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ON DIFFERENT NOTIONS OF

POSITIVITY OF CURVATURE

Abstract

by

Renato Ghini Bettiol

We study interactions between the geometry and topology of Riemannian mani-

folds that satisfy curvature positivity conditions closely related to positive sectional

curvature (sec > 0). First, we discuss two notions of weakly positive curvature, de-

fined in terms of averages of pairs of sectional curvatures. The manifold S2 × S2 is

proved to satisfy these curvature positivity conditions, implying it satisfies a property

intermediate between sec > 0 and positive Ricci curvature (Ric > 0), and between

sec > 0 and sec ≥ 0. Combined with surgery techniques, this construction allows to

classify (up to homeomorphism) the closed simply-connected 4-manifolds that admit

a Riemannian metric for which averages of pairs of sectional curvatures of orthogonal

planes are positive. Second, we study the notion of strongly positive curvature, which

is intermediate between sec > 0 and positive-definiteness of the curvature operator

(R > 0). We elaborate on joint work with Mendes [14, 15], which yields the clas-

sification of simply-connected homogeneous spaces that admit an invariant metric

with strongly positive curvature. These methods are then used to study the moduli

space of homogeneous metrics with strongly positive curvature on the Wallach flag

manifolds and on Berger spheres.
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CHAPTER 1

INTRODUCTION

The study of closed manifolds with positive sectional curvature (sec > 0) is one of

the most challenging areas in Riemannian geometry. Despite being a classical subject,

surprisingly little is understood about this class. Besides the theorems of Bonnet-

Myers and Synge on the fundamental group, very few topological obstructions are

known. In addition, some of the oldest open problems in global Riemannian geometry

regard manifolds with sec > 0, including the celebrated Hopf Problems:

Hopf Problem I. Does S2 × S2 admit a Riemannian metric with sec > 0?

Hopf Problem II. If M2n has sec > 0, then it has Euler characteristic χ(M) > 0?

Rendering the subject even more intriguing, examples of closed manifolds that

admit a Riemannian metric with sec > 0 are relatively scarce. Apart from spheres

and projective spaces, they are only known to occur in dimensions 6, 7, 12, 13 and

24, with infinite families in dimensions 7 and 13. The unifying feature of these

examples is the presence of many symmetries, since almost all constructions rely on

taking quotients of compact Lie groups. In fact, the use of symmetries has fostered

important developments in the area, as outlined in the Grove symmetry program [43].

In this thesis, we study curvature positivity conditions closely related to sec > 0,

with an approach mostly guided by the use of symmetries, that also draws inspiration

from the above Hopf Problems. Our goal is to contribute to the understanding of

sec > 0 by analyzing different curvature positivity conditions that are either slightly

weaker or slightly stronger, and for which certain results might be of easier access.
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We introduce two (somewhat dual) notions of weakly positive curvature, sec0+ > 0

and sec⊥ > 0, defined in terms of averages of pairs of sectional curvatures. For θ > 0,

given a Riemannian manifold (M, g), and a 2-plane σ ⊂ TpM , consider the quantity

secθ(σ) = min
σ′∈Gr2(TpM)
dist(σ,σ′)≥θ

1
2

(
sec(σ) + sec(σ′)

)
,

where dist is a fixed fiberwise distance function on the Grassmannian of 2-planes

tangent to M . The positivity secθ > 0 can be interpreted as the positivity of the

averages of sectional curvatures of any 2-planes separated by an angle at least θ. The

conditions sec0+ > 0 and sec⊥ > 0 are respectively related to the limits of secθ > 0

as the lower bound θ for the distances considered in the averages becomes arbitrarily

small or arbitrarily large. More precisely, M satisfies sec0+ > 0 if for all θ > 0, there

is a metric gθ on M for which secθ > 0; while (M, g) satisfies sec⊥ > 0 if it has

secθ > 0 for the largest possible θ, so that averages of pairs of sectional curvatures of

orthogonal planes are positive, see Sections 5.3 and 5.4 for details.

Both sec0+ > 0 and sec⊥ > 0 are clearly weaker than sec > 0. These conditions

are respectively intermediate between sec > 0 and positive Ricci curvature (Ric > 0),

and sec > 0 and positive scalar curvature (scal > 0). Moreover, sec0+ > 0 is also

intermediate between sec > 0 and sec ≥ 0.

The first main result in this thesis, which appeared in [13], is the following:

Theorem A. The manifold S2 × S2 satisfies sec0+ > 0, and hence also sec⊥ > 0.

In addition to its connection with the Hopf Problem I, the proof of this result

yields the existence of metrics with secθ > 0 arbitrarily close to the standard product

metric as θ ↘ 0. This provides a further connection with the lesser known:

Local Hopf Problem I. Is there a sequence gn of metrics on S2×S2 with secgn > 0

that converges to the standard product metric?
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Although both the classical and local versions of the Hopf Problem I remain

unanswered, Theorem A improves on the curvature positivity conditions sec ≥ 0

and Ric > 0 of the standard product metric, via small deformations. It should be

mentioned that there is compelling evidence for S2 × S2 not admitting metrics with

sec > 0, since one such metric could have at most a finite isometry group, see Hsiang

and Kleiner [52] and Grove and Wilking [45]. At least, this indicates that such metrics

are very difficult to find. Thus, Theorem A may be also regarded as an attempt to

understand how much positive curvature can be acquired by special deformations of

the standard product metric, in search of reasons for why they fail to have sec > 0.

The fact that S2×S2 admits metrics with sec⊥ > 0 is a key ingredient in the proof

of our second main result, which uses a surgery stability criterion recently obtained

by Hoelzel [51] to construct many other 4-manifolds with sec⊥ > 0. These exam-

ples actually exhaust the list of homeomorphism types of closed simply-connected 4-

manifolds that satisfy scal > 0, so that, combined with the work of Sha and Yang [90],

we have the following classification result:

Theorem B. Let M4 be a smoothable closed simply-connected topological 4-manifold.

Up to endowing M with different smooth structures, the following are equivalent:

(i) M4 satisfies sec⊥ > 0;

(ii) M4 satisfies Ric > 0;

(iii) M4 satisfies scal > 0.

The other results in this thesis are about a curvature positivity condition stronger

than sec > 0, called strongly positive curvature. This term was coined by Grove,

Verdiani and Ziller [44], for a concept that stems from the work of Thorpe [96, 97]. Let

(M, g) be a Riemannian manifold and R : ∧2TpM → ∧2TpM its curvature operator. A

2-plane σ ⊂ TpM can be seen as an element X∧Y ∈ ∧2TpM , by choosing orthonormal

vectors X, Y ∈ TpM that span σ. From this viewpoint, sectional curvature is the
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associated quadratic form sec(σ) = 〈R(σ), σ〉, restricted to Gr2(TpM) ⊂ ∧2TpM .

Any 4-form ω ∈ ∧4TpM induces a symmetric operator

ω : ∧2 TpM → ∧2TpM, 〈ω(α), β〉 = 〈ω, α ∧ β〉.

The quadratic form associated to ω vanishes on σ ∈ Gr2(TpM), since σ ∧ σ = 0, so

sec(σ) = 〈R(σ), σ〉 = 〈(R + ω)(σ), σ〉.

This observation, known as Thorpe’s trick, implies that if there exists ω ∈ ∧4TpM

such that the modified curvature operator R+ ω is positive-definite, then sec(σ) > 0

for all 2-planes σ ⊂ TpM . The manifold (M, g) is said to have strongly positive

curvature if it has a 4-form ω such that R+ω is positive-definite at all points p ∈M .

