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R: A’R" — A2R", R € Sym*(A?R")
» Symmetric: (RIXAY),ZAW)=(R(ZANW),XNY)
» First Bianchi identity:

(RIXANY),ZANW)+(R(YNZ),XNW)
+(R(ZAX),Y AW)=0

Example
(M",g) (pseudo-)Riemannian manifold, p € M,

Ro: N2 TpM — N2 T,M
Ry(XAY,ZAW)=g,(Ry(X,Y)Z, W)



Sectional curvature bounds

R € Sym*(A’R")
Gr(R") ={oc € A’R": 0 Ao =0,|o|| =1}



Sectional curvature bounds
R € Sym*(A’R")
Gr(R") ={oc € A’R": 0 Ao =0,|o|| =1}

X,Y € R, }

_ _ 2PN .



Sectional curvature bounds
R € Sym*(A’R")
Gr(R") ={oc € A’R": 0 Ao =0,|o|| =1}

X,Y € R, }

_ _ 2PN .

secg: Gra(R") = R
secgr(0) = (R(0),0)



Sectional curvature bounds
R € Sym*(A’R")
Gr(R") ={oc € A’R": 0 Ao =0,|o|| =1}
:{UZX/\YE/\2R” X, Y € R,
secg: Gra(R") = R

secg(0) = (R(0), 0)
= (RIXAY),XAY)

CIXPIYR (X, Y2

=



Sectional curvature bounds
R € Sym*(A’R")
Gr(R") ={oc € A’R":0 Ao =0,|o|| =1}
—{a—X/\YE/\zR”: X,V e R
secg: Gra(R") = R
secr(0) = (R(0),0)
= (RIXAY),XAY)
Definition
R has sec > k <= secg(c) > k, Vo € Gry(R")

XY 2= (X, Y)?

=



Sectional curvature bounds
R € Sym*(A’R")
Gr(R") ={oc € A’R":0 Ao =0,|o|| =1}
—{a—X/\YE/\zR”: X,V e R
secg: Gra(R") = R
secr(0) = (R(0),0)
= (RIXAY),XAY)
Definition
R has sec > k <= secg(0) > k, Yo € Grp(R")

XY 2= (X, Y)?

=



Sectional curvature bounds
R € Sym*(A’R")
Gr(R") ={oc € A’R":0 Ao =0,|o|| =1}
—{a—X/\YE/\zR”: X,V e R
secg: Gra(R") = R
secr(0) = (R(0),0)
= (RIXAY),XAY)
Definition
R has sec < k <= secg(c) < k, Vo € Gry(R")

XY 2= (X, Y)?

=



Sectional curvature bounds
R € Sym*(A’R")
Gr(R") ={oc € A’R":0 Ao =0,|o|| =1}
—{a—X/\YE/\zR”: X,V e R
secg: Gra(R") = R
secr(0) = (R(0),0)
= (RIXAY),XAY)
Definition
R has sec < k <= secg(0) < k, Yo € Grp(R")

XY 2= (X, Y)?

=



Sectional curvature bounds
R € Sym*(A’R")
Gr(R") ={oc € A’R":0 Ao =0,|o|| =1}
—{a—X/\YE/\zR”: X,V e R
secg: Gra(R") = R
secr(0) = (R(0),0)
= (RIXAY),XAY)
Definition
R has sec > k <= secg(c) > k, Vo € Gry(R")

XY 2= (X, Y)?

=



Sectional curvature bounds
R € Sym*(A’R")
Gr(R") ={oc € A’R":0 Ao =0,|o|| =1}
—{U—X/\YE/\zR”: X,V e R
seck: Gra(R") = R
secr(0) = (R(0),0)
= (RIXAY),XAY)
Definition
R has sec > k <= secg(c) > k, Vo € Gry(R")

XPIYE - (X, V)2

Reecsk(n) == {R € Sym*(A*R") : secg > k}

=t
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Quantifier elimination

Theorem (Tarski-Seidenberg)

Any finite list of quantified polynomial
equalities and inequalities over the real numbers

(V, 3) t1, b, t3, ...

F,'(tl./t2,t3,...;X1,X2,X3,...) :O
G,'(tl, to, t3,...;X1,X2,X3,...) 7& 0
H,'(tl,tz,tg,...;X1,X2,X3,...) >0

is equivalent to a list of quantifier-free
polynomial equalities and inequalities

IE,'(Xl,Xz,X:;,...) =0

Gi(x1, %2, x3,...) #0
F/i(X1,X2,X3, ..)>0 A. Seidenberg
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Quantifier elimination in practice

Quantified: Quantified:
JteR at’ +bt+c=0 Vo € Grp(R")  secr(o) > k
a#0
Quantifier-free: Quantifier-free:

b* —4ac >0 Fi(R,k) >0, 1<i<N
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Questions

DC{seczk(n) = {R € Sym2(/\2R”) . SeCr Z k}

» Q: What is the structure of the set Rgec>k(n)?
A: Convex cone in Sym2(/\2]R”); semialgebraic subset, i.e.,
described by finitely many polynomial inequalities on R

» Q: Can we parametrize Reec>«(n) explicitly?

