# Convex Algebraic Geometry of Curvature Operators

Renato G. Bettiol



 $R: \wedge^2 \mathbb{R}^n \to \wedge^2 \mathbb{R}^n$ 

$$R: \wedge^2 \mathbb{R}^n \to \wedge^2 \mathbb{R}^n$$

▶ Symmetric:  $\langle R(X \land Y), Z \land W \rangle = \langle R(Z \land W), X \land Y \rangle$ 

$$R: \wedge^2 \mathbb{R}^n \to \wedge^2 \mathbb{R}^n, R \in \operatorname{Sym}^2(\wedge^2 \mathbb{R}^n)$$

▶ Symmetric:  $\langle R(X \land Y), Z \land W \rangle = \langle R(Z \land W), X \land Y \rangle$ 

$$R: \wedge^2 \mathbb{R}^n \to \wedge^2 \mathbb{R}^n, R \in \operatorname{Sym}^2(\wedge^2 \mathbb{R}^n)$$

- ▶ Symmetric:  $\langle R(X \land Y), Z \land W \rangle = \langle R(Z \land W), X \land Y \rangle$
- First Bianchi identity:

$$\langle R(X \wedge Y), Z \wedge W \rangle + \langle R(Y \wedge Z), X \wedge W \rangle + \langle R(Z \wedge X), Y \wedge W \rangle = 0$$

$$R: \wedge^2 \mathbb{R}^n \to \wedge^2 \mathbb{R}^n$$
,  $R \in \operatorname{Sym}^2(\wedge^2 \mathbb{R}^n)$ 

- ▶ Symmetric:  $\langle R(X \land Y), Z \land W \rangle = \langle R(Z \land W), X \land Y \rangle$
- First Bianchi identity:

$$\langle R(X \wedge Y), Z \wedge W \rangle + \langle R(Y \wedge Z), X \wedge W \rangle + \langle R(Z \wedge X), Y \wedge W \rangle = 0$$

### Example

 $(M^n,\mathrm{g})$  (pseudo-)Riemannian manifold,  $p\in M$ ,

$$R_p \colon \wedge^2 T_p M \to \wedge^2 T_p M$$
  
 $R_p(X \wedge Y, Z \wedge W) = g_p(R_p(X, Y)Z, W)$ 

$$R \in \operatorname{Sym}^2(\wedge^2 \mathbb{R}^n)$$
 $\operatorname{Gr}_2(\mathbb{R}^n) = \left\{ \sigma \in \wedge^2 \mathbb{R}^n : \sigma \wedge \sigma = 0, \|\sigma\| = 1 \right\}$ 

$$\begin{split} R \in \mathsf{Sym}^2(\wedge^2\mathbb{R}^n) \\ \mathsf{Gr}_2(\mathbb{R}^n) &= \left\{ \sigma \in \wedge^2\mathbb{R}^n : \sigma \wedge \sigma = 0, \|\sigma\| = 1 \right\} \\ &= \left\{ \sigma = X \wedge Y \in \wedge^2\mathbb{R}^n : \begin{array}{c} X, Y \in \mathbb{R}^n, \\ |X|^2 |Y|^2 - \langle X, Y \rangle^2 = 1 \end{array} \right\} \end{split}$$

$$\begin{split} R \in \mathsf{Sym}^2(\wedge^2\mathbb{R}^n) \\ \mathsf{Gr}_2(\mathbb{R}^n) &= \left\{ \sigma \in \wedge^2\mathbb{R}^n : \sigma \wedge \sigma = 0, \|\sigma\| = 1 \right\} \\ &= \left\{ \sigma = X \wedge Y \in \wedge^2\mathbb{R}^n : \begin{array}{c} X, Y \in \mathbb{R}^n, \\ |X|^2 |Y|^2 - \langle X, Y \rangle^2 = 1 \end{array} \right\} \\ \mathsf{sec}_R \colon \mathsf{Gr}_2(\mathbb{R}^n) \to \mathbb{R} \\ \mathsf{sec}_R(\sigma) &= \langle R(\sigma), \sigma \rangle \end{split}$$

$$\begin{split} R \in \mathsf{Sym}^2(\wedge^2\mathbb{R}^n) \\ \mathsf{Gr}_2(\mathbb{R}^n) &= \left\{ \sigma \in \wedge^2\mathbb{R}^n : \sigma \wedge \sigma = 0, \|\sigma\| = 1 \right\} \\ &= \left\{ \sigma = X \wedge Y \in \wedge^2\mathbb{R}^n : \begin{array}{c} X, Y \in \mathbb{R}^n, \\ |X|^2|Y|^2 - \langle X, Y \rangle^2 = 1 \end{array} \right\} \\ \mathsf{sec}_R \colon \mathsf{Gr}_2(\mathbb{R}^n) \to \mathbb{R} \\ \mathsf{sec}_R(\sigma) &= \langle R(\sigma), \sigma \rangle \end{split}$$

 $=\langle R(X \wedge Y), X \wedge Y \rangle$ 

$$\begin{split} R \in \operatorname{\mathsf{Sym}}^2(\wedge^2\mathbb{R}^n) \\ \operatorname{\mathsf{Gr}}_2(\mathbb{R}^n) &= \left\{ \sigma \in \wedge^2\mathbb{R}^n : \sigma \wedge \sigma = 0, \|\sigma\| = 1 \right\} \\ &= \left\{ \sigma = X \wedge Y \in \wedge^2\mathbb{R}^n : \begin{array}{c} X, Y \in \mathbb{R}^n, \\ |X|^2|Y|^2 - \langle X, Y \rangle^2 = 1 \end{array} \right\} \\ \operatorname{\mathsf{sec}}_R \colon \operatorname{\mathsf{Gr}}_2(\mathbb{R}^n) \to \mathbb{R} \\ \operatorname{\mathsf{sec}}_R(\sigma) &= \langle R(\sigma), \sigma \rangle \\ &= \langle R(X \wedge Y), X \wedge Y \rangle \end{split}$$