Strongly positive curvature is clearly an intermediate condition between sec > 0

and positive-definiteness of the curvature operator (R > 0). By the work of Böhm

and Wilking [17], manifolds with R > 0 are known to be diffeomorphic to spherical

space forms. Thus, strongly positive curvature may be relevant in understanding the

gap between this well-understood class and the intriguing class of manifolds with

sec > 0. Furthermore, strongly positive curvature and sec > 0 are equivalent in

dimensions ≤ 4, providing an interesting viewpoint on the Hopf Problem I. There is

an important computational advantage to studying positive-definiteness of modified

curvature operators instead of sec > 0, since the latter is a highly nonlinear problem,

while the former is linear.

Although it was implicitly used by others authors, strongly positive curvature and

the analogously defined strongly nonnegative curvature have not been systematically

studied until the joint work with Mendes [15]. Propelled by the discovery that Rie-

mannian submersions preserve these conditions [15, Thm. A], we obtain the following

classification result in the spirit of the symmetry program, which appears in [14, 15].
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Theorem C. All simply-connected homogeneous spaces with sec > 0 admit a homo-

geneous metric with strongly positive curvature, except for the Cayley plane CaP 2.

A detailed account on the proof of the above classification is provided, supplying

several details omitted in [14, 15]. We also discuss in depth the concept of strongly

fat homogeneous bundles, which plays a pivotal role in this proof. As a conse-

quence of this classification, we obtain a complete description of the moduli space

of homogeneous metrics with strongly positive and nonnegative curvature on certain

homogeneous spaces, called Wallach flag manifolds [14]. More precisely, we have:

Theorem D. A homogenous metric on the Wallach flag manifolds W 6, W 12, or

W 24 has strongly nonnegative curvature if and only if it has sec ≥ 0. Furthermore,

a homogenous metric on W 6 or W 12 has strongly positive curvature if and only if it

has sec > 0, and a homogenous metric on W 24 has strongly positive curvature if and

only if it has sec > 0 and does not submerge onto CaP 2.

In a similar spirit, we analyze the moduli spaces of Berger metrics with strongly

positive and nonnegative curvature, proving the following new result:

Theorem E. The Berger spheres
(
S2n+1, λ gV ⊕ gH

)
and

(
S4n+3, λ gV ⊕ gH

)
have

strongly positive curvature for all 0 < λ ≤ 1. The Berger sphere
(
S15, λ gV ⊕ gH

)
has

strongly positive curvature if and only if 0 < λ < λ∗ ∼= 1.184, where λ∗ is the largest

real root of p(λ) = 289λ3 − 612λ2 + 360λ− 48.

We recall that the Berger metrics λ gV ⊕ gH above are known to have sec > 0 if

and only if 0 < λ < 4
3
. A particularly interesting consequence of the above is that

there exist homogeneous spaces with sec > 0 that do not have strongly nonnegative

curvature, namely
(
S15, λ gV ⊕ gH

)
with λ∗ < λ < 4

3
. Previously, the only known

examples of homogeneous spaces with sec > 0 that failed to have strongly positive

curvature had strongly nonnegative curvature (the Cayley plane CaP 2, the Berger

space B13, and the Wallach flag manifold W 24).

5



This thesis is organized as follows. Chapter 2 recalls basic notions from Rieman-

nian geometry, establishing the conventions and notation used throughout the text.

In Part I (Chapters 3 and 4), we study two metric deformation techniques, first-order

deformations and Cheeger deformations. These chapters mainly discuss the work of

Strake [94, 95] and Müter [72] respectively, supplementing it with new observations,

with a treatment partly inspired by [2, Chap. 6]. In Part II (Chapters 5, 6 and 7),

we study the two notions sec0+ > 0 and sec⊥ > 0 of weakly positive curvature. The

basic definitions and results are given in Chapter 5, while Chapters 6 and 7 contain

the proofs of Theorems A and B respectively. In Part III (Chapters 8, 9 and 10), we

study strongly positive curvature. Foundational results on modified curvature oper-

ators and homogeneous spaces are given in Chapter 8. The notion of strongly fat

homogeneous bundles is introduced in Chapter 9, leading to the proof of the strong

Wallach Theorem (Theorem 9.5). This is the main tool in the proof of Theorem C,

given in Chapter 9. Finally, Theorems D and E are proved in Chapter 10.
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CHAPTER 2

PRELIMINARIES AND NOTATION

In this chapter, we establish some basic notation and terminology from Rieman-

nian geometry that is used throughout this thesis. All manifolds are supposed to be

C∞-smooth and finite-dimensional.

2.1 Manifolds and bundles

Let M be a manifold with dimM = n. We denote by ⊗kTM the kth tensor

power of the tangent bundle TM and by ∨kTM and ∧kTM the subbundles formed

by symmetric and skewsymmetric k-tensors, respectively. We convention that the

space of smooth sections of these bundles is denoted by the same symbol as the

bundle, e.g., we write X ∈ TM for a smooth vector field X : M → TM . The same

conventions apply for the cotangent bundle TM∗, as well as ⊗kTM∗, ∨kTM∗ and

∧kTM∗. We denote by Gr2TM the Grassmannian bundle of 2-planes tangent to M ,

whose fiber over the point p ∈M is the Grassmannian of 2-planes on TpM , denoted

Gr2(TpM) = {σ ⊂ TpM : dimσ = 2}. (2.1)

A Riemannian metric g ∈ ∨2TM∗ is a positive-definite symmetric tensor, usually

denoted g and simply referred to as metric. When the choice of metric g on M is

unambiguous, it is sometimes denoted 〈·, ·〉 and the corresponding norm is denoted
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‖ · ‖. Furthermore, in this case we identify TM and TM∗ via the isomorphisms

(·)[ : TM → TM∗ and (·)# : TM∗ → TM, (2.2)

where X[ = 〈X, ·〉 and α = 〈α#, ·〉, for X ∈ TM and α ∈ TM∗. We implicitly use the

identifications of the corresponding tensor powers induced by (2.2), that allow to raise

and lower indices of tensors. Furthermore, we use the same symbols 〈·, ·〉 and ‖ · ‖

as above to denote the corresponding objects on such tensor powers. In the presence

of a metric, we also identify Gr2TM as a subbundle of ∧2TM , by identifying each

(oriented) 2-plane σ ∈ Gr2(TpM) with the element X ∧Y ∈ ∧2TpM , where {X, Y } is

an (oriented) orthonormal basis of σ. In this way, we have, up to a double covering,

Gr2(TpM) = {X ∧ Y ∈ ∧2TpM : ‖X ∧ Y ‖ = 1}. (2.3)

Henceforth, we do not make any distinctions between (2.1) and its oriented double

covering (2.3), since all the notions we consider on 2-planes are independent of the

choice of orientation.

2.2 Curvature

Let g be a Riemannian metric on M . The Levi-Civita connection of g is denoted

∇, and is given by the Koszul formula:

〈∇XY, Z〉 = 1
2

(
X〈Y, Z〉+ Y 〈X,Z〉 − Z〈X, Y 〉

+ 〈[X, Y ], Z〉 − 〈[X,Z], Y 〉+ 〈[Z, Y ], X〉
)
.

(2.4)

We convention that the curvature tensor of (M, g) is given by

Rg(X, Y )Z = ∇[X,Y ]Z −∇X∇YZ +∇Y∇XZ. (2.5)

8



We also make frequent use of the curvature operator, denoted by the same symbol,

Rg : ∧2 TM → ∧2TM, 〈Rg(X ∧ Y ), Z ∧W 〉 = 〈Rg(X, Y )Z,W 〉, (2.6)

which is a self-adjoint operator. The sectional curvature of (M, g) is the quadratic

form associated to (2.6) restricted to Gr2TM ⊂ ∧2TM , that is, the function

secg : Gr2TM → R, secg(σ) = secg(X ∧ Y ) = 〈Rg(X, Y )X, Y 〉, (2.7)

where σ = X ∧ Y ∈ Gr2(TpM). The Riemannian manifold (M, g) is said to have

positive sectional curvature, or secg > 0, if the above is a positive function, i.e.,

secg(σ) > 0 for all 2-planes σ ∈ Gr2TM , and analogously for nonnegative sectional

curvature. We say that σ ∈ Gr2TM is a flat plane if secg(σ) = 0, and denote the set

of flat planes by sec−1
g (0) ⊂ Gr2TM .

