}$ or $\underbrace{\Gamma \cong D_{k}}_{\text {dihedral }}$

Theorem (Leonardo Da Vinci)
$\Gamma<\mathrm{O}(2)$ is a finite subgroup $\Longrightarrow \underbrace{\Gamma \cong \mathbb{Z}_{k}}_{\text {cyclic }}$ or $\underbrace{\Gamma \cong D_{k}}_{\text {dihedral }}$

Theorem (Leonardo Da Vinci)
$\Gamma<\mathrm{O}(2)$ is a finite subgroup $\Longrightarrow \underbrace{\Gamma \cong \mathbb{Z}_{k}}_{\text {cyclic }}$ or $\underbrace{\Gamma \cong D_{k}}_{\text {dihedral }}$
\Longrightarrow Models are $\mathbb{R}^{2} / \mathbb{Z}_{k}, \mathbb{R}^{2} / D_{k}$

Theorem (Leonardo Da Vinci)
$\Gamma<\mathrm{O}(2)$ is a finite subgroup $\Longrightarrow \underbrace{\Gamma \cong \mathbb{Z}_{k}}_{\text {cyclic }}$ or $\underbrace{\Gamma \cong D_{k}}_{\text {dihedral }}$
\Longrightarrow Models are $\mathbb{R}^{2} / \mathbb{Z}_{k}, \mathbb{R}^{2} / D_{k}$

Cone with angle $\frac{2 \pi}{k}$

Theorem (Leonardo Da Vinci)
$\Gamma<\mathrm{O}(2)$ is a finite subgroup $\Longrightarrow \underbrace{\Gamma \cong \mathbb{Z}_{k}}_{\text {cyclic }}$ or $\underbrace{\Gamma \cong D_{k}}_{\text {dihedral }}$
\Longrightarrow Models are $\mathbb{R}^{2} / \mathbb{Z}_{k}, \mathbb{R}^{2} / D_{k}$

$\mathbb{R}^{2} / \mathbb{Z}_{k}$
Cone with angle $\frac{2 \pi}{k}$
Wedge with angle $\frac{\pi}{k}$

Two-dimensional flat orbifolds

Local models: $\mathbb{R}^{2} / \mathbb{Z}_{k}$, cone with angle $\frac{2 \pi}{k}$ \mathbb{R}^{2} / D_{k}, wedge with angle $\frac{\pi}{k}$

Two-dimensional flat orbifolds

Local models: $\mathbb{R}^{2} / \mathbb{Z}_{k}$, cone with angle $\frac{2 \pi}{k}$ \mathbb{R}^{2} / D_{k}, wedge with angle $\frac{\pi}{k}$

Two-dimensional flat orbifolds

Local models: $\mathbb{R}^{2} / \mathbb{Z}_{k}$, cone with angle $\frac{2 \pi}{k}$ \mathbb{R}^{2} / D_{k}, wedge with angle $\frac{\pi}{k}$

(1) "Rectangle"

$$
D^{2}(; 2,2,2,2)
$$

Two-dimensional flat orbifolds

Local models: $\mathbb{R}^{2} / \mathbb{Z}_{k}$, cone with angle $\frac{2 \pi}{k}$ \mathbb{R}^{2} / D_{k}, wedge with angle $\frac{\pi}{k}$

(1) "Rectangle"

$$
D^{2}(; 2,2,2,2)
$$

(2) "Half square" $D^{2}(; 2,4,4)$

Two-dimensional flat orbifolds

Local models: $\mathbb{R}^{2} / \mathbb{Z}_{k}$, cone with angle $\frac{2 \pi}{k}$ \mathbb{R}^{2} / D_{k}, wedge with angle $\frac{\pi}{k}$

(1) "Rectangle"

$$
D^{2}(; 2,2,2,2)
$$

(3) "Equilateral triangle"

$$
D^{2}(; 3,3,3)
$$

(2) "Half square" $D^{2}(; 2,4,4)$

Two-dimensional flat orbifolds

Local models: $\mathbb{R}^{2} / \mathbb{Z}_{k}$, cone with angle $\frac{2 \pi}{k}$ \mathbb{R}^{2} / D_{k}, wedge with angle $\frac{\pi}{k}$

(1) "Rectangle"

$$
D^{2}(; 2,2,2,2)
$$

(2) "Half square" $D^{2}(; 2,4,4)$

(3) "Equilateral triangle"

$$
D^{2}(; 3,3,3)
$$

(4) "Half equilateral triangle"

$$
D^{2}(; 2,3,6)
$$

Two-dimensional flat orbifolds

Local models: $\mathbb{R}^{2} / \mathbb{Z}_{k}$, cone with angle $\frac{2 \pi}{k}$ \mathbb{R}^{2} / D_{k}, wedge with angle $\frac{\pi}{k}$

(5) "Pillowcase" $S^{2}(2,2,2,2 ;)$

Two-dimensional flat orbifolds

Local models: $\mathbb{R}^{2} / \mathbb{Z}_{k}$, cone with angle $\frac{2 \pi}{k}$ \mathbb{R}^{2} / D_{k}, wedge with angle $\frac{\pi}{k}$

(5) "Pillowcase"

$$
S^{2}(2,2,2,2 ;)
$$

(6) "Turnover"'

$$
S^{2}(2,4,4 ;)
$$

Two-dimensional flat orbifolds

Local models: $\mathbb{R}^{2} / \mathbb{Z}_{k}$, cone with angle $\frac{2 \pi}{k}$ \mathbb{R}^{2} / D_{k}, wedge with angle $\frac{\pi}{k}$

(5) "Pillowcase"

$$
S^{2}(2,2,2,2 ;)
$$

(6) "Turnover"

$$
S^{2}(2,4,4 ;)
$$

(7) "Turnover"
$S^{2}(3,3,3 ;)$

Two-dimensional flat orbifolds

Local models: $\mathbb{R}^{2} / \mathbb{Z}_{k}$, cone with angle $\frac{2 \pi}{k}$ \mathbb{R}^{2} / D_{k}, wedge with angle $\frac{\pi}{k}$