#### Definition

 $R \text{ has sec } \geq k \Longleftrightarrow \sec_R(\sigma) \geq k, \ \forall \sigma \in \operatorname{Gr}_2(\mathbb{R}^n)$ 

$$\begin{split} R \in \operatorname{\mathsf{Sym}}^2(\wedge^2\mathbb{R}^n) \\ \operatorname{\mathsf{Gr}}_2(\mathbb{R}^n) &= \left\{ \sigma \in \wedge^2\mathbb{R}^n : \sigma \wedge \sigma = 0, \|\sigma\| = 1 \right\} \\ &= \left\{ \sigma = X \wedge Y \in \wedge^2\mathbb{R}^n : \begin{array}{c} X, Y \in \mathbb{R}^n, \\ |X|^2|Y|^2 - \langle X, Y \rangle^2 = 1 \end{array} \right\} \\ \operatorname{\mathsf{sec}}_R \colon \operatorname{\mathsf{Gr}}_2(\mathbb{R}^n) \to \mathbb{R} \\ \operatorname{\mathsf{sec}}_R(\sigma) &= \langle R(\sigma), \sigma \rangle \\ &= \langle R(X \wedge Y), X \wedge Y \rangle \end{split}$$

#### Definition

 $R \text{ has sec } > k \Longleftrightarrow \operatorname{sec}_{R}(\sigma) > k, \ \forall \sigma \in \operatorname{Gr}_{2}(\mathbb{R}^{n})$ 

$$\begin{split} R \in \operatorname{\mathsf{Sym}}^2(\wedge^2\mathbb{R}^n) \\ \operatorname{\mathsf{Gr}}_2(\mathbb{R}^n) &= \left\{ \sigma \in \wedge^2\mathbb{R}^n : \sigma \wedge \sigma = 0, \|\sigma\| = 1 \right\} \\ &= \left\{ \sigma = X \wedge Y \in \wedge^2\mathbb{R}^n : \begin{array}{c} X, Y \in \mathbb{R}^n, \\ |X|^2|Y|^2 - \langle X, Y \rangle^2 = 1 \end{array} \right\} \\ \operatorname{\mathsf{sec}}_R \colon \operatorname{\mathsf{Gr}}_2(\mathbb{R}^n) \to \mathbb{R} \\ \operatorname{\mathsf{sec}}_R(\sigma) &= \langle R(\sigma), \sigma \rangle \\ &= \langle R(X \wedge Y), X \wedge Y \rangle \end{split}$$

#### Definition

 $R \text{ has sec } \leq k \Longleftrightarrow \sec_{R}(\sigma) \leq k, \ \forall \sigma \in \operatorname{Gr}_{2}(\mathbb{R}^{n})$ 

$$\begin{split} R \in \operatorname{\mathsf{Sym}}^2(\wedge^2\mathbb{R}^n) \\ \operatorname{\mathsf{Gr}}_2(\mathbb{R}^n) &= \left\{ \sigma \in \wedge^2\mathbb{R}^n : \sigma \wedge \sigma = 0, \|\sigma\| = 1 \right\} \\ &= \left\{ \sigma = X \wedge Y \in \wedge^2\mathbb{R}^n : \begin{array}{c} X, Y \in \mathbb{R}^n, \\ |X|^2|Y|^2 - \langle X, Y \rangle^2 = 1 \end{array} \right\} \\ \operatorname{\mathsf{sec}}_R \colon \operatorname{\mathsf{Gr}}_2(\mathbb{R}^n) \to \mathbb{R} \\ \operatorname{\mathsf{sec}}_R(\sigma) &= \langle R(\sigma), \sigma \rangle \\ &= \langle R(X \wedge Y), X \wedge Y \rangle \end{split}$$

#### Definition

R has  $\sec \langle k \iff \sec_R(\sigma) \langle k, \forall \sigma \in \operatorname{Gr}_2(\mathbb{R}^n)$ 

$$\begin{split} R \in \operatorname{\mathsf{Sym}}^2(\wedge^2\mathbb{R}^n) \\ \operatorname{\mathsf{Gr}}_2(\mathbb{R}^n) &= \left\{ \sigma \in \wedge^2\mathbb{R}^n : \sigma \wedge \sigma = 0, \|\sigma\| = 1 \right\} \\ &= \left\{ \sigma = X \wedge Y \in \wedge^2\mathbb{R}^n : \begin{array}{c} X, Y \in \mathbb{R}^n, \\ |X|^2|Y|^2 - \langle X, Y \rangle^2 = 1 \end{array} \right\} \\ \operatorname{\mathsf{sec}}_R \colon \operatorname{\mathsf{Gr}}_2(\mathbb{R}^n) \to \mathbb{R} \\ \operatorname{\mathsf{sec}}_R(\sigma) &= \langle R(\sigma), \sigma \rangle \\ &= \langle R(X \wedge Y), X \wedge Y \rangle \end{split}$$