That is, explicitly write F;(R, k) > 07
A: Maybe...?
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“Unfortunately, the procedure is too long to be used in practice
even with the aid of a computer (...)"

[Weinstein, 1972]

Even with today's (2015) computers, this is still intractable...

. need to do more Math!
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Crash course in Convex Algebraic Geometry

Definition (Spectrahedron)
d
S={xecRI: A+ Zx,-B,- - 0}, where A, B; € Symz(]R’")

i=1

Example
Polyhedron: A, B; diagonal matrices
Cylinder:
1+x y 0 0
y 1—x 0 0 .
0 0 14+z O =0

0 0 0 1-=z
Elliptope:
1 x vy
x 1 z]| >0
y z 1
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S={xeR?: A+ Zx,-B,- - 0}, where A, B; € Sym?(R™)

i=1

‘ Linear projections of spectrahedra need not be spectrahedral ‘

Definition (Spectrahedral shadow)

d ¢
5:{XE]Rd:EItERe,A—i-ZXiBmLthCjEO},

i=1 j=1

where A, B;, C; € Sym?*(R™)

» Linear programming: optimize linear functionals on
polyhedra (solvable in polynomial time!)

» Semidefinite programming: optimize linear functionals on
spectrahedra (also solvable in polynomial timel!)
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Motivated by questions from Nemirovski's 2006 ICM plenary:

Conjecture (Helton-Nie, 2009)

Any convex semialgebraic subset of R" is a spectrahedral shadow.

Theorem (Scheiderer, 2018)
Helton-Nie Conjecture is TRUE if n = 2!

Theorem (Scheiderer, 2018)
Helton-Nie Conjecture is FALSE if n > 3!

A convex semialgebraic cone C = cone(S) is a
spectrahedral shadow if and only if 3¢: X — A"
morphism of affine R-varieties and a
finite-dimensional subspace U C R[X] s.t.:

> S p(X(R)),
AX(R)) A p -
> Vf ¢ ]R[)fh ..., X,] homogeneous linear ' C. Scheiderer
polynomial, f >0 on S, ¢*(f) € R[X] is a
sum of squares of elements in U.
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Building on Scheiderer [SIAM 2018]; Blekherman, Smith, Velasco [JAMS 2016]:

Theorem (B.-Kummer-Mendes, 2018)
(

» NReec>k(2) and Reec>k(3) are spectrahedra;

» NReec>k(4) is a spectrahedral shadow, and not a
spectrahedron;

» Reec>k(n), n > 5 is not a spectrahedral shadow.

spectrahedral } { convex }
{Spectrahedra} & { shadows & semialgebraic set
SRsecZk(z)

SRseczk(:a) %seCZk(‘]') iRseczk(n), Vn Z 5

Upshot: sec > k is algebraically much harder to verify if n > 5
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» Hodge star x: A2 R* — A2R*
» o € Gry(R*) C A°R* < (x0,0) =0
Finsler Lemma (“Thorpe’s trick”).
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Towards a parametrization of PRgec>k(4)

Corollary

Reec>k(4) is the closure of a union of connected components of
the semialgebraic set { R : Disc, (det(R — kld +xx)) # 0}.

Proposition (B.-Kummer-Mendes, 2018)

Discy (det(R — kld+xx)) =) " p.(R)> = qs(R)*,
where p,(R) and q,(R) are explicit /jomogeneous l;)olynomia/s of
degree 15 in R.

/N Problem: There are 27,144 pa(R)'s and 27,120 g,(R)'s...
Some hope: outer approximation by Weitzenbéck spectrahedra
Theorem (B.-Mendes, 2017)

Reeezi(n) = [ | {R € Sym*(A’R") : K(R — k1d, Symf R") = 0}

p=>2
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At the very least...

In dimension n = 4:

Even without the quantifier-free parametrization of Reec>k(4),
given an explicit R € Sym*(A?R*), can quickly test if R € Reecsr(4)

Reec>k(4) is a . “Easy” algorithm
spectrahedral shadow to test for secp > k
In dimensions n > 5:
Reec>k(n) is not a No such

spectrahedral shadow algorithm...




Thank you for your attention!