(5) "Pillowcase" $S^{2}(2,2,2,2 ;)$

(6) "Turnover"
$S^{2}(2,4,4 ;)$

(7) "Turnover"
$S^{2}(3,3,3 ;)$

(8) "Turnover"
$S^{2}(2,3,6 ;)$

Two-dimensional flat orbifolds

Local models: $\mathbb{R}^{2} / \mathbb{Z}_{k}$, cone with angle $\frac{2 \pi}{k}$ \mathbb{R}^{2} / D_{k}, wedge with angle $\frac{\pi}{k}$

(9) "Half pillowcase"

$$
D^{2}(2,2 ;)
$$

Two-dimensional flat orbifolds

Local models: $\mathbb{R}^{2} / \mathbb{Z}_{k}$, cone with angle $\frac{2 \pi}{k}$ \mathbb{R}^{2} / D_{k}, wedge with angle $\frac{\pi}{k}$

(9) "Half pillowcase" $D^{2}(2,2 ;)$

$/ \mathbb{Z}_{2}$
(10) "Projective pillowcase" $\mathbb{R} P^{2}(2,2 ;)$

Two-dimensional flat orbifolds

Local models: $\mathbb{R}^{2} / \mathbb{Z}_{k}$, cone with angle $\frac{2 \pi}{k}$ \mathbb{R}^{2} / D_{k}, wedge with angle $\frac{\pi}{k}$

(9) "Half pillowcase" $D^{2}(2,2 ;)$

(11) $D^{2}(2 ; 2,2)$

(10) "Projective pillowcase" $R P^{2}(2,2 ;)$

Two-dimensional flat orbifolds

Local models: $\mathbb{R}^{2} / \mathbb{Z}_{k}$, cone with angle $\frac{2 \pi}{k}$ \mathbb{R}^{2} / D_{k}, wedge with angle $\frac{\pi}{k}$

(9) "Half pillowcase" $D^{2}(2,2 ;)$

(10) "Projective pillowcase" $\mathbb{R} P^{2}(2,2 ;)$

(11) $D^{2}(2 ; 2,2)$

(12) $D^{2}(4 ; 2)$

Two-dimensional flat orbifolds

Local models: $\mathbb{R}^{2} / \mathbb{Z}_{k}$, cone with angle $\frac{2 \pi}{k}$ \mathbb{R}^{2} / D_{k}, wedge with angle $\frac{\pi}{k}$

(13) $D^{2}(3 ; 3)$

Two-dimensional flat orbifolds

Local models: $\mathbb{R}^{2} / \mathbb{Z}_{k}$, cone with angle $\frac{2 \pi}{k}$ \mathbb{R}^{2} / D_{k}, wedge with angle $\frac{\pi}{k}$

(13) $D^{2}(3 ; 3)$

(14) "Cylinder" $S^{1} \times I$

Two-dimensional flat orbifolds

Local models: $\mathbb{R}^{2} / \mathbb{Z}_{k}$, cone with angle $\frac{2 \pi}{k}$ \mathbb{R}^{2} / D_{k}, wedge with angle $\frac{\pi}{k}$

(13) $D^{2}(3 ; 3)$

(15) "Möbius strip" M^{2}

(14) "Cylinder" $S^{1} \times I$

Two-dimensional flat orbifolds

Local models: $\mathbb{R}^{2} / \mathbb{Z}_{k}$, cone with angle $\frac{2 \pi}{k}$ \mathbb{R}^{2} / D_{k}, wedge with angle $\frac{\pi}{k}$

(13) $D^{2}(3 ; 3)$

(14) "Cylinder" $S^{1} \times I$

Two-dimensional flat orbifolds

Local models: $\mathbb{R}^{2} / \mathbb{Z}_{k}$, cone with angle $\frac{2 \pi}{k}$ \mathbb{R}^{2} / D_{k}, wedge with angle $\frac{\pi}{k}$

(13) $D^{2}(3 ; 3)$

(14) "Cylinder" $S^{1} \times I$

Local to global

Q: How to classify flat orbifolds and flat manifolds?

Local to global

Q: How to classify flat orbifolds and flat manifolds?
Definition
A subgroup $\pi<\operatorname{Iso}\left(\mathbb{R}^{n}\right) \cong \mathrm{O}(n) \ltimes \mathbb{R}^{n}$ is

- crystallographic if π is discrete and cocompact;

Local to global

Q: How to classify flat orbifolds and flat manifolds?
Definition
A subgroup $\pi<\operatorname{lso}\left(\mathbb{R}^{n}\right) \cong \mathrm{O}(n) \ltimes \mathbb{R}^{n}$ is

- crystallographic if π is discrete and cocompact; (i.e., orbit space of $\pi \curvearrowright \mathbb{R}^{n}$ is Hausdorff and compact)

Local to global

Q: How to classify flat orbifolds and flat manifolds?
Definition
A subgroup $\pi<\operatorname{lso}\left(\mathbb{R}^{n}\right) \cong \mathrm{O}(n) \ltimes \mathbb{R}^{n}$ is

- crystallographic if π is discrete and cocompact; (i.e., orbit space of $\pi \curvearrowright \mathbb{R}^{n}$ is Hausdorff and compact)
- Bieberbach if π is crystallographic and torsion-free.