#### Definition

 $R \text{ has sec } \geq k \Longleftrightarrow \sec_R(\sigma) \geq k, \ \forall \sigma \in \operatorname{Gr}_2(\mathbb{R}^n)$ 

$$\begin{split} R \in \mathsf{Sym}^2(\wedge^2\mathbb{R}^n) \\ \mathsf{Gr}_2(\mathbb{R}^n) &= \left\{ \sigma \in \wedge^2\mathbb{R}^n : \sigma \wedge \sigma = 0, \|\sigma\| = 1 \right\} \\ &= \left\{ \sigma = X \wedge Y \in \wedge^2\mathbb{R}^n : \begin{array}{c} X, Y \in \mathbb{R}^n, \\ |X|^2|Y|^2 - \langle X, Y \rangle^2 = 1 \end{array} \right\} \\ \mathsf{sec}_R \colon \mathsf{Gr}_2(\mathbb{R}^n) \to \mathbb{R} \\ \mathsf{sec}_R(\sigma) &= \langle R(\sigma), \sigma \rangle \\ &= \langle R(X \wedge Y), X \wedge Y \rangle \end{split}$$

#### Definition

$$R \text{ has sec } \geq k \Longleftrightarrow \sec_R(\sigma) \geq k, \ \forall \sigma \in \operatorname{Gr}_2(\mathbb{R}^n)$$

$$\Re_{\sec\geq k}(n) := \left\{R \in \operatorname{\mathsf{Sym}}^2(\wedge^2\mathbb{R}^n) : \sec_R \geq k\right\}$$

 $\boxed{\mathfrak{R}_{\sec\geq k}(n) := \left\{R \in \mathsf{Sym}^2(\wedge^2\mathbb{R}^n) : \sec_R \geq k
ight\}}$ 

$$\boxed{\mathfrak{R}_{\mathsf{sec}\geq k}(n) := \left\{R \in \mathsf{Sym}^2(\wedge^2\mathbb{R}^n) : \mathsf{sec}_R \geq k
ight\}}$$

▶ **Q**: What is the structure of the set  $\Re_{\sec \ge k}(n)$ ?

$$\boxed{\mathfrak{R}_{\sec\geq k}(n) := \left\{R \in \mathsf{Sym}^2(\wedge^2\mathbb{R}^n) : \sec_R \geq k\right\}}$$

▶ **Q**: What is the structure of the set  $\Re_{\sec \ge k}(n)$ ?

**A**: Convex cone in  $Sym^2(\wedge^2\mathbb{R}^n)$ 

$$\boxed{\mathfrak{R}_{\sec\geq k}(n) := \left\{R \in \mathsf{Sym}^2(\wedge^2\mathbb{R}^n) : \sec_R \geq k
ight\}}$$

▶ **Q**: What is the structure of the set  $\Re_{\sec \ge k}(n)$ ?

**A**: Convex cone in  $Sym^2(\wedge^2\mathbb{R}^n)$ ; semialgebraic subset

$$\boxed{\mathfrak{R}_{\sec\geq k}(n) := \left\{R \in \mathsf{Sym}^2(\wedge^2\mathbb{R}^n) : \sec_R \geq k\right\}}$$

▶ Q: What is the structure of the set  $\Re_{\sec \ge k}(n)$ ?

**A:** Convex cone in  $\operatorname{Sym}^2(\wedge^2\mathbb{R}^n)$ ; semialgebraic subset, i.e., described by finitely many polynomial inequalities on R

$$\boxed{\mathfrak{R}_{\sec\geq k}(n) := \left\{R \in \mathsf{Sym}^2(\wedge^2\mathbb{R}^n) : \sec_R \geq k\right\}}$$

▶ Q: What is the structure of the set  $\mathfrak{R}_{\sec \geq k}(n)$ ?

**A:** Convex cone in  $\operatorname{Sym}^2(\wedge^2\mathbb{R}^n)$ ; semialgebraic subset, i.e., described by finitely many polynomial inequalities on R

# Quantifier elimination Theorem (Tarski-Seidenberg)



A. Tarski



A. Seidenberg

## Quantifier elimination

## Theorem (Tarski-Seidenberg)

Any finite list of **quantified** polynomial equalities and inequalities over the real numbers

$$(\forall, \exists) t_1, t_2, t_3, \dots$$
  
 $F_i(t_1, t_2, t_3, \dots; x_1, x_2, x_3, \dots) = 0$   
 $G_i(t_1, t_2, t_3, \dots; x_1, x_2, x_3, \dots) \neq 0$   
 $H_i(t_1, t_2, t_3, \dots; x_1, x_2, x_3, \dots) > 0$ 



A. Tarski



A. Seidenberg

## Quantifier elimination

## Theorem (Tarski-Seidenberg)

Any finite list of quantified polynomial equalities and inequalities over the real numbers

$$(\forall, \exists) t_1, t_2, t_3, ...$$
  
 $F_i(t_1, t_2, t_3, ...; x_1, x_2, x_3, ...) = 0$   
 $G_i(t_1, t_2, t_3, ...; x_1, x_2, x_3, ...) \neq 0$   
 $H_i(t_1, t_2, t_3, ...; x_1, x_2, x_3, ...) > 0$ 

is equivalent to a list of quantifier-free polynomial equalities and inequalities

$$\widetilde{F}_i(x_1, x_2, x_3, \dots) = 0$$
 $\widetilde{G}_i(x_1, x_2, x_3, \dots) \neq 0$ 
 $\widetilde{H}_i(x_1, x_2, x_3, \dots) > 0$ 



A. Tarski



A. Seidenberg

Quantified:

$$\exists t \in \mathbb{R} \quad at^2 + bt + c = 0$$
$$a \neq 0$$

#### Quantified:

$$\exists t \in \mathbb{R} \quad at^2 + bt + c = 0$$
$$a \neq 0$$

#### Quantifier-free:

$$b^2 - 4ac \ge 0$$

Quantified:

$$\exists t \in \mathbb{R} \quad at^2 + bt + c = 0$$
$$a \neq 0$$

Quantified:

$$\forall \sigma \in \operatorname{Gr}_2(\mathbb{R}^n) \quad \sec_R(\sigma) \ge k$$