The Ricci curvature of (M, g) is denoted

Ricg ∈ ∨2TM, Ricg(X, Y ) =
n∑
i=1

〈Rg(X, ei)Y, ei〉, (2.8)

where X, Y ∈ TpM and {ei} is an orthonormal basis of TpM . In particular, if

X ∈ TpM is a unit vector, we may assume that X = en and hence

Ricg(X) := Ricg(X,X) =
n−1∑
i=1

secg(X ∧ ei). (2.9)

Finally, the scalar curvature of (M, g) is the function

scalg : M → R, scal(p) =
n∑
i=1

Ricg(ei) =
n∑
i=1

n−1∑
j=1

secg(ei ∧ ej). (2.10)

Other notions of curvature arise from the complexification TMC := TM ⊗ C. A

9



Riemannian metric g ∈ ∨2TM can be extended in two ways to ∨2TMC; namely, as a

complex bilinear form or as a Hermitian inner product. We denote these respectively

by 〈·, ·〉 and 〈〈·, ·〉〉, and note that 〈〈X, Y 〉〉 = 〈X, Y 〉 for all X, Y ∈ TMC. We denote by

the same symbols the corresponding objects on tensor powers of TMC. The curvature

operator (2.6) extends to a complex linear operator on ∧2TMC. The associated real

quadratic form restricted to Gr2TM
C ⊂ ∧2TMC, that is, the function

secCg : Gr2TM
C → R, secCg (σ) = secCg (X ∧ Y ) = 〈〈Rg(X, Y )X, Y 〉〉, (2.11)

where σ = X ∧ Y ∈ Gr2TM
C, is called complex sectional curvature. Note that

secCg (X ∧ Y ) = 〈Rg(X, Y )X,Y 〉. The restriction of (2.11) to Gr2TM coincides with

the sectional curvature function (2.7). A 2-plane σ ∈ Gr2TM
C is called isotropic if

〈X,X〉 = 0 for all X ∈ σ. It is easy to see that σ ∈ Gr2TM
C is isotropic if and only

if σ = (X + iY )∧ (Z + iW ), where X, Y, Z,W ∈ TM are (real) orthonormal vectors.

For such an isotropic plane, by the Bianchi identity b(R) = 0 (see Section 2.3),

secCg (σ) = secg(X ∧ Z) + secg(X ∧W )

+ secg(Y ∧ Z) + secg(Y ∧W )− 2 〈Rg(X, Y )Z,W 〉.
(2.12)

The Riemannian manifold (M, g) is said to have positive isotropic curvature if

secCg (σ) > 0 for all isotropic 2-planes σ ∈ Gr2TM
C, and analogously for nonneg-

ative isotropic curvature.

Without reference to a specific Riemannian metric, we say that a manifold M

satisfies a certain curvature condition if there exists a metric g on M such that

(M, g) satisfies such condition. For example, we say that M has positive-definite

curvature operator, or satisfies R > 0, if there exists a metric g on M such that (2.6)

is a positive-definite operator, that is, 〈Rg(α), α〉 > 0 for all α ∈ ∧2TM , α 6= 0; and

we say that M has positive sectional curvature, or satisfies sec > 0, if there exists a
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metric g on M such that secg > 0.

2.3 Pointwise curvature conditions

Let V be an n-dimensional real vector space, endowed with an inner product. Let

S(∧2V ) :=
{
R : ∧2 V → ∧2V : 〈R(α), β〉 = 〈R(β), α〉 for all α, β ∈ ∧2V

}
be the space of symmetric linear operators on ∧2V , endowed with the inner product

〈R, S〉 = trRS. We identify every ω ∈ ∧4V as an operator ω ∈ S(∧2V ) by setting

〈ω(α), β〉 = 〈ω, α ∧ β〉, for all α, β ∈ ∧2V, (2.13)

that is, 〈ω(X ∧ Y ), Z ∧ W 〉 := ω(X, Y, Z,W ). This determines a linear isometry

∧4V ⊂ S(∧2V ), which is regarded as an inclusion. The orthogonal projection oper-

ator b : S(∧2V )→ ∧4V onto this subspace is the Bianchi map (see [12, §1.G]), that

maps each R ∈ S(∧2V ) to the 4-form b(R) ∈ ∧4V given by

b(R)(X, Y, Z,W ) = 1
3

(
〈R(X∧Y ), Z∧W 〉+〈R(Y ∧Z), X∧W 〉+〈R(Z∧X), Y ∧W 〉

)
.

The kernel of the Bianchi map is denoted

Sb(∧2V ) := ker b =
{
R ∈ S(∧2V ) : b(R) = 0

}
. (2.14)

The elements R ∈ Sb(∧2V ) are called algebraic curvature operators, since on a Rie-

mannian manifold (M, g), the curvature operator (2.6) satisfies R ∈ Sb(∧2TpM) for

all p ∈M . By the above, there is an orthogonal direct sum decomposition

S(∧2V ) = Sb(∧2V )⊕ ∧4V.
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This is a decomposition of O(n)-representations, since the Bianchi map is equivariant

with respect to the natural O(n)-actions on S(∧2V ) and ∧4V , given by

A ·R := A−1RA,

A · (X ∧ Y ∧ Z ∧W ) := AX ∧ AY ∧ AZ ∧ AW,
A ∈ O(n). (2.15)

The O(n)-representation on ∧4V is irreducible, while the O(n)-representation on

Sb(∧2V ) splits as sum of three irreducible subrepresentations, that are related to the

Ricci and Weyl tensors, see [12, Thm. 1.114]

The so-called pointwise curvature conditions on a Riemannian manifold (M, g)

may be expressed as O(n)-invariant cones in Sb(∧2V ). Namely, given one such cone

C ⊂ Sb(∧2V ), we say that (M, g) satisfies C if, for all p ∈M and all linear isometries

ι : V → TpM , the pull-back by ι of the curvature operator R ∈ Sb(∧2TpM) is such

that ι∗(R) ∈ C. Consider, for example, the open O(n)-invariant convex cones

CR>0 :=
{
R ∈ Sb(∧2V ) : 〈R(α), α〉 > 0 for all α ∈ ∧2V, α 6= 0

}
,

Csec>0 :=
{
R ∈ Sb(∧2V ) : 〈R(σ), σ〉 > 0 for all σ ∈ Gr2(V )

}
.

Then, in the above sense, (M, g) satisfies CR>0 if and only if Rg > 0, and it satisfies

Csec>0 if and only if secg > 0. In this context, if two O(n)-invariant cones C1, C2 in

Sb(∧2V ) satisfy C1 ⊂ C2, we say that condition C1 implies C2. For instance, clearly

CR>0 ⊂ Csec>0, corresponding to the fact that R > 0 implies sec > 0.

2.4 Lie groups

A bi-invariant Riemannian metric on a Lie group G is denoted by Q, which is

identified with the positive-definite symmetric bilinear form Q ∈ ∨2g, where g is the

Lie algebra of G. Since Q is bi-invariant, that is, left and right translations in G

are isometries, we have that Q([X, Y ], Z) = Q(X, [Y, Z]) for all X, Y, Z ∈ g. The
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curvature operator of (G, Q) can be computed as (see [2, Prop. 2.26] or [75, §3.4]),

RG : ∧2 g→ ∧2g,
〈
RG(X ∧ Y ), Z ∧W

〉
= 1

4
Q([X, Y ], [Z,W ]). (2.16)

Thus, (G, Q) has positive-semidefinite curvature operator RG ≥ 0. In particular,

secQ(X ∧ Y ) = 1
4

∥∥[X, Y ]
∥∥2

Q
, (2.17)

and secQ ≥ 0. It is well-known that SU(2) endowed with a bi-invariant metric is

isometric to the round sphere S3, and π : SU(2) → SO(3) is a double covering map,

corresponding to S3 → RP 3. In particular, (SU(2), Q) and (SO(3), Q) have secQ > 0.