Local to global

Q: How to classify flat orbifolds and flat manifolds?
Definition
A subgroup $\pi<\operatorname{lso}\left(\mathbb{R}^{n}\right) \cong \mathrm{O}(n) \ltimes \mathbb{R}^{n}$ is

- crystallographic if π is discrete and cocompact; (i.e., orbit space of $\pi \curvearrowright \mathbb{R}^{n}$ is Hausdorff and compact)
- Bieberbach if π is crystallographic and torsion-free. (i.e., $\pi \curvearrowright \mathbb{R}^{n}$ is free; orbit space is smooth)

Local to global

Q: How to classify flat orbifolds and flat manifolds?
Definition
A subgroup $\pi<\operatorname{lso}\left(\mathbb{R}^{n}\right) \cong \mathrm{O}(n) \ltimes \mathbb{R}^{n}$ is

- crystallographic if π is discrete and cocompact; (i.e., orbit space of $\pi \curvearrowright \mathbb{R}^{n}$ is Hausdorff and compact)
- Bieberbach if π is crystallographic and torsion-free. (i.e., $\pi \curvearrowright \mathbb{R}^{n}$ is free; orbit space is smooth)

Theorem

- M is a flat manifold $\Longleftrightarrow M=\mathbb{R}^{n} / \pi, \pi$ Bieberbach

Local to global

Q: How to classify flat orbifolds and flat manifolds?
Definition
A subgroup $\pi<\operatorname{lso}\left(\mathbb{R}^{n}\right) \cong \mathrm{O}(n) \ltimes \mathbb{R}^{n}$ is

- crystallographic if π is discrete and cocompact; (i.e., orbit space of $\pi \curvearrowright \mathbb{R}^{n}$ is Hausdorff and compact)
- Bieberbach if π is crystallographic and torsion-free. (i.e., $\pi \curvearrowright \mathbb{R}^{n}$ is free; orbit space is smooth)

Theorem

- M is a flat manifold $\Longleftrightarrow M=\mathbb{R}^{n} / \pi, \pi$ Bieberbach
- \mathcal{O} is a flat orbifold $\Longleftrightarrow \mathcal{O}=\mathbb{R}^{n} / \pi, \pi$ crystallographic

Local to global

Q: How to classify flat orbifolds and flat manifolds?
Definition
A subgroup $\pi<\operatorname{Iso}\left(\mathbb{R}^{n}\right) \cong \mathrm{O}(n) \ltimes \mathbb{R}^{n}$ is

- crystallographic if π is discrete and cocompact; (i.e., orbit space of $\pi \curvearrowright \mathbb{R}^{n}$ is Hausdorff and compact)
- Bieberbach if π is crystallographic and torsion-free. (i.e., $\pi \curvearrowright \mathbb{R}^{n}$ is free; orbit space is smooth)

Theorem

- M is a flat manifold $\Longleftrightarrow M=\mathbb{R}^{n} / \pi, \pi$ Bieberbach
- \mathcal{O} is a flat orbifold $\Longleftrightarrow \mathcal{O}=\mathbb{R}^{n} / \pi, \pi$ crystallographic

A: Classify crystallographic and Bieberbach groups!

Structure of crystallographic groups

$$
\rho: \operatorname{Iso}\left(\mathbb{R}^{n}\right) \cong \mathrm{O}(n) \ltimes \mathbb{R}^{n} \longrightarrow \mathrm{O}(n)
$$

Structure of crystallographic groups

$$
\begin{gathered}
\rho: \operatorname{Iso}\left(\mathbb{R}^{n}\right) \cong \mathrm{O}(n) \ltimes \mathbb{R}^{n} \longrightarrow \mathrm{O}(n) \\
0 \longrightarrow L_{\pi} \longrightarrow \pi \xrightarrow{\rho} H_{\pi} \longrightarrow 0
\end{gathered}
$$

Structure of crystallographic groups

$$
\begin{gathered}
\rho: \operatorname{Iso}\left(\mathbb{R}^{n}\right) \cong \mathrm{O}(n) \ltimes \mathbb{R}^{n} \longrightarrow \mathrm{O}(n) \\
0 \longrightarrow L_{\pi} \longrightarrow \pi \xrightarrow{\rho} H_{\pi} \longrightarrow 0
\end{gathered}
$$

$\operatorname{ker} \rho=L_{\pi} \quad \leftrightarrow \leadsto \quad$ translations

Structure of crystallographic groups

$$
\begin{gathered}
\rho: \operatorname{Iso}\left(\mathbb{R}^{n}\right) \cong \mathrm{O}(n) \ltimes \mathbb{R}^{n} \longrightarrow \mathrm{O}(n) \\
0 \longrightarrow L_{\pi} \longrightarrow \pi \xrightarrow{\rho} H_{\pi} \longrightarrow 0
\end{gathered}
$$

$\operatorname{ker} \rho=L_{\pi} \quad$ «ぃ translations
$\operatorname{im} \rho=H_{\pi} \quad \leftrightarrow \leadsto \quad$ rotations and reflections

Structure of crystallographic groups

$$
\begin{gathered}
\rho: \operatorname{Iso}\left(\mathbb{R}^{n}\right) \cong \mathrm{O}(n) \ltimes \mathbb{R}^{n} \longrightarrow \mathrm{O}(n) \\
0 \longrightarrow L_{\pi} \longrightarrow \pi \xrightarrow{\rho} H_{\pi} \longrightarrow 0
\end{gathered}
$$

$\operatorname{ker} \rho=L_{\pi} \quad \leftrightarrow \mu \quad$ translations $\operatorname{im} \rho=H_{\pi} \quad$ ↔щ rotations and reflections

Theorem (Bieberbach, 1911)

1. $L_{\pi} \cong \mathbb{Z}^{n}$ is a lattice and $H_{\pi}<\mathrm{O}(n)$ is finite;

Structure of crystallographic groups

$$
\begin{gathered}
\rho: \operatorname{Iso}\left(\mathbb{R}^{n}\right) \cong \mathrm{O}(n) \ltimes \mathbb{R}^{n} \longrightarrow \mathrm{O}(n) \\
0 \longrightarrow L_{\pi} \longrightarrow \pi \xrightarrow{\rho} H_{\pi} \longrightarrow 0
\end{gathered}
$$

ker $\rho=L_{\pi} \quad \longleftrightarrow \leadsto \quad$ translations $\operatorname{im} \rho=H_{\pi} \quad \longleftrightarrow \quad$ rotations and reflections