Quantifier-free:

$$b^2 - 4ac \ge 0$$

Quantified:

$$\exists t \in \mathbb{R} \quad at^2 + bt + c = 0$$
$$a \neq 0$$

Quantified:

$$\forall \sigma \in \operatorname{Gr}_2(\mathbb{R}^n) \quad \sec_R(\sigma) \ge k$$

Quantifier-free:

$$b^2 - 4ac > 0$$

Quantifier-free:

$$F_i(R, k) \ge 0, \quad 1 \le i \le N$$

$$\boxed{\mathfrak{R}_{\sec\geq k}(n) := \left\{R \in \mathsf{Sym}^2(\wedge^2\mathbb{R}^n) : \sec_R \geq k
ight\}}$$

- ▶ Q: What is the structure of the set  $\mathfrak{R}_{\sec \geq k}(n)$ ? A: Convex cone in  $\operatorname{Sym}^2(\wedge^2\mathbb{R}^n)$ ; semialgebraic subset, i.e., described by finitely many polynomial inequalities on R
- ▶ **Q**: Can we parametrize  $\mathfrak{R}_{\sec \geq k}(n)$  explicitly?

$$oxed{\mathfrak{R}_{\mathsf{sec}\geq k}(n) := \left\{R \in \mathsf{Sym}^2(\wedge^2\mathbb{R}^n) : \mathsf{sec}_R \geq k
ight\}}$$

- ▶ **Q**: What is the structure of the set  $\mathfrak{R}_{\sec \ge k}(n)$ ? **A**: Convex cone in  $\operatorname{Sym}^2(\wedge^2\mathbb{R}^n)$ ; semialgebraic subset, i.e., described by finitely many polynomial inequalities on R
- ▶ Q: Can we parametrize  $\mathfrak{R}_{\sec \geq k}(n)$  explicitly? That is, explicitly write  $F_i(R, k) \geq 0$ ?

$$\boxed{\mathfrak{R}_{\mathsf{sec} \geq k}(n) := \left\{ R \in \mathsf{Sym}^2(\wedge^2 \mathbb{R}^n) : \mathsf{sec}_R \geq k 
ight\}}$$

- ▶ **Q**: What is the structure of the set  $\mathfrak{R}_{\sec \ge k}(n)$ ? **A**: Convex cone in  $\operatorname{Sym}^2(\wedge^2\mathbb{R}^n)$ ; semialgebraic subset, i.e., described by finitely many polynomial inequalities on R
- Q: Can we parametrize  $\mathfrak{R}_{\sec \geq k}(n)$  explicitly? That is, explicitly write  $F_i(R, k) \geq 0$ ?

A: Maybe...?

[Weinstein, 1972]



[Weinstein, 1972]



[Weinstein, 1972]



Even with today's (2015) computers, this is still intractable...

[Weinstein, 1972]



Even with today's (2015) computers, this is still intractable...

... need to do more Math!

Definition (Spectrahedron)
$$S = \left\{ x \in \mathbb{R}^d : A + \sum_{i=1}^d x_i B_i \succeq 0 \right\}, \text{ where } A, B_i \in \operatorname{Sym}^2(\mathbb{R}^m)$$

Definition (Spectrahedron)
$$S = \left\{ x \in \mathbb{R}^d : A + \sum_{i=1}^d x_i B_i \succeq 0 \right\}, \text{ where } A, B_i \in \operatorname{Sym}^2(\mathbb{R}^m)$$

#### Example

Polyhedron: A, B<sub>i</sub> diagonal matrices



Definition (Spectrahedron)
$$S = \left\{ x \in \mathbb{R}^d : A + \sum_{i=1}^d x_i B_i \succeq 0 \right\}, \text{ where } A, B_i \in \operatorname{Sym}^2(\mathbb{R}^m)$$

#### Example

Polyhedron: A, B<sub>i</sub> diagonal matrices

#### Cylinder:

$$\begin{pmatrix} 1+x & y & 0 & 0 \\ y & 1-x & 0 & 0 \\ 0 & 0 & 1+z & 0 \\ 0 & 0 & 0 & 1-z \end{pmatrix} \succeq 0$$



Definition (Spectrahedron)
$$S = \left\{ x \in \mathbb{R}^d : A + \sum_{i=1}^d x_i B_i \succeq 0 \right\}, \text{ where } A, B_i \in \operatorname{Sym}^2(\mathbb{R}^m)$$

#### Example

Polyhedron: A, B<sub>i</sub> diagonal matrices

Cylinder:

$$\begin{pmatrix} 1+x & y & 0 & 0 \\ y & 1-x & 0 & 0 \\ 0 & 0 & 1+z & 0 \\ 0 & 0 & 0 & 1-z \end{pmatrix} \succeq 0$$

Elliptope:

$$\begin{pmatrix} 1 & x & y \\ x & 1 & z \\ y & z & 1 \end{pmatrix} \succeq 0$$



Definition (Spectrahedron)
$$S = \left\{ x \in \mathbb{R}^d : A + \sum_{i=1}^d x_i B_i \succeq 0 \right\}, \text{ where } A, B_i \in \operatorname{Sym}^2(\mathbb{R}^m)$$

Definition (Spectrahedron)
$$S = \left\{ x \in \mathbb{R}^d : A + \sum_{i=1}^d x_i B_i \succeq 0 \right\}, \text{ where } A, B_i \in \operatorname{Sym}^2(\mathbb{R}^m)$$



Linear projections of spectrahedra <u>need not</u> be spectrahedra!