2.5 Product manifolds

Let M = M1 ×M2 be a product manifold. Given p ∈ M , we write p = (p1, p2),

where pi ∈Mi, and TpM = Tp1M1⊕Tp2M2. Given X ∈ TpM , we have X = (X1, X2),

where Xi ∈ TpiMi. A product metric on M is a metric of the form g = g1⊕g2, where

gi is a metric on Mi. In other words,

g(X, Y ) = g1(X1, Y1) + g2(X2, Y2).

Routine computations show that the curvature operator of (M, g) is given by

g(R(X ∧Y ), Z ∧W ) = g1

(
R1(X1∧Y1), Z1∧W1

)
+g2

(
R2(X2∧Y2), Z2∧W2

)
, (2.18)

where Ri : ∧2 TMi → ∧2TMi is the curvature operator of (Mi, gi). In particular, the

sectional curvature of X ∧ Y ∈ Gr2(TpM), with ‖X ∧ Y ‖2
g = 1, is

secg(X ∧ Y ) = secg1(X1 ∧ Y1)
∥∥X1 ∧ Y1

∥∥2

g1
+ secg2(X2 ∧ Y2)

∥∥X2 ∧ Y2

∥∥2

g2
. (2.19)
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We say that a 2-plane X ∧ Y ∈ Gr2(TpM) is a mixed plane if either X1 = 0 and

Y2 = 0, or X2 = 0 and Y1 = 0. In other words, mixed planes are spanned by a pair

of vectors with one tangent to each of the factors M1 and M2. It follows from (2.19)

that mixed planes have zero sectional curvature. Furthermore, if X ∧Y ∈ Gr2(TpM)

satisfies Xj = Yj = 0, then secg(X ∧ Y ) = secgi(Xi ∧ Yi), where {i, j} = {1, 2}.

2.6 Immersions and submersions

An immersion i : M → M between Riemannian manifolds (M, g) and (M, g) is

an isometric immersion if, for all p ∈ M , di(p) is a linear isometry from TpM into

Ti(p)M . When i : M → M is injective, we identify it as an inclusion map, and write

TpM = TpM ⊕ TpM⊥ for all p ∈M , where TpM
⊥ is the g-orthogonal complement to

TpM . If X ∈ TpM and p ∈M , we write X> ∈ TpM and X⊥ ∈ TpM⊥ for its tangent

and normal components. Let ∇ and ∇ be the Levi-Civita connections of (M, g) and

(M, g). The second fundamental form II of the isometric immersion i : M →M is

II : TM × TM → TM⊥, II(X, Y ) = ∇XY −∇XY = (∇XY )⊥, (2.20)

where X,Y ∈ TM denote local extensions of X, Y ∈ TM . The relation between the

curvature operators R and R of (M, g) and (M, g) is given by the Gauss equation

(see [12, Chap. 1]),

g(R(X ∧ Y ), Z ∧W ) = g
(
R(X ∧ Y ), Z ∧W

)
+ g
(
II(X,Z), II(Y,W )

)
− g
(
II(X,W ), II(Y, Z)

)
,

(2.21)

in particular, the sectional curvatures of (M, g) and (M, g) satisfy

secg(X ∧ Y ) = secg(X ∧ Y ) +
〈
II(X,X), II(Y, Y )

〉
−
∥∥II(X, Y )

∥∥2
. (2.22)
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If II vanishes identically, then M is called totally geodesic.

A submersion π : M →M between Riemannian manifolds (M, g) and (M, g) is a

Riemannian submersion if, for all p ∈M , dπ(p) is a linear isometry from (ker dπ(p))⊥

onto Tπ(p)M , where (ker dπ(p))⊥ is the g-orthogonal complement to ker dπ(p). We

denote the vertical and horizontal spaces respectively by

Vp := ker dπ(p) and Hp := (ker dπ(p))⊥ =
{
X ∈ TpM : g(X,Vp) = 0

}
. (2.23)

If X ∈ TpM , we write XV and XH for its vertical and horizontal components; and

if X ∈ Tπ(p)M , we denote by X ∈ TpM its horizontal lift, i.e., the unique horizontal

vector X ∈ TpM such that dπ(p)X = X. Let∇ and∇ be the Levi-Civita connections

of (M, g) and (M, g). The two fundamental tensors T and A of the Riemannian

submersion π : M →M are the (1, 2)-tensors on M given by

TXY =
(
∇XVY

V)H +
(
∇XVY

H)V ,
AXY =

(
∇XHY

H)V +
(
∇XHY

V)H. (2.24)

If X, Y ∈ TM are vector fields, then

AXY = ∇XY −∇XY = 1
2
[X,Y ]V (2.25)

so that, for all V ∈ Vp, we have

〈
AXY , V

〉
= 1

2

〈
[X,Y ], V

〉
= 1

2
V [([X,Y ]) = −1

2
d(V [)(X,Y ). (2.26)

Note that the left and right ends of (2.26) are tensorial on X and Y . The relation

between the curvature operators R and R of (M, g) and (M, g) is given by the Gray-
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O’Neill formula (see [12, Chap. 9]),

g(R(X ∧ Y ), Z ∧W ) = g
(
R(X ∧ Y ), Z ∧W

)
+ 2 g

(
AXY ,AZW

)
− g
(
AYZ,AXW

)
+ g
(
AXZ,AYW

)
,

(2.27)

in particular, the sectional curvatures of (M, g) and (M, g) satisfy

secg(X ∧ Y ) = secg
(
X ∧ Y

)
+ 3

∥∥AXY ∥∥2
. (2.28)
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CHAPTER 3

FIRST-ORDER DEFORMATION

A first-order deformation of a Riemannian metric g is a (linear) path

gs := g + s h, s ∈ R, (3.1)

where h ∈ ∨2TM∗ is a symmetric 2-tensor. Since g is positive-definite, there exists

ε > 0 such that gs remains positive-definite if |s| < ε, and is hence a Riemannian

metric. The first-order behavior of sectional curvature under such deformations was

originally studied by Berger [9] and Bourguignon, Deschamps and Sentenac [18, 19],

and later by Ehrlich [33–35] and Strake [94, 95]. In what follows, we discuss some of

these results providing detailed proofs.

3.1 Berger-Ebin Slice Theorem

An important question to address when considering deformations of metrics is

whether they are nontrivial up to isometries. There is a natural action of the dif-

feomorphism group Diff(M) on ∨2TM∗ by pull-back. The orbit of a Riemannian

metric g ∈ ∨2TM∗ consists of other Riemannian metrics f ∗(g) ∈ ∨2TM∗, and the

diffeomorphism f : M → M is clearly an isometry between (M, g) and (M, f ∗g).

Thus, in order for a metric deformation to be geometric, it has to deform metrics

up to diffeomorphisms, i.e., deform Riemannian structures up to reparametrizations

of M . Due to technical difficulties to work on the orbit space of the Diff(M)-action

on ∨2TM∗, it is more convenient to consider deformations of metric tensors, such as
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(3.1), and use other means to ensure that it is not contained in a Diff(M)-orbit. This

can be achieved through the work of Ebin [32], and Berger and Ebin [10], as follows.

Fix a metric g on the closed smooth manifold M , and consider the connection

∇ : TM∗ → ⊗2TM∗ induced by its Levi-Civita connection. The L2-inner product

〈t1, t2〉 :=

∫
M

g
(
t1(x), t2(x)

)
volg

provides a notion of formal adjoint operator ∇∗ to ∇. Define the operator

δ : ∨2 TM∗ → TM∗, δ := ∇∗|∨2TM∗ .