Theorem (Bieberbach, 1911)

1. $L_{\pi} \cong \mathbb{Z}^{n}$ is a lattice and $H_{\pi}<\mathrm{O}(n)$ is finite;
2. $\pi, \pi^{\prime}<\operatorname{Iso}\left(\mathbb{R}^{n}\right)$ crystallographic groups are isomorphic if and only if π, π^{\prime} are conjugate in $\operatorname{Aff}\left(\mathbb{R}^{n}\right)=\mathrm{GL}(n) \ltimes \mathbb{R}^{n}$;

Structure of crystallographic groups

$$
\begin{gathered}
\rho: \operatorname{Iso}\left(\mathbb{R}^{n}\right) \cong \mathrm{O}(n) \ltimes \mathbb{R}^{n} \longrightarrow \mathrm{O}(n) \\
0 \longrightarrow L_{\pi} \longrightarrow \pi \xrightarrow{\rho} H_{\pi} \longrightarrow 0
\end{gathered}
$$

ker $\rho=L_{\pi} \quad$ н translations $\operatorname{im} \rho=H_{\pi} \quad \leadsto \quad$ rotations and reflections

Theorem (Bieberbach, 1911)

1. $L_{\pi} \cong \mathbb{Z}^{n}$ is a lattice and $H_{\pi}<\mathrm{O}(n)$ is finite;
2. $\pi, \pi^{\prime}<\operatorname{Iso}\left(\mathbb{R}^{n}\right)$ crystallographic groups are isomorphic if and only if π, π^{\prime} are conjugate in $\mathrm{Aff}\left(\mathbb{R}^{n}\right)=\mathrm{GL}(n) \ltimes \mathbb{R}^{n}$;
3. For each n, there are only finitely many isomorphism types of crystallographic groups in Iso $\left(\mathbb{R}^{n}\right)$.

Structure of crystallographic groups

$$
\begin{gathered}
\rho: \operatorname{Iso}\left(\mathbb{R}^{n}\right) \cong \mathrm{O}(n) \ltimes \mathbb{R}^{n} \longrightarrow \mathrm{O}(n) \\
0 \longrightarrow L_{\pi} \longrightarrow \pi \xrightarrow{\rho} H_{\pi} \longrightarrow 0
\end{gathered}
$$

ker $\rho=L_{\pi} \quad$ н translations $\operatorname{im} \rho=H_{\pi} \quad \leftrightarrow \quad$ rotations and reflections

Theorem (Bieberbach, 1911)

1. $L_{\pi} \cong \mathbb{Z}^{n}$ is a lattice and $H_{\pi}<\mathrm{O}(n)$ is finite;
2. $\pi, \pi^{\prime}<\operatorname{Iso}\left(\mathbb{R}^{n}\right)$ crystallographic groups are isomorphic if and only if π, π^{\prime} are conjugate in $\operatorname{Aff}\left(\mathbb{R}^{n}\right)=\mathrm{GL}(n) \ltimes \mathbb{R}^{n}$;
3. For each n, there are only finitely many isomorphism types of crystallographic groups in Iso $\left(\mathbb{R}^{n}\right)$.

Classification in low dimensions

n	$\#$Bieberbach groups	$\#$Crystallographic groups
2	2	17

Classification in low dimensions

n	$\#$Bieberbach groups	$\#$Crystallographic groups
2	2	17

17 Crystallographic groups in Iso $\left(\mathbb{R}^{2}\right)$, a.k.a. "Wallpaper groups"

17 Crystallographic groups in Iso $\left(\mathbb{R}^{2}\right)$, a.k.a. "Wallpaper groups"

17 Crystallographic groups in Iso $\left(\mathbb{R}^{2}\right)$, a.k.a. "Wallpaper groups"

17 Crystallographic groups in Iso $\left(\mathbb{R}^{2}\right)$, a.k.a. "Wallpaper groups"

17 Crystallographic groups in Iso $\left(\mathbb{R}^{2}\right)$, a.k.a. "Wallpaper groups"

17 Crystallographic groups in Iso $\left(\mathbb{R}^{2}\right)$, a.k.a. "Wallpaper groups"

17 Crystallographic groups in Iso $\left(\mathbb{R}^{2}\right)$, a.k.a. "Wallpaper groups"

17 Crystallographic groups in Iso $\left(\mathbb{R}^{2}\right)$, a.k.a. "Wallpaper groups"

17 Crystallographic groups in Iso($\left.\mathbb{R}^{2}\right)$, a.k.a. "Wallpaper groups"

17 Crystallographic groups in Iso $\left(\mathbb{R}^{2}\right)$, a.k.a. "Wallpaper groups"

17 Crystallographic groups in Iso $\left(\mathbb{R}^{2}\right)$, a.k.a. "Wallpaper groups"

17 Crystallographic groups in Iso $\left(\mathbb{R}^{2}\right)$, a.k.a. "Wallpaper groups"

17 Crystallographic groups in Iso $\left(\mathbb{R}^{2}\right)$, a.k.a. "Wallpaper groups"

17 Crystallographic groups in Iso $\left(\mathbb{R}^{2}\right)$, a.k.a. "Wallpaper groups"

17 Crystallographic groups in Iso $\left(\mathbb{R}^{2}\right)$, a.k.a. "Wallpaper groups"

17 Crystallographic groups in Iso $\left(\mathbb{R}^{2}\right)$, a.k.a. "Wallpaper groups"

17 Crystallographic groups in Iso($\left.\mathbb{R}^{2}\right)$, a.k.a. "Wallpaper groups"

17 Crystallographic groups in Iso($\left.\mathbb{R}^{2}\right)$, a.k.a. "Wallpaper groups"

17 Crystallographic groups in Iso $\left(\mathbb{R}^{2}\right)$, a.k.a. "Wallpaper groups"

Copacabana, Rio de Janeiro (Brazil)