Definition (Spectrahedron)
$$S = \left\{ x \in \mathbb{R}^d : A + \sum_{i=1}^d x_i B_i \succeq 0 \right\}, \text{ where } A, B_i \in \operatorname{Sym}^2(\mathbb{R}^m)$$

Linear projections of spectrahedra *need not* be spectrahedra!

$$S = \left\{ x \in \mathbb{R}^d : \exists t \in \mathbb{R}^\ell, A + \sum_{i=1}^d x_i B_i + \sum_{j=1}^\ell t_j C_j \succeq 0 \right\},$$
where  $A, B_i, C_i \in \operatorname{\mathsf{Sym}}^2(\mathbb{R}^m)$ 

Definition (Spectrahedron)
$$S = \left\{ x \in \mathbb{R}^d : A + \sum_{i=1}^d x_i B_i \succeq 0 \right\}, \text{ where } A, B_i \in \operatorname{Sym}^2(\mathbb{R}^m)$$

Linear projections of spectrahedra *need not* be spectrahedra!

Definition (Spectrahedral shadow)

$$S = \left\{ x \in \mathbb{R}^d : \exists t \in \mathbb{R}^\ell, \ A + \sum_{i=1}^d x_i B_i + \sum_{j=1}^\ell t_j C_j \succeq 0 \right\},$$
where  $A, B_i, C_i \in \operatorname{Sym}^2(\mathbb{R}^m)$ 

Linear programming: optimize linear functionals on polyhedra (solvable in polynomial time!)

Definition (Spectrahedron)
$$S = \left\{ x \in \mathbb{R}^d : A + \sum_{i=1}^d x_i B_i \succeq 0 \right\}, \text{ where } A, B_i \in \operatorname{Sym}^2(\mathbb{R}^m)$$

Linear projections of spectrahedra <u>need not</u> be spectrahedra!

Definition (Spectrahedral shadow) 
$$S = \left\{ x \in \mathbb{R}^d : \exists t \in \mathbb{R}^\ell, A + \sum_{i=1}^d x_i B_i + \sum_{j=1}^\ell t_j C_j \succeq 0 \right\},$$
 where  $A B: C \in \text{Sym}^2(\mathbb{R}^m)$ 

where  $A, B_i, C_i \in \operatorname{Sym}^2(\mathbb{R}^m)$ 

- Linear programming: optimize linear functionals on polyhedra (solvable in polynomial time!)
- ► Semidefinite programming: optimize linear functionals on spectrahedra (also solvable in polynomial time!)



Conjecture (Helton-Nie, 2009)

Any convex semialgebraic subset of  $\mathbb{R}^n$  is a spectrahedral shadow.

Conjecture (Helton-Nie, 2009)

Any convex semialgebraic subset of  $\mathbb{R}^n$  is a spectrahedral shadow.

Theorem (Scheiderer, 2018)

Helton-Nie Conjecture is TRUE if n = 2!



C. Scheiderer

Conjecture (Helton-Nie, 2009)

Any convex semialgebraic subset of  $\mathbb{R}^n$  is a spectrahedral shadow.

Theorem (Scheiderer, 2018)

Helton-Nie Conjecture is TRUE if n = 2!

Theorem (Scheiderer, 2018)

Helton-Nie Conjecture is FALSE if  $n \ge 3!$ 



C. Scheiderer

Conjecture (Helton-Nie, 2009)

Any convex semialgebraic subset of  $\mathbb{R}^n$  is a spectrahedral shadow.

Theorem (Scheiderer, 2018)

Helton-Nie Conjecture is TRUE if n = 2!

Theorem (Scheiderer, 2018)

Helton-Nie Conjecture is FALSE if  $n \ge 3!$ 

A convex semialgebraic cone  $C = \operatorname{cone}(S)$  is a spectrahedral shadow if and only if  $\exists \phi \colon X \to \mathbb{A}^n$  morphism of affine  $\mathbb{R}$ -varieties and a finite-dimensional subspace  $U \subset \mathbb{R}[X]$  s.t.:

- $ightharpoonup S \subset \phi(X(\mathbb{R})),$
- ▶  $\forall f \in \mathbb{R}[x_1, ..., x_n]$  homogeneous linear polynomial,  $f \geq 0$  on S,  $\phi^*(f) \in \mathbb{R}[X]$  is a sum of squares of elements in U.



C. Scheiderer

- $\triangleright \mathfrak{R}_{\sec \geq k}(2)$  and  $\mathfrak{R}_{\sec \geq k}(3)$  are spectrahedra;
- $ightharpoonup \mathfrak{R}_{\sec \geq k}(4)$  is a spectrahedral shadow, and not a spectrahedron;
- $ightharpoonup \Re_{\sec \geq k}(n)$ ,  $n \geq 5$  is not a spectrahedral shadow.