Routine computations show that the formal adjoint δ∗ : TM∗ → ∨2TM∗ of δ satisfies

(δ∗α)(X, Y ) = 1
2

(
X(α(Y )) + Y (α(X))

)
= 1

2
(Lα#g)(X, Y ), (3.2)

where L denotes the Lie derivative. Indeed, δ is the composition of ∇∗ with the

inclusion ∨2TM∗ ⊂ ⊗2TM∗, hence its formal adjoint is the composition of the

symmetrization operator, i.e., the projection ⊗2TM∗ → ∨2TM∗, with the connec-

tion ∇. In particular, from (3.2), one sees that the range Im δ∗ is the tangent space

to the Diff(M)-orbit through g. More precisely, if ηs ∈ Diff(M) is a family of dif-

feomorphisms with η0 = Id and d
ds
ηs
∣∣
s=0

= V , then we have d
ds
η∗s(g)

∣∣∣
s=0

= LV g =

2 δ∗(V [). This observation is indicative1 of the following splitting proved by Berger

and Ebin [10]:

∨2 TM∗ = ker δ ⊕ Im δ∗. (3.3)

In the above, the subspace ker δ is tangent to the slice for the Diff(M)-action on

∨2TM∗, see Ebin [32], and the subspace Im δ∗ is tangent to the Diff(M)-orbit through

1Recall that the above adjoints are only formal. The proof of this statement regarding smooth
sections requires the study of certain differential operators with injective symbol, see [10, Thm. 4.1].
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g, as indicated before.

Thus, to first-order, the deformation (3.1) is geometric if and only if h ∈ ker δ.

Although this condition is not strictly necessary for many of the results in the re-

mainder of this chapter, it may be assumed that all metric deformations considered

here have velocity in ker δ, i.e., induce nontrivial deformations of the unparametrized

Riemannian structure.

3.2 First variation formulas

Denote by ∇s the Levi-Civita connection of gs, and let C ∈ TM ⊗ TM∗ ⊗ TM∗

be its first variation, i.e., C is the (1, 2)-tensor such that

∇s
XY = ∇XY + sC(X, Y ) +O(s2), (3.4)

where ∇ = ∇0 is the Levi-Civita connection of g. By lowering indices using g, we

also consider C as the (0, 3)-tensor C ∈ ⊗3TM∗, given by

C(X, Y, Z) := Z[
(
C(X, Y )

)
= g(C(X, Y ), Z). (3.5)

In what follows, we assume that X, Y, Z ∈ TpM are g-orthonormal vectors, and we

also denote by X, Y and Z local coordinate fields, that is, extensions of these vectors

to a neighborhood of p ∈M such that

[X, Y ] = [X,Z] = [Y, Z] = 0 and (∇X)p = (∇Y )p = (∇Z)p = 0. (3.6)

In particular, notice that for any (0, 2)-tensor t ∈ ⊗2TM∗, we have that at p ∈M ,

X
(
t(Y, Z)

)
= (∇t)(X, Y, Z)− t(∇XY, Z)− t(Y,∇XZ) = ∇Xt(Y, Z) (3.7)
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Lemma 3.1. In the above notation, the first variation C of ∇s is given by

C(X, Y, Z) = 1
2

(
Xh(Y, Z) + Y h(X,Z)− Zh(X, Y )

)
. (3.8)

In particular, using (3.7), we have

C(X,X, Y ) = ∇Xh(X, Y )− 1
2
∇Y h(X,X)

C(Y,X, Y ) = 1
2
∇Xh(Y, Y ).

(3.9)

Proof. Using (3.1), (3.4), (3.5) and (3.6), we have:

gs(∇s
XY, Z) = g(∇s

XY, Z) + s h(∇s
XY, Z)

= g(∇XY, Z) + s g(C(X, Y ), Z) + s h(∇XY, Z) +O(s2)

= g(∇XY, Z) + sC(X, Y, Z) +O(s2).

(3.10)

On the other hand, by (3.1) and the Koszul formula (2.4), we have:

gs(∇s
XY, Z) = 1

2

(
Xgs(Y, Z) + Y gs(X,Z)− Zgs(X, Y )

)
= g(∇XY, Z) + s 1

2

(
Xh(Y, Z) + Y h(X,Z)− Zh(X, Y )

)
.

(3.11)

The desired expression (3.8) for C follows from comparing (3.10) and (3.11); while

(3.9) follows directly from (3.7) and (3.8).

Proposition 3.2. The first variation of the sectional curvature of gs is given by:

d

ds
secgs(X ∧ Y )

∣∣∣
s=0

= ∇X∇Y h(X, Y )− 1
2
∇X∇Xh(Y, Y )− 1

2
∇Y∇Y h(X,X)

+ h(R(X, Y )X, Y )− secg(X ∧ Y )
(
h(X,X) + h(Y, Y )

)
,

where gs = g + s h.
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Proof. From (2.5) and (3.1), we have that the curvature operator Rs of gs satisfies:

gs(Rs(X, Y )X, Y ) = g(Rs(X, Y )X, Y ) + s h(Rs(X, Y )X, Y )

= g(∇s
Y∇s

XX, Y )− g(∇s
X∇s

YX, Y ) + s h(R(X, Y )X, Y ) +O(s2).

Expanding the first term in the above expression, and using (3.6) and (3.7), we have

g(∇s
Y∇s

XX, Y ) = g
(
∇s
Y (∇XX + sC(X,X)), Y

)
+O(s2)

= g(∇Y∇XX, Y ) + s g
(
C(Y,∇XX) +∇YC(X,X), Y

)
+O(s2)

= g(∇Y∇XX, Y ) + s g(∇YC(X,X), Y ) +O(s2)

= g(∇Y∇XX, Y ) + s∇YC(X,X, Y ) +O(s2),

and, analogously for the second term,

g(∇s
X∇s

YX, Y ) = g(∇X∇YX, Y ) + s∇XC(Y,X, Y ) +O(s2).

Thus, by (3.9), the first variation of the unnormalized sectional curvature of gs is:

d

ds
gs(Rs(X, Y )X, Y )

∣∣∣
s=0

= ∇X∇Y h(X, Y )− 1
2
∇X∇Xh(Y, Y )− 1

2
∇Y∇Y h(X,X)

+ h(R(X, Y )X, Y ).

Finally, the desired expression follows from the fact that, by (2.7),

secgs(X ∧ Y ) ‖X ∧ Y ‖2
gs

= gs(Rs(X, Y )X, Y ),

where ‖ · ‖gs indicates the norm on ∧2TM induced by gs, ‖X ∧ Y ‖2
0 = 1, and

d

ds
‖X ∧ Y ‖2

gs

∣∣∣
s=0

=
d

ds

(
gs(X,X) gs(Y, Y )− gs(X, Y )2

)∣∣∣
s=0

= h(X,X) g(Y, Y ) + g(X,X) h(Y, Y )− 2 h(X, Y ) g(X, Y ) (3.12)
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= h(X,X) + h(Y, Y ),

since X, Y ∈ TpM are g-orthonormal.

In the next chapters, we are particularly interested in deforming metrics with

secg ≥ 0. The above first variation formula for the sectional curvature has a slight

simplification in this context, if we consider a flat 2-plane X ∧ Y ∈ Gr2(TpM).

Corollary 3.3. Let (M, g) be a Riemannian manifold with secg ≥ 0, and let X, Y ∈

TpM be g-orthonormal vectors that span a flat plane, i.e., secg(X ∧ Y ) = 0. Then,

the first variation of secgs(X ∧ Y ) is given by

d

ds
secgs(X ∧ Y )

∣∣∣
s=0

= ∇X∇Y h(X, Y )− 1
2
∇X∇Xh(Y, Y )− 1

2
∇Y∇Y h(X,X). (3.13)

Proof. Consider the Jacobi operator

JX : TpM → TpM, JX(Z) := R(X,Z)X.