17 Crystallographic groups in Iso $\left(\mathbb{R}^{2}\right)$, a.k.a. "Wallpaper groups"

Alhambra, Granada (Spain)

17 Crystallographic groups in Iso $\left(\mathbb{R}^{2}\right)$, a.k.a. "Wallpaper groups"

M. C. Escher

17 Crystallographic groups in Iso($\left.\mathbb{R}^{2}\right)$, a.k.a. "Wallpaper groups"

17 Crystallographic groups in Iso $\left(\mathbb{R}^{2}\right)$, a.k.a. "Wallpaper groups"

M. C. Escher

Classification in low dimensions

n	$\#$Bieberbach groups	$\#$Crystallographic groups
2	2	17

Classification in low dimensions

n	Bieberbach groups	$\#$Crystallographic groups
2	2	17
3	10	219

Classification in low dimensions

n	$\#$Bieberbach groups	$\#$Crystallographic groups
2	2	17
3	10	219
4	74	4,783

Classification in low dimensions

n	Bieberbach groups	$\#$Crystallographic groups
2	2	17
3	10	219
4	74	4,783
5	1,060	222,018

(Computer assisted)

Classification in low dimensions

n	Bieberbach groups	$\#$Crystallographic groups
2	2	17
3	10	219
4	74	4,783
5	1,060	222,018
6	38,746	$28,927,922$

(Computer assisted)

Can we always deform these spaces (nontrivially)?
T^{2}

Can we always deform these spaces (nontrivially)?

$$
T^{2} \quad-\quad Y E S!
$$

Can we always deform these spaces (nontrivially)?
$T^{2}-\quad \mathrm{YES}!$

Can we always deform these spaces (nontrivially)?
$T^{2}-\quad \mathrm{YES}!$

Can we always deform these spaces (nontrivially)?

$$
D^{2}(; 3,3,3)
$$

Can we always deform these spaces (nontrivially)?
$D^{2}(; 3,3,3)-N O!$

Can we always deform these spaces (nontrivially)?
$D^{2}(; 3,3,3)-N O!$

Can we always deform these spaces (nontrivially)?
$D^{2}(; 3,3,3)-N O!$

Flat deformations of $\mathbb{R}^{n} / \pi \quad H_{\pi}$-invariant subspaces of \mathbb{R}^{n}
Theorem (Hiss, Szczepański, 1991) $\pi<\operatorname{Iso}\left(\mathbb{R}^{n}\right)$ Bieberbach group $\Longrightarrow H_{\pi} \curvearrowright \mathbb{R}^{n}$ is reducible.

Flat deformations of $\mathbb{R}^{n} / \pi \quad \leadsto \longleftrightarrow H_{\pi}$-invariant subspaces of \mathbb{R}^{n}
Theorem (Hiss, Szczepański, 1991) $\pi<\operatorname{Iso}\left(\mathbb{R}^{n}\right)$ Bieberbach group $\Longrightarrow H_{\pi} \curvearrowright \mathbb{R}^{n}$ is reducible. Corollary
All flat manifolds admit (nonhomothetic) flat deformations.

Flat deformations of $\mathbb{R}^{n} / \pi \quad \leadsto \longleftrightarrow H_{\pi}$-invariant subspaces of \mathbb{R}^{n}
Theorem (Hiss, Szczepański, 1991)
$\pi<\operatorname{Iso}\left(\mathbb{R}^{n}\right)$ Bieberbach group $\Longrightarrow H_{\pi} \curvearrowright \mathbb{R}^{n}$ is reducible. Corollary
All flat manifolds admit (nonhomothetic) flat deformations.

But:

Flat deformations of $\mathbb{R}^{n} / \pi \quad \leftrightarrow \Longleftrightarrow H_{\pi}$-invariant subspaces of \mathbb{R}^{n}
Theorem (Hiss, Szczepański, 1991)
$\pi<\operatorname{Iso}\left(\mathbb{R}^{n}\right)$ Bieberbach group $\Longrightarrow H_{\pi} \curvearrowright \mathbb{R}^{n}$ is reducible.
Corollary
All flat manifolds admit (nonhomothetic) flat deformations.

But:
$\exists \pi<\operatorname{Iso}\left(\mathbb{R}^{n}\right)$ crystallographic with $H_{\pi} \curvearrowright \mathbb{R}^{n}$ irreducible.

Theorem (Hiss, Szczepański, 1991)
$\pi<\operatorname{Iso}\left(\mathbb{R}^{n}\right)$ Bieberbach group $\Longrightarrow H_{\pi} \curvearrowright \mathbb{R}^{n}$ is reducible.
Corollary
All flat manifolds admit (nonhomothetic) flat deformations.

But:
$\exists \pi<\operatorname{Iso}\left(\mathbb{R}^{n}\right)$ crystallographic with $H_{\pi} \curvearrowright \mathbb{R}^{n}$ irreducible.
So:
Not all flat orbifolds have (nonhomothetic) flat deformations.

If it can be deformed, what is the limit?

If it can be deformed, what is the limit?

If it can be deformed, what is the limit?

If it can be deformed, what is the limit?

If it can be deformed, what is the limit?

If it can be deformed, what is the limit?

If it can be deformed, what is the limit?

Theorem (B., Derdzinski, Piccione, 2018)
The Gromov-Hausdorff limit of flat manifolds is a flat orbifold.

If it can be deformed, what is the limit?

Theorem (B., Derdzinski, Piccione, 2018)
The Gromov-Hausdorff limit of flat manifolds is a flat orbifold. Conversely, every flat orbifold is the Gromov-Hausdorff limit of flat manifolds.