- $\blacktriangleright$   $\mathfrak{R}_{\sec \geq k}(2)$  and  $\mathfrak{R}_{\sec \geq k}(3)$  are spectrahedra;
- $ightharpoonup \mathfrak{R}_{\sec \geq k}(4)$  is a spectrahedral shadow, and not a spectrahedron;
- ▶  $\Re_{\sec \ge k}(n)$ ,  $n \ge 5$  is not a spectrahedral shadow.

```
\left\{ \text{spectrahedra} \right\} \subsetneq \left\{ \begin{array}{c} \text{spectrahedral} \\ \text{shadows} \end{array} \right\} \subsetneq \left\{ \begin{array}{c} \text{convex} \\ \text{semialgebraic set} \end{array} \right\}
```

- $\blacktriangleright$   $\mathfrak{R}_{\sec \geq k}(2)$  and  $\mathfrak{R}_{\sec \geq k}(3)$  are spectrahedra;
- $ightharpoonup \mathfrak{R}_{\sec \geq k}(4)$  is a spectrahedral shadow, and not a spectrahedron;
- $ightharpoonup \Re_{\sec \geq k}(n)$ ,  $n \geq 5$  is not a spectrahedral shadow.

- $\triangleright \mathfrak{R}_{\sec \geq k}(2)$  and  $\mathfrak{R}_{\sec \geq k}(3)$  are spectrahedra;
- ▶  $\mathfrak{R}_{\sec \ge k}(4)$  is a spectrahedral shadow, and not a spectrahedron;
- ▶  $\Re_{\sec \ge k}(n)$ ,  $n \ge 5$  is not a spectrahedral shadow.

```
 \begin{cases} \mathsf{spectrahedra} \end{cases} \subsetneq \left\{ \begin{array}{c} \mathsf{spectrahedral} \\ \mathsf{shadows} \end{array} \right\} \subsetneq \left\{ \begin{array}{c} \mathsf{convex} \\ \mathsf{semialgebraic} \ \mathsf{set} \end{array} \right\}   \mathfrak{R}_{\mathsf{sec} \geq k}(2)   \mathfrak{R}_{\mathsf{sec} \geq k}(3)   \mathfrak{R}_{\mathsf{sec} \geq k}(4)
```

- $ightharpoonup \Re_{\sec \geq k}(2)$  and  $\Re_{\sec \geq k}(3)$  are spectrahedra;
- ▶  $\mathfrak{R}_{\sec \geq k}(4)$  is a spectrahedral shadow, and not a spectrahedron;
- ▶  $\Re_{\sec \ge k}(n)$ ,  $n \ge 5$  is not a spectrahedral shadow.

## Theorem (B.-Kummer-Mendes, 2018)

- $ightharpoonup \Re_{\sec \geq k}(2)$  and  $\Re_{\sec \geq k}(3)$  are spectrahedra;
- $ightharpoonup \mathfrak{R}_{\sec \geq k}(4)$  is a spectrahedral shadow, and not a spectrahedron;
- ▶  $\Re_{\sec \ge k}(n)$ ,  $n \ge 5$  is not a spectrahedral shadow.

$$\begin{cases} \mathsf{spectrahedra} \end{cases} \subsetneq \left\{ \begin{array}{c} \mathsf{spectrahedral} \\ \mathsf{shadows} \end{array} \right\} \subsetneq \left\{ \begin{array}{c} \mathsf{convex} \\ \mathsf{semialgebraic} \ \mathsf{set} \end{array} \right\} \\ \mathfrak{R}_{\mathsf{sec} \geq k}(2) \\ \mathfrak{R}_{\mathsf{sec} \geq k}(3) \end{array} \qquad \mathfrak{R}_{\mathsf{sec} \geq k}(4) \qquad \qquad \mathfrak{R}_{\mathsf{sec} \geq k}(n), \forall \ n \geq 5$$

Upshot:  $\sec \ge k$  is algebraically much harder to verify if  $n \ge 5$ 

▶ Hodge star \*:  $\wedge^2 \mathbb{R}^4 \to \wedge^2 \mathbb{R}^4$ 

- ► Hodge star \*:  $\wedge^2 \mathbb{R}^4 \to \wedge^2 \mathbb{R}^4$

- ► Hodge star \*:  $\wedge^2 \mathbb{R}^4 \to \wedge^2 \mathbb{R}^4$

Finsler Lemma ("Thorpe's trick").

$$R \in \mathfrak{R}_{\sec \geq k}(4) \iff \langle (R - k \operatorname{Id})(\sigma), \sigma \rangle \geq 0, \ \forall \sigma \neq 0 \text{ s.t. } \langle *\sigma, \sigma \rangle = 0$$

- ► Hodge star \*:  $\wedge^2 \mathbb{R}^4 \to \wedge^2 \mathbb{R}^4$

Finsler Lemma ("Thorpe's trick").

$$R \in \mathfrak{R}_{\sec \geq k}(4) \iff \langle (R - k \operatorname{Id})(\sigma), \sigma \rangle \geq 0, \ \forall \sigma \neq 0 \text{ s.t. } \langle *\sigma, \sigma \rangle = 0$$
$$\iff \exists \ x \in \mathbb{R}, \ R - k \operatorname{Id} + x * \geq 0$$

- ► Hodge star \*:  $\wedge^2 \mathbb{R}^4 \to \wedge^2 \mathbb{R}^4$

Finsler Lemma ("Thorpe's trick").

$$R \in \mathfrak{R}_{\sec \geq k}(4) \iff \langle (R - k \operatorname{Id})(\sigma), \sigma \rangle \geq 0, \ \forall \sigma \neq 0 \text{ s.t. } \langle *\sigma, \sigma \rangle = 0$$
$$\iff \exists x \in \mathbb{R}, \ R - k \operatorname{Id} + x * \succeq 0$$

Theorem (B.-Kummer-Mendes, 2018; Fodor 2018)

$$\partial \mathfrak{R}_{\sec \ge k}(4) \subset \left\{ R : \operatorname{Disc}_x \left( \det(R - k \operatorname{\mathsf{Id}} + x *) \right) = 0 \right\}$$