As R : ∧2 TM → ∧2TM is self-adjoint, we have that JX is also self-adjoint, since

g(JX(Z),W ) = g(R(X,Z)X,W ) = g(R(X,W )X,Z) = g(JX(W ), Z).

Moreover, g(JX(Z), Z) = g(R(X,Z)X,Z) ≥ 0 for all Z ∈ TpM , since secg ≥ 0. Thus,

JX is a self-adjoint positive-semidefinite operator. Denote by {ei} a g-orthonormal

basis of eigenvectors of JX , and by λi ≥ 0 the corresponding eigenvalues, so that

JX(ei) = λi ei. Writing Y =
∑

i yi ei, we have that

0 = secg(X ∧ Y ) = g(JX(Y ), Y ) = g
(∑

i yi λi ei,
∑

j yj ej

)
=
∑

i λi y
2
i ,
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hence yi = 0 whenever λi > 0. Therefore, Y ∈ ker JX , that is,

JX(Y ) = R(X, Y )X = 0. (3.14)

Thus, Proposition 3.2 and (3.14) give the desired formula (3.13).

Another important specialization is to consider first-order conformal deforma-

tions, that is, first-order deformations (3.1) where h is of the form h = φ g for some

smooth function φ : M → R. Notice that, in this case, gs = (1 + s φ)g is a (linear)

path of Riemannian metrics in the conformal class of g, for |s| sufficiently small.

Corollary 3.4. Let (M, g) be a Riemannian manifold with secg ≥ 0, and let X, Y ∈

TpM be g-orthonormal vectors that span a flat plane, i.e., secg(X ∧Y ) = 0. Consider

the first-order conformal deformation of g given by (3.1) with h = φ g. Then, the

first variation of secgs(X ∧ Y ) is given by

d

ds
secgs(X ∧ Y )

∣∣∣
s=0

= −1
2

Hessφ(X,X)− 1
2

Hessφ(Y, Y ). (3.15)

Proof. We apply Corollary 3.3 with h = φ g. Using (3.6) and (3.7), it follows that

d

ds
secgs(X ∧ Y )

∣∣∣
s=0

= ∇X∇Y φ g(X, Y )− 1
2
∇X∇Xφ g(Y, Y )− 1

2
∇Y∇Y φ g(X,X)

= X(Y (φ)) g(X, Y )− 1
2
X(X(φ)) g(Y, Y )− 1

2
Y (Y (φ)) g(X,X)

= −1
2

Hessφ(X,X)− 1
2

Hessφ(Y, Y ),

since X and Y are local coordinate fields that extend the g-orthonormal vectors

X, Y ∈ TpM ; in particular, at p ∈ M , Hessφ(X,X) = X(X(φ)) − dφ(∇XX) =

X(X(φ)), and analogously Hessφ(Y, Y ) = Y (Y (φ)).
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3.3 First-order Lemma

In order to apply the above first variation formulas to improve curvature, we often

use the following auxiliary result:

Lemma 3.5. Let f : [0, S] × K → R be a smooth function, where S > 0 and K

is a compact subset of a manifold. Assume that f(0, x) ≥ 0 for all x ∈ K, and

∂f
∂s

(0, x) > 0 if f(0, x) = 0. Then there exists s∗ > 0 such that f(s, x) > 0 for all

x ∈ K and 0 < s < s∗.

Proof. Since f is smooth and K is compact, there exist ε1 > 0 and ε2 > 0 such that

∂f
∂s

(0, x) > ε2 if f(0, x) < ε1. In particular, we have that K = K1 ∪K2, where

K1 :=
{
x ∈ K : f(0, x) ≥ ε1

}
, and K2 :=

{
x ∈ K :

∂f

∂s
(0, x) ≥ ε2

}
. (3.16)

By continuity of f , there exists s1 > 0 such that f(s, x) ≥ 1
2
ε1 > 0 for all 0 < s < s1

and x ∈ K1. Setting

m := max
s∈[0,S]
x∈K

∣∣∣∣12 ∂2f

∂s2
(s, x)

∣∣∣∣ ,
we have, by the Taylor polynomial of f(s, x) at s = 0, that for all (s, x) ∈ [0, S]×K,

f(s, x) ≥ f(0, x) +
∂f

∂s
(0, x) s−ms2.

In particular, if x ∈ K2 and 0 < s < ε2/m, it follows that

f(s, x) ≥ ε2 s−ms2 > 0.

Thus, setting s2 := ε2/m and s∗ := min{s1, s2}, we have that f(s, x) > 0 for all

0 < s < s∗ and x ∈ K, concluding the proof.

In particular, we have the following tool to deform metrics with sec ≥ 0 into
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metrics with sec > 0, cf. Strake [94, §1.A].

Corollary 3.6. Let (M, g) be a compact Riemannian manifold with secg ≥ 0. Let gs

be a first-order deformation, such that d
ds

secgs(σ)
∣∣
s=0

> 0 for all flat planes σ, i.e.,

for all σ ∈ sec−1
g (0). Then, there exists s∗ > 0 such that secgs > 0 for all 0 < s < s∗.

Proof. Use Lemma 3.5 with f : [0, S]×Gr2TM → R, f(s, σ) := secgs(σ).

3.4 Obstructions to first-order deformations

We now discuss (several) obstructions to using the above tool. The following is

observed in Strake [94, §1.D].

Lemma 3.7. Let (M, g) be a Riemannian manifold with a totally geodesic immersed

submanifold i : M → M . Let gs = g + s h be a first-order deformation of g, and set

gs := i∗(gs). Then, for all X ∧ Y ∈ Gr2(TpM) and p ∈M ,

d

ds
secgs(X ∧ Y )

∣∣∣
s=0

=
d

ds
secgs(X ∧ Y )

∣∣∣
s=0

. (3.17)

Proof. Denote by IIs the second fundamental form of (M, gs) inside (M, gs) and con-

sider its first variation

IIs = II0 + s II′0 +O(s2).

Since (M, g) is totally geodesic in (M, g), we have that II0 = 0. Therefore,

〈IIs(X,X), IIs(Y, Y )
〉
gs

= g
(
IIs(X,X), IIs(Y, Y )

)
+ s h(IIs(X,X), IIs(Y, Y )

)
= g
(
II0(X,X), II0(Y, Y )

)
+ s g

(
II′0(X,X), II0(Y, Y )

)
+ s g

(
II0(X,X), II′0(Y, Y )

)
+ s h(II0(X,X), II0(Y, Y )) +O(s2)

= O(s2).
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and, analogously,
∥∥IIs(X, Y )

∥∥2

gs
= O(s2). Moreover, by (3.12), we also have

‖X ∧ Y ‖2
gs

= 1 + s
(
h(X,X) + h(Y, Y )

)
+O(s2).

Thus, by the Gauss equation (2.22), differentiating at s = 0 the expression

secgs(X ∧ Y )− secgs(X ∧ Y ) =

〈
IIs(X,X), IIs(Y, Y )

〉
gs
−
∥∥IIs(X, Y )

∥∥2

gs

‖X ∧ Y ‖2
gs

,

and using the above expansions, we obtain the desired conclusion (3.17).

Remark 3.8. The equality (3.17) can also be proved by comparing the first variations

of secgs(X ∧ Y ) and secgs(X ∧ Y ), as given in Proposition 3.2.

As an immediate consequence of Corollary 3.6 and Lemma 3.7, we have:

Corollary 3.9. Let (M, g) be a Riemannian manifold with secg ≥ 0 and a totally

geodesic immersed compact submanifold i : M →M . Let gs be a first-order deforma-

tion of g, such that d
ds

secgs(σ)
∣∣
s=0
≥ 0 for all σ ∈ sec−1

g (0) ⊂ Gr2TM . If M does not

have sec > 0, then d
ds

secgs(σ)
∣∣
s=0

= 0 for some σ ∈ sec−1
g (0).