Q: Given a family of flat n-manifolds $M_{t}=\mathbb{R}^{n} / \pi_{t}$ that collapses as $t \searrow 0$, compute the resulting orbifold $\mathcal{O}=\lim _{t \searrow 0} M_{t}$.

Q: Given a family of flat n-manifolds $M_{t}=\mathbb{R}^{n} / \pi_{t}$ that collapses as $t \searrow 0$, compute the resulting orbifold $\mathcal{O}=\lim _{t \searrow 0} M_{t}$.

Collapsing an H_{π}-invariant subspace $V \subset \mathbb{R}^{n}$:

Q: Given a family of flat n-manifolds $M_{t}=\mathbb{R}^{n} / \pi_{t}$ that collapses as $t \searrow 0$, compute the resulting orbifold $\mathcal{O}=\lim _{t \searrow 0} M_{t}$.

Collapsing an H_{π}-invariant subspace $V \subset \mathbb{R}^{n}$:

Q: Given a family of flat n-manifolds $M_{t}=\mathbb{R}^{n} / \pi_{t}$ that collapses as $t \searrow 0$, compute the resulting orbifold $\mathcal{O}=\lim _{t \searrow 0} M_{t}$.

Collapsing an H_{π}-invariant subspace $V \subset \mathbb{R}^{n}$:

Q: Given a family of flat n-manifolds $M_{t}=\mathbb{R}^{n} / \pi_{t}$ that collapses as $t \searrow 0$, compute the resulting orbifold $\mathcal{O}=\lim _{t \searrow 0} M_{t}$.

Collapsing an H_{π}-invariant subspace $V \subset \mathbb{R}^{n}$:

$V \subset \mathbb{R}^{2}$ rational slope

$V \subset \mathbb{R}^{2}$ irrational slope

Q: Given a family of flat n-manifolds $M_{t}=\mathbb{R}^{n} / \pi_{t}$ that collapses as $t \searrow 0$, compute the resulting orbifold $\mathcal{O}=\lim _{t \searrow 0} M_{t}$.

Collapsing an H_{π}-invariant subspace $V \subset \mathbb{R}^{n}$:

$V \subset \mathbb{R}^{2}$ rational slope

$V \subset \mathbb{R}^{2}$ irrational slope

Q: Given a family of flat n-manifolds $M_{t}=\mathbb{R}^{n} / \pi_{t}$ that collapses as $t \searrow 0$, compute the resulting orbifold $\mathcal{O}=\lim _{t \searrow 0} M_{t}$.

Collapsing an H_{π}-invariant subspace $V \subset \mathbb{R}^{n}$:

$V \subset \mathbb{R}^{2}$ rational slope

$V \subset \mathbb{R}^{2}$ irrational slope

Q: Given a family of flat n-manifolds $M_{t}=\mathbb{R}^{n} / \pi_{t}$ that collapses as $t \searrow 0$, compute the resulting orbifold $\mathcal{O}=\lim _{t \searrow 0} M_{t}$.

Collapsing an H_{π}-invariant subspace $V \subset \mathbb{R}^{n}$:

$V \subset \mathbb{R}^{2}$ rational slope

$V \subset \mathbb{R}^{2}$ irrational slope

Q: Given a family of flat n-manifolds $M_{t}=\mathbb{R}^{n} / \pi_{t}$ that collapses as $t \searrow 0$, compute the resulting orbifold $\mathcal{O}=\lim _{t \searrow 0} M_{t}$.

Collapsing an H_{π}-invariant subspace $V \subset \mathbb{R}^{n}$:

$V \subset \mathbb{R}^{2}$ rational slope

$V \subset \mathbb{R}^{2}$ irrational slope

Q: Given a family of flat n-manifolds $M_{t}=\mathbb{R}^{n} / \pi_{t}$ that collapses as $t \searrow 0$, compute the resulting orbifold $\mathcal{O}=\lim _{t \searrow 0} M_{t}$.

Collapsing an H_{π}-invariant subspace $V \subset \mathbb{R}^{n}$:

$V \subset \mathbb{R}^{2}$ irrational slope

Q: Given a family of flat n-manifolds $M_{t}=\mathbb{R}^{n} / \pi_{t}$ that collapses as $t \searrow 0$, compute the resulting orbifold $\mathcal{O}=\lim _{t \searrow 0} M_{t}$.

Collapsing an H_{π}-invariant subspace $V \subset \mathbb{R}^{n}$:

$V \subset \mathbb{R}^{2}$ irrational slope

Q: Given a family of flat n-manifolds $M_{t}=\mathbb{R}^{n} / \pi_{t}$ that collapses as $t \searrow 0$, compute the resulting orbifold $\mathcal{O}=\lim _{t \searrow 0} M_{t}$.

Collapsing an H_{π}-invariant subspace $V \subset \mathbb{R}^{n}$:

$V \subset \mathbb{R}^{2}$ irrational slope

Q: Given a family of flat n-manifolds $M_{t}=\mathbb{R}^{n} / \pi_{t}$ that collapses as $t \searrow 0$, compute the resulting orbifold $\mathcal{O}=\lim _{t \searrow 0} M_{t}$.

Collapsing an H_{π}-invariant subspace $V \subset \mathbb{R}^{n}$:

$V \subset \mathbb{R}^{2}$ irrational slope

- \bar{V} smallest H_{π}-invariant, spanned by elements of L_{π}

Q: Given a family of flat n-manifolds $M_{t}=\mathbb{R}^{n} / \pi_{t}$ that collapses as $t \searrow 0$, compute the resulting orbifold $\mathcal{O}=\lim _{t \backslash 0} M_{t}$.