- ► Hodge star \*:  $\wedge^2 \mathbb{R}^4 \to \wedge^2 \mathbb{R}^4$

Finsler Lemma ("Thorpe's trick").

$$R \in \mathfrak{R}_{\sec \geq k}(4) \iff \langle (R - k \operatorname{Id})(\sigma), \sigma \rangle \geq 0, \ \forall \sigma \neq 0 \text{ s.t. } \langle *\sigma, \sigma \rangle = 0$$
$$\iff \exists x \in \mathbb{R}, \ R - k \operatorname{Id} + x * \succeq 0$$

Theorem (B.-Kummer-Mendes, 2018; Fodor 2018)

$$\partial \mathfrak{R}_{\sec \ge k}(4) \subset \left\{ R : \operatorname{Disc}_x \left( \det(R - k \operatorname{\mathsf{Id}} + x *) \right) = 0 \right\}$$

Recall:  $\operatorname{Disc}_x(p(x)) = \operatorname{discriminant}$  of p(x) in the variable x

- ► Hodge star \*:  $\wedge^2 \mathbb{R}^4 \to \wedge^2 \mathbb{R}^4$

Finsler Lemma ("Thorpe's trick").

$$R \in \mathfrak{R}_{\sec \geq k}(4) \iff \langle (R - k \operatorname{Id})(\sigma), \sigma \rangle \geq 0, \ \forall \sigma \neq 0 \text{ s.t. } \langle *\sigma, \sigma \rangle = 0$$
$$\iff \exists x \in \mathbb{R}, \ R - k \operatorname{Id} + x * \succeq 0$$

Theorem (B.-Kummer-Mendes, 2018; Fodor 2018)

$$\partial \mathfrak{R}_{\mathsf{sec} \geq k}(4) \subset \left\{ R : \mathrm{Disc}_x \left( \det(R - k \operatorname{\mathsf{Id}} + x *) \right) = 0 \right\}$$

Recall:  $\operatorname{Disc}_{x}(p(x)) = \operatorname{discriminant}$  of p(x) in the variable x (polynomial in the coefficients of p(x))

- ► Hodge star \*:  $\wedge^2 \mathbb{R}^4 \to \wedge^2 \mathbb{R}^4$

Finsler Lemma ("Thorpe's trick").

$$R \in \mathfrak{R}_{\sec \geq k}(4) \iff \langle (R - k \operatorname{Id})(\sigma), \sigma \rangle \geq 0, \ \forall \sigma \neq 0 \text{ s.t. } \langle *\sigma, \sigma \rangle = 0$$
$$\iff \exists x \in \mathbb{R}, \ R - k \operatorname{Id} + x * \succeq 0$$

Theorem (B.-Kummer-Mendes, 2018; Fodor 2018)

$$\partial \mathfrak{R}_{\sec \ge k}(4) \subset \left\{ R : \operatorname{Disc}_x \left( \det(R - k \operatorname{\mathsf{Id}} + x *) \right) = 0 \right\}$$

Recall:  $\operatorname{Disc}_x(p(x)) = \operatorname{discriminant}$  of p(x) in the variable x (polynomial in the coefficients of p(x))  $\operatorname{Disc}_x(p(x)) = 0 \iff p(x) \text{ has a multiple root}$ 

- ► Hodge star \*:  $\wedge^2 \mathbb{R}^4 \to \wedge^2 \mathbb{R}^4$

Finsler Lemma ("Thorpe's trick").

$$R \in \mathfrak{R}_{\sec \geq k}(4) \iff \langle (R - k \operatorname{Id})(\sigma), \sigma \rangle \geq 0, \ \forall \sigma \neq 0 \text{ s.t. } \langle *\sigma, \sigma \rangle = 0$$
$$\iff \exists x \in \mathbb{R}, \ R - k \operatorname{Id} + x * \succeq 0$$

Theorem (B.-Kummer-Mendes, 2018; Fodor 2018)

$$\partial \mathfrak{R}_{\sec \ge k}(4) \subset \left\{ R : \operatorname{Disc}_x \left( \det(R - k \operatorname{\mathsf{Id}} + x *) \right) = 0 \right\}$$

## Corollary

 $\mathfrak{R}_{\sec\geq k}(4)$  is the closure of a union of connected components of the semialgebraic set  $\{R: \operatorname{Disc}_x(\det(R-k\operatorname{Id}+x*))\neq 0\}$ .

#### Corollary

 $\mathfrak{R}_{\sec \geq k}(4)$  is the closure of a union of connected components of the semialgebraic set  $\{R : \operatorname{Disc}_x(\det(R-k\operatorname{Id}+x*)) \neq 0\}$ .

#### Corollary

 $\mathfrak{R}_{\sec \geq k}(4)$  is the closure of a union of connected components of the semialgebraic set  $\{R: \operatorname{Disc}_x(\det(R-k\operatorname{Id}+x*)) \neq 0\}$ .

## Proposition (B.-Kummer-Mendes, 2018)

$$\operatorname{Disc}_{x}(\det(R-k\operatorname{\sf Id}+x*))=\sum_{a}p_{a}(R)^{2}-\sum_{b}q_{b}(R)^{2},$$

where  $p_a(R)$  and  $q_b(R)$  are explicit homogeneous polynomials of degree 15 in R.

### Corollary

 $\mathfrak{R}_{\sec \geq k}(4)$  is the closure of a union of connected components of the semialgebraic set  $\{R: \operatorname{Disc}_x(\det(R-k\operatorname{Id}+x*)) \neq 0\}$ .