In connection with the Hopf Problem I and the Local Hopf Problem I, let us

discuss deformations of a compact product manifold (M, g) =
(
M1 ×M2, g1 ⊕ g2

)
such that (Mi, gi), i = 1, 2, have secgi > 0. From (2.19), we have that the set of flat

planes sec−1
g (0) ⊂ Gr2TM coincides with the set of mixed planes.2 Since (Mi, gi) is

a compact Riemannian manifold, it admits at least one closed geodesic γi : S
1 →Mi,

see Jost [55, Thm. 7.11.4]. The product T := γ1(S1) × γ2(S1) is a totally geodesic

flat torus immersed in (M, g). Since a 2-torus does not satisfy sec > 0 by the Gauss-

Bonnet Theorem, it follows from Corollary 3.9 that no first-order deformation gs of

2At each p ∈M , this is simply the product Sp1M1 × Sp2M2 of the unit spheres SpiMi ⊂ TpiMi,
up to orientation.
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g can satisfy d
ds

secgs(σ)
∣∣
s=0

> 0 for all σ ∈ sec−1
g (0).3 Furthermore, it is possible to

show that the first variation of sectional curvature vanishes for all mixed planes, as

originally observed by Berger [9].

Proposition 3.10. Let (M, g) =
(
M1×M2, g1⊕g2

)
be a compact product Riemannian

manifold and let gs be a first-order deformation of its product metric g, such that

d
ds

secgs(σ)
∣∣
s=0
≥ 0 for all mixed planes σ ∈ Gr2TM . Then d

ds
secgs(σ)

∣∣
s=0

= 0 for all

mixed planes σ ∈ Gr2TM .

Proof. Let X, Y ∈ TpM be such that X∧Y ∈ Gr2(TpM) is a mixed plane, and assume

X2 = 0 and Y1 = 0. Identify X = X1 ∈ Tp1M1 ⊂ TpM and Y = Y2 ∈ Tp2M2 ⊂ TpM .

From (3.13),

0 ≤ d

ds
secgs(X ∧ Y )

∣∣∣
s=0

= ∇X∇Y h(X, Y )− 1
2
∇X∇Xh(Y, Y )− 1

2
∇Y∇Y h(X,X).

Taking a trace of the above inequality on X ∈ Tp1M1, that is, applying it to a

g1-orthonormal basis {ei} of Tp1M1 ⊂ TpM , and summing over i, we obtain

0 ≤ divM1(∇Y h)(Y ) + 1
2
∆M1h(Y, Y )− 1

2
∇Y∇Y trM1(h), (3.18)

where divM1 and ∆M1 respectively denote the divergence and Laplacian on (M1, g1),

which are identified with the corresponding operators on M1 × {p2} ⊂ M , and

trM1(h) =
∑

i h(ei, ei). Integrating (3.18) over the submanifold M1 × {p2}, since the

divergence terms on this closed manifold (M1, g1) have zero integral by the Stokes

Theorem, we have

0 ≤ −1
2

∫
M1×{p2}

∇Y∇Y trM1(h) = −1
2
∇Y∇Y

∫
M1×{p2}

trM1(h).

3This technique implies that the same conclusion holds if (M, g) is a compact symmetric space
of rank ≥ 2 with secg ≥ 0, since it also contains a totally geodesic flat torus, cf. Strake [94, §1.D].

28



Taking a trace of the above inequality on Y ∈ Tp2M2, it follows that

0 ≤ 1
2
∆M2

(∫
M1×{p2}

trM1(h)

)
. (3.19)

By the Maximum Principle, since (M2, g2) is a closed manifold, the inequality (3.19) is

an equality, and hence so are all the preceding inequalities, concluding the proof.

Remark 3.11. With regard to the Hopf Problem I and the Local Hopf Problem I, the

above results imply that there are no first-order deformations of product metrics g

on S2 × S2 that could yield a metric with sec > 0 via Corollary 3.6. Higher-order

deformations gs of such product metrics were found by Bourguignon, Deschamps and

Sentenac [19], with the property that, for all mixed planes σ ∈ Gr2

(
T (S2×S2)

)
, the

first nonzero derivative of secgs(σ) at s = 0 is positive. Although this implies that

secgs(σ) is an increasing function on a neighborhood of s = 0 for each fixed mixed

plane σ, this property is not sufficient to yield secgs > 0 for s > 0 sufficiently small.

In fact, there is no uniform control on all mixed planes, or, equivalently, on an open

neighborhood of sec−1
g (0) ⊂ Gr2TM , see [19, §5] and [94, p. 73]. Furthermore, such

metrics gs descend to RP 2×RP 2, which does not have sec > 0 by Synge’s Theorem,

see Petersen [75, Thm. 26, p. 172].

Notice also that, in order to generalize (3.17) to higher-order variations, one must

assume higher-order vanishing of IIs at s = 0. In particular, possessing a totally

geodesic submanifold that does not have sec > 0 is not necessarily an obstruction for

higher-order deformations to develop sec > 0. This can also be deduced by direct

inspection of the higher-order variations of sectional curvature, which can be found

in an earlier paper of Bourguignon, Deschamps and Sentenac [18].

Let us prove yet another obstruction to first-order variations developing sec > 0

via Corollary 3.6, due to Weinstein [103].
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Proposition 3.12. Let G be a compact Lie group that acts isometrically on a com-

pact Riemannian manifold (M, g) with secg ≥ 0. Assume that M does not admit

G-invariant Riemannian metrics with sec > 0. Then there are no first-order defor-

mations of g that have d
ds

secgs(σ)
∣∣
s=0

> 0 for all σ ∈ sec−1
g (0) ⊂ Gr2TM .

Proof. Let gs = g + s h be a first-order deformation of g, and consider the averaging

ĝs :=

∫
G

g∗(gs) dg,

where dg is the Haar measure on G. Clearly ĝs is G-invariant for all s ∈ R such that

gs is a metric. Note that ĝ0 = g, since the G-action on (M, g) is isometric, hence g is

G-invariant. Thus, we have that ĝs = g + s ĥ, where ĥ is obtained via the averaging

ĥ :=

∫
G

g∗(h) dg. (3.20)

For a fixed 2-plane σ ∈ Gr2TM , define

kσ : Met(M)→ R, kσ(g) := secg(σ),

where Met(M) ⊂ ∨2TM∗ is the open subset formed by Riemannian on M . By (3.20),

d

ds
secĝs(σ)

∣∣∣
s=0

= dkσ(g) ĥ = dkσ(g)

∫
G

g∗(h) dg =

∫
G

dkσ(g)g∗(h) dg

=

∫
G

g∗
(
dkσ(g)h

)
dg =

∫
G

g∗
(

d

ds
secgs(σ)

∣∣∣
s=0

)
dg.

Thus, if d
ds

secgs(σ)
∣∣
s=0

> 0 for all σ ∈ sec−1
g (0), then also d

ds
secĝs(σ)

∣∣
s=0

> 0 for all

σ ∈ sec−1
g (0), and, by Corollary 3.6, we would have G-invariant metrics ĝs on M with

secĝs > 0, contradicting the assumption that M has no such metrics.

Combining Proposition 3.12 with the celebrated result of Hsiang and Kleiner [52]
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and its recent strengthening by Grove and Wilking [45], we have the following:

Corollary 3.13. Let (M4, g) be a closed simply-connected Riemannian manifold with

secg ≥ 0, and assume (M4, g) admits an isometric circle action. Unless M is equiv-

ariantly diffeomorphic to S4 or CP 2, there are no first-order deformations gs of g

that have d
ds

secgs(σ)
∣∣
s=0

> 0 for all σ ∈ sec−1
g (0) ⊂ Gr2TM .