Collapsing an H_{π}-invariant subspace $V \subset \mathbb{R}^{n}$:

$$
V \subset \mathbb{R}^{2} \text { rational slope }
$$

$V \subset \mathbb{R}^{2}$ irrational slope

- \bar{V} smallest H_{π}-invariant, spanned by elements of L_{π}
- $\exists W H_{\pi}$-invariant, spanned by elements of $L_{\pi}, \bar{V} \oplus W=\mathbb{R}^{n}$

Q: Given a family of flat n-manifolds $M_{t}=\mathbb{R}^{n} / \pi_{t}$ that collapses as $t \searrow 0$, compute the resulting orbifold $\mathcal{O}=\lim _{t \searrow 0} M_{t}$.

Collapsing an H_{π}-invariant subspace $V \subset \mathbb{R}^{n}$:

$$
V \subset \mathbb{R}^{2} \text { rational slope }
$$

$V \subset \mathbb{R}^{2}$ irrational slope

- \bar{V} smallest H_{π}-invariant, spanned by elements of L_{π}
- $\exists W H_{\pi}$-invariant, spanned by elements of $L_{\pi}, \bar{V} \oplus W=\mathbb{R}^{n}$
- $H_{\pi}^{W}=H_{\pi} /\left\{A \in H_{\pi}:\left.A\right|_{\bar{V}}=\mathrm{Id}\right\}$

Q: Given a family of flat n-manifolds $M_{t}=\mathbb{R}^{n} / \pi_{t}$ that collapses as $t \searrow 0$, compute the resulting orbifold $\mathcal{O}=\lim _{t \searrow 0} M_{t}$.

Collapsing an H_{π}-invariant subspace $V \subset \mathbb{R}^{n}$:

$V \subset \mathbb{R}^{2}$ rational slope

$V \subset \mathbb{R}^{2}$ irrational slope

- \bar{V} smallest H_{π}-invariant, spanned by elements of L_{π}
- $\exists W H_{\pi}$-invariant, spanned by elements of $L_{\pi}, \bar{V} \oplus W=\mathbb{R}^{n}$
- $H_{\pi}^{W}=H_{\pi} /\left\{A \in H_{\pi}:\left.A\right|_{\bar{V}}=\operatorname{ld}\right\}$

Theorem (B., Derdzinski, Mossa, Piccione, 2018)
Collapsing $M=\mathbb{R}^{n} / \pi$ along V results in $\mathcal{O}_{V}=\left(L_{\pi} \cap W\right) \backslash W / H_{\pi}^{W}$.

Q: Given a flat n-orbifold \mathcal{O}, what is the smallest k such that a flat $(n+k)$-manifold collapses to \mathcal{O} ?

Q: Given a flat n-orbifold \mathcal{O}, what is the smallest k such that a flat $(n+k)$-manifold collapses to \mathcal{O} ?

Theorem (B., Derdzinski, Piccione, 2018)
The Gromov-Hausdorff limit of a sequence of flat 3-manifolds must be one of:

Q: Given a flat n-orbifold \mathcal{O}, what is the smallest k such that a flat $(n+k)$-manifold collapses to \mathcal{O} ?

Theorem (B., Derdzinski, Piccione, 2018)
The Gromov-Hausdorff limit of a sequence of flat 3-manifolds must be one of:

- Flat 0-orbifold: $\{p\}$;

Q: Given a flat n-orbifold \mathcal{O}, what is the smallest k such that a flat $(n+k)$-manifold collapses to \mathcal{O} ?

Theorem (B., Derdzinski, Piccione, 2018)
The Gromov-Hausdorff limit of a sequence of flat 3-manifolds must be one of:

- Flat 0-orbifold: $\{p\}$;
- Flat 1-orbifolds: $I^{1} S^{1}$;

Q: Given a flat n-orbifold \mathcal{O}, what is the smallest k such that a flat $(n+k)$-manifold collapses to \mathcal{O} ?

Theorem (B., Derdzinski, Piccione, 2018)
The Gromov-Hausdorff limit of a sequence of flat 3-manifolds must be one of:

- Flat 0-orbifold: $\{p\}$;
- Flat 1-orbifolds: I, S^{1};
- Flat 2-orbifolds (10 out of 17):

$$
\begin{aligned}
& T^{2}, K^{2}, S^{1} \times 1, M^{2}, D^{2}(4 ; 2), D^{2}(3 ; 3), D^{2}(2,2 ;), \\
& S^{2}(3,3,3 ;), S^{2}(2,2,2,2 ;), \mathbb{R} P^{2}(2,2 ;) ;
\end{aligned}
$$

Q: Given a flat n-orbifold \mathcal{O}, what is the smallest k such that a flat ($n+k$)-manifold collapses to \mathcal{O} ?

Theorem (B., Derdzinski, Piccione, 2018)
The Gromov-Hausdorff limit of a sequence of flat 3-manifolds must be one of:

- Flat 0-orbifold: $\{p\}$;
- Flat 1-orbifolds: I, S^{1};
- Flat 2-orbifolds (10 out of 17):

$$
\begin{aligned}
& T^{2}, K^{2}, S^{1} \times I, M^{2}, D^{2}(4 ; 2), D^{2}(3 ; 3), D^{2}(2,2 ;), \\
& S^{2}(3,3,3 ;), S^{2}(2,2,2,2 ;), \mathbb{R} P^{2}(2,2 ;) ;
\end{aligned}
$$

- Flat 3-manifold (trivial).

Q: Given a flat n-orbifold \mathcal{O}, what is the smallest k such that a flat ($n+k$)-manifold collapses to \mathcal{O} ?