## Proposition (B.-Kummer-Mendes, 2018)

$$\operatorname{Disc}_x\bigl(\operatorname{det}(R-k\operatorname{\sf Id}+x*)\bigr)=\sum_a p_a(R)^2-\sum_b q_b(R)^2,$$

where  $p_a(R)$  and  $q_b(R)$  are explicit homogeneous polynomials of degree 15 in R.

 $\triangle$  Problem: There are 27,144  $p_a(R)$ 's and 27,120  $q_b(R)$ 's...

### Corollary

 $\mathfrak{R}_{\sec \geq k}(4)$  is the closure of a union of connected components of the semialgebraic set  $\{R: \operatorname{Disc}_x(\det(R-k\operatorname{Id}+x*)) \neq 0\}$ .

## Proposition (B.-Kummer-Mendes, 2018)

$$\operatorname{Disc}_{x} (\det(R - k \operatorname{Id} + x*)) = \sum_{a} p_{a}(R)^{2} - \sum_{b} q_{b}(R)^{2},$$

where  $p_a(R)$  and  $q_b(R)$  are explicit homogeneous polynomials of degree 15 in R.

 $\triangle$  Problem: There are 27,144  $p_a(R)$ 's and 27,120  $q_b(R)$ 's... Some hope:

### Corollary

 $\mathfrak{R}_{\sec \geq k}(4)$  is the closure of a union of connected components of the semialgebraic set  $\{R: \mathrm{Disc}_x(\det(R-k \operatorname{Id} + x*)) \neq 0\}$ .

Proposition (B.-Kummer-Mendes, 2018)

$$\operatorname{Disc}_x\bigl(\operatorname{det}(R-k\operatorname{Id}+x*)\bigr)=\sum_a p_a(R)^2-\sum_b q_b(R)^2,$$

where  $p_a(R)$  and  $q_b(R)$  are explicit homogeneous polynomials of degree 15 in R.

 $\triangle$  Problem: There are 27,144  $p_a(R)$ 's and 27,120  $q_b(R)$ 's...

Some hope: outer approximation by Weitzenböck spectrahedra

Theorem (B.-Mendes, 2017)

$$\mathfrak{R}_{\sec\geq k}(n) = \bigcap_{p\geq 2} \left\{ R \in \mathsf{Sym}^2(\wedge^2\mathbb{R}^n) : \mathcal{K}\big(R-k \, \mathsf{Id}, \mathsf{Sym}_0^p \, \mathbb{R}^n\big) \succeq 0 \right\}$$

In dimension n = 4:

In dimension n = 4:

Even without the quantifier-free parametrization of  $\mathfrak{R}_{\sec \ge k}(4)$ ,

In dimension n = 4:

Even without the quantifier-free parametrization of  $\mathfrak{R}_{\sec \ge k}(4)$ , given an explicit  $R \in \operatorname{Sym}^2(\wedge^2\mathbb{R}^4)$ ,

In dimension n = 4:

Even without the quantifier-free parametrization of  $\mathfrak{R}_{\sec \ge k}(4)$ , given an explicit  $R \in \operatorname{Sym}^2(\wedge^2\mathbb{R}^4)$ , can quickly test if  $R \in \mathfrak{R}_{\sec \ge k}(4)$ 

In dimension n = 4:

Even without the quantifier-free parametrization of  $\mathfrak{R}_{\sec \ge k}(4)$ , given an explicit  $R \in \operatorname{Sym}^2(\wedge^2\mathbb{R}^4)$ , can quickly test if  $R \in \mathfrak{R}_{\sec \ge k}(4)$ 

 $\mathfrak{R}_{\sec \geq k}(4)$  is a spectrahedral shadow

In dimension n = 4:

Even without the quantifier-free parametrization of  $\mathfrak{R}_{\sec \ge k}(4)$ , given an explicit  $R \in \operatorname{Sym}^2(\wedge^2\mathbb{R}^4)$ , can quickly test if  $R \in \mathfrak{R}_{\sec \ge k}(4)$ 

 $\mathfrak{R}_{\sec \geq k}(4)$  is a  $\Longrightarrow$  "Easy" algorithm to test for  $\sec_R \geq k$ 

In dimension n = 4:

Even without the quantifier-free parametrization of  $\mathfrak{R}_{\sec \ge k}(4)$ , given an explicit  $R \in \operatorname{Sym}^2(\wedge^2\mathbb{R}^4)$ , can quickly test if  $R \in \mathfrak{R}_{\sec \ge k}(4)$ 

$$\mathfrak{R}_{\sec\geq k}(4)$$
 is a spectrahedral shadow  $\Longrightarrow$  "Easy" algorithm to test for  $\sec_R\geq k$ 

In dimensions  $n \geq 5$ :

 $\mathfrak{R}_{\sec \geq k}(n)$  is **not** a spectrahedral shadow

In dimension n = 4:

Even without the quantifier-free parametrization of  $\mathfrak{R}_{\sec \ge k}(4)$ , given an explicit  $R \in \operatorname{Sym}^2(\wedge^2\mathbb{R}^4)$ , can quickly test if  $R \in \mathfrak{R}_{\sec \ge k}(4)$ 

$$\begin{array}{c} \mathfrak{R}_{\sec \geq k}(\mathsf{4}) \text{ is a} \\ \text{spectrahedral shadow} \end{array} \Longrightarrow \begin{array}{c} \text{"Easy" algorithm} \\ \text{to test for } \sec_R \geq k \end{array}$$

In dimensions  $n \geq 5$ :

$$\mathfrak{R}_{\sec\geq k}(n)$$
 is **not** a spectrahedral shadow  $\Longrightarrow$  No such algorithm...

Thank you for your attention!