Proof. By the results cited above, the only closed simply-connected 4-manifolds that

admit a metric with sec > 0 invariant under a circle action are equivariantly diffeo-

morphic to S4 or CP 2, so the statement follows directly from Proposition 3.12.4

Together with Remark 3.11, we conclude that the only metrics g on S2×S2 with

secg ≥ 0 that are candidates to have a first-order deformation that yields metrics

with sec > 0 on S2 × S2 via Corollary 3.6 are not product metrics, and such that

(S2×S2, g) has finite isometry group. Although this is a generic subset of the metrics

with sec ≥ 0 on S2 × S2, this first-order approach to the Hopf Problem I (and the

Local Hopf Problem I) seems unlikely to produce further results by itself.

Remark 3.14. Under the above assumption that (S2 × S2, g) has secg ≥ 0 and finite

isometry group, Bourguignon, Deschamps and Sentenac [18] proved that there are no

real-analytic deformations gs of g for which there exists s∗ > 0 such that secgs > 0

for all 0 < s < s∗. However, we observe that this result alone does not solve the

Local Hopf Problem I for such a metric g. In other words, it does not exclude that

g ∈ Met(S2 × S2) is in the closure of the (possibly nonempty) subset of metrics on

S2 × S2 with sec > 0, as it is not clear whether all points at the boundary of this

subset can be reached as limits of real-analytic paths in the interior. Finally, we

4We should also remark that, by the same results, the only closed simply-connected 4-manifolds
that admit a metric with sec ≥ 0 invariant under a circle action are equivariantly diffeomorphic to

S4, CP 2, S2 × S2, CP 2#CP 2, or CP 2#CP
2
. Hence, Corollary 3.13 only yields obstructions to

first-order deformations of metrics with sec ≥ 0 to sec > 0 on S2 × S2, CP 2#CP 2 and CP 2#CP
2
.
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remark that the result in [18] uses the absence of Killing fields on (S2 × S2, g) in a

crucial way, and hence does not apply to the standard product metric.

Despite the above obstructions to first-order deformations from sec ≥ 0 to sec > 0,

Corollary 3.6 was successfully used by Strake [95, Thm. 3.4] to prove the following:

Theorem 3.15. Let (M, g) be a complete Riemannian manifold with secg ≥ 0, and

let A ⊂M be a connected, locally convex, compact subset with nonempty interior and

nonempty boundary. Assume that the only points p ∈M that support flat planes are

contained in the interior of A, that is, π
(

sec−1
g (0)

)
⊂ intA, where π : Gr2TM →

M is the bundle projection. Then g admits a first-order deformation gs such that

d
ds

secgs(σ)
∣∣
s=0

> 0 for all σ ∈ sec−1
g (0). In particular,5 M satisfies sec > 0.

5Recall Corollary 3.6.
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CHAPTER 4

CHEEGER DEFORMATION

A Cheeger deformation of a Riemannian manifold (M, g) consists of rescaling the

metric g in the directions tangent to the orbits of an isometric group action. This

method is inspired by the construction of Berger spheres,1 in which the round metric

on the sphere S2n+1 is rescaled by λ in the direction of the fibers of the Hopf bundle

S1 → S2n+1 → CP n, yielding a 1-parameter family of metrics on S2n+1. Recall that

this is a principal S1-bundle, so the Hopf fibers are orbits of the isometric circle

action on S2n+1 whose orbit space is CP n. The terminology is due to the work of

Cheeger [23], who applied this technique to construct metrics with sec ≥ 0 on the

connected sum of any two compact rank one symmetric spaces. Cheeger deformations

were systematically studied by Müter [72], and a summary of his results is provided

in Ziller [111, 112]. In this section, we discuss some of these key results, following the

approach in the previous references as well as Alexandrino and Bettiol [2, §6.1].

4.1 Construction of a Cheeger deformation

Let G be a compact Lie group that acts isometrically on the Riemannian manifold

(M, g), and fix a bi-invariant metric Q on G. Endowing M×G with the product metric

g⊕ 1
t
Q, where t > 0, there is a free isometric G-action on M × G given by:

h · (p, g) := (h p, h g), p ∈M, g, h ∈ G. (4.1)

1See Sections 10.2, 10.3, and 10.4 for details, in particular Proposition 10.7.
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The orbit space (M×G)/G of this action is easily seen to be diffeomorphic to M , since

it is the associated bundle M → M ×G G → {Id} to the trivial principal G-bundle

G→ G→ {Id}. The quotient map can be explicitly computed to be the submersion:

ρ : M × G→M, ρ(p, g) = g−1p. (4.2)

Since the G-action (4.1) is free and isometric, there is a unique Riemannian metric

gt on M such that ρ :
(
M × G, g⊕ 1

t
Q
)
→ (M, gt) is a Riemannian submersion. The

family of metrics gt is called the Cheeger deformation of g with respect to the G-action.

We remark that, as t↘ 0, the metrics gt converge to g0 = g, see Proposition 4.2.

The original G-action on (M, g) remains isometric on the Cheeger deformed man-

ifold (M, gt), t > 0. Indeed, the isometric G-action on
(
M × G, g⊕ 1

t
Q
)

given by

k ? (p, g) :=
(
p, g k−1

)
, p ∈M, g, k ∈ G (4.3)

commutes with (4.1), and hence descends to an isometric G-action on the correspond-

ing orbit space (M, gt). As k ρ(p, g) = k g−1 p = ρ(k ? (p, g)), the G-action induced

by (4.3) coincides with the original G-action on M .

For each p ∈ M , we denote by Gp := {g ∈ G : g p = p} its isotropy group and by

gp the Lie algebra of Gp, which is a subalgebra of the Lie algebra g of G. Let mp be

the Q-orthogonal complement of gp inside g, so that g = gp ⊕ mp is a Q-orthogonal

splitting, and identify mp with the tangent space TpG(p) to the G-orbit through p via

action fields, i.e., we identify each X ∈ mp with

X∗p =
d

ds
exp(sX) p

∣∣∣
s=0
∈ TpG(p). (4.4)
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This defines a g-orthogonal splitting of TpM into vertical and horizontal spaces,

Vp := TpG(p) = {X∗p : X ∈ mp} and Hp := {X ∈ TpM : g(X,Vp) = 0}, (4.5)

and TpM = Vp ⊕ Hp remains gt-orthogonal for all t > 0. For X ∈ TpM , we write

X = XV +XH, where XV and XH are its vertical and horizontal components.

Remark 4.1. The restriction of the quotient map π : M →M/G to the open and dense

subset Mprinc ⊂ M of points that lie in principal orbits2 is a smooth Riemannian

submersion, and Vp and Hp are its vertical and horizontal spaces (2.23).

For each t ≥ 0, there is a Q-symmetric automorphism Pt : mp → mp such that

Q(Pt(X), Y ) = gt(X
∗
p , Y

∗
p ), X, Y ∈ mp. (4.6)

Furthermore, let Ct : TpM → TpM be the g-symmetric automorphism such that

g(Ct(X), Y ) = gt(X, Y ), X, Y ∈ TpM. (4.7)

In order to describe how the metrics gt evolves compared to the original metric

g, we explicitly compute the automorphisms Ct, following Müter [72, Satz 3.3] and

Ziller [111, Prop. 1.1].

Proposition 4.2. The automorphisms Pt : mp → mp and Ct : TpM → TpM for t ≥ 0

are determined by P0 in the following way:

Pt(X) = (P−1
0 + t Id)−1(X) = P0 (Id +tP0)−1(X), X ∈ mp,

Ct(X) =
(
(Id +tP0)−1(Xm)

)∗
p

+XH, X ∈ TpM,

(4.8)

2A G-orbit G(p) is principal if the corresponding isotropy group Gp is the smallest possible (up
to conjugacy), see, e.g., Alexandrino and Bettiol [2, §3.4].
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where Xm is the unique vector in mp such that (Xm)∗p = XV . In other words, using

the identification via action fields, Ct(X) = (Id +tP0)−1(XV) +XH for all X ∈ TpM .

Proof. The differential dρ(p, e) : TpM ⊕ g