Theorem (B., Derdzinski, Piccione, 2018)
The Gromov-Hausdorff limit of a sequence of flat 3-manifolds must be one of:

- Flat 0-orbifold: $\{p\}$;
- Flat 1-orbifolds: I, S^{1};
- Flat 2-orbifolds (10 out of 17):

$$
\begin{aligned}
& T^{2}, K^{2}, S^{1} \times I, M^{2}, D^{2}(4 ; 2), D^{2}(3 ; 3), D^{2}(2,2 ;), \\
& S^{2}(3,3,3 ;), S^{2}(2,2,2,2 ;), \mathbb{R} P^{2}(2,2 ;) ;
\end{aligned}
$$

- Flat 3-manifold (trivial).

A: When $n=2, k=1$ for 10 out of 17 flat 2-orbifolds.

Moduli space and Teichmüller space

Moduli space of flat metrics:
$\mathcal{M}_{\text {flat }}(\mathcal{O}):=\{$ flat metrics on $\mathcal{O}\} /\{$ isometries $\}$

Moduli space and Teichmüller space

Moduli space of flat metrics:
$\mathcal{M}_{\text {flat }}(\mathcal{O}):=\{$ flat metrics on $\mathcal{O}\} /\{$ isometries $\}$
Theorem (Wolf, Thurston, Baues, ...)
There exists a Teichmüller space $\mathcal{T}_{\text {flat }}(\mathcal{O}) \cong \mathbb{R}^{d}$ such that

$$
\mathcal{M}_{\text {flat }}(\mathcal{O})=\mathcal{T}_{\text {flat }}(\mathcal{O}) / \operatorname{MCG}(\mathcal{O})
$$

where $\operatorname{MCG}(\mathcal{O})=\operatorname{Diff}(\mathcal{O}) / \operatorname{Diff}_{0}(\mathcal{O})$ is the mapping class group, which is countable and discrete.

Moduli space and Teichmüller space

Moduli space of flat metrics:
$\mathcal{M}_{\text {flat }}(\mathcal{O}):=\{$ flat metrics on $\mathcal{O}\} /\{$ isometries $\}$
Theorem (Wolf, Thurston, Baues, ...)
There exists a Teichmüller space $\mathcal{T}_{\text {flat }}(\mathcal{O}) \cong \mathbb{R}^{d}$ such that

$$
\mathcal{M}_{\text {flat }}(\mathcal{O})=\mathcal{T}_{\text {flat }}(\mathcal{O}) / \operatorname{MCG}(\mathcal{O})
$$

where $\operatorname{MCG}(\mathcal{O})=\operatorname{Diff}(\mathcal{O}) / \operatorname{Diff}_{0}(\mathcal{O})$ is the mapping class group, which is countable and discrete.
$\mathcal{T}_{\text {flat }}(\mathcal{O})$ is the space of flat deformations.

Algebraic characterization of Teichmüller space

- $\mathcal{O}=\mathbb{R}^{n} / \pi$ flat n-orbifold

Algebraic characterization of Teichmüller space

- $\mathcal{O}=\mathbb{R}^{n} / \pi$ flat n-orbifold
- $H_{\pi} \curvearrowright \mathbb{R}^{n}=\bigoplus_{i=1}^{\ell} W_{i}$ isotypical components of holonomy

Algebraic characterization of Teichmüller space

- $\mathcal{O}=\mathbb{R}^{n} / \pi$ flat n-orbifold
- $H_{\pi} \curvearrowright \mathbb{R}^{n}=\bigoplus{ }_{\bigoplus}^{\ell} W_{i}$ isotypical components of holonomy $i=1$
- W_{i} direct sum of m_{i} copies of irreducible of type $\mathbb{K}_{i} \in\{\mathbb{R}, \mathbb{C}, \mathbb{H}\}$

Algebraic characterization of Teichmüller space

- $\mathcal{O}=\mathbb{R}^{n} / \pi$ flat n-orbifold
- $H_{\pi} \curvearrowright \mathbb{R}^{n}=\bigoplus^{\ell} W_{i}$ isotypical components of holonomy
- W_{i} direct sum of m_{i} copies of irreducible of type $\mathbb{K}_{i} \in\{\mathbb{R}, \mathbb{C}, \mathbb{H}\}$

Theorem (B., Derdzinski, Piccione, 2018)

$$
\mathcal{T}_{\text {flat }}(\mathcal{O})=\prod_{i=1}^{\ell} \frac{\mathrm{GL}\left(m_{i}, \mathbb{K}_{i}\right)}{\mathrm{O}\left(m_{i}, \mathbb{K}_{i}\right)}
$$

Algebraic characterization of Teichmüller space

- $\mathcal{O}=\mathbb{R}^{n} / \pi$ flat n-orbifold
- W_{i} direct sum of m_{i} copies of irreducible of type $\mathbb{K}_{i} \in\{\mathbb{R}, \mathbb{C}, \mathbb{H}\}$

Theorem (B., Derdzinski, Piccione, 2018)

$$
\mathcal{T}_{\text {flat }}(\mathcal{O})=\prod_{i=1}^{\ell} \frac{\mathrm{GL}\left(m_{i}, \mathbb{K}_{i}\right)}{\mathrm{O}\left(m_{i}, \mathrm{~K}_{i}\right)}
$$

$$
\frac{\mathrm{GL}\left(m_{i}, \mathbb{K}_{i}\right)}{\mathrm{O}\left(m_{i}, \mathbb{K}_{i}\right)} \cong \mathbb{R}^{d_{i}}, \quad d_{i}= \begin{cases}\frac{1}{2} m_{i}\left(m_{i}+1\right), & \text { if } \mathbb{K}_{i}=\mathbb{R}, \\ m_{i}^{2}, & \text { if } \mathbb{K}_{i}=\mathbb{C}, \\ m_{i}\left(2 m_{i}-1\right), & \text { if } \mathbb{K}_{i}=\mathbb{H}\end{cases}
$$

"Archimedes will be remembered when Aeschylus is forgotten, because languages die and mathematical ideas do not. "Immortality" may be a silly word, but probably a mathematician has the best chance of whatever it may mean."
G. H. Hardy

Thank you for your attention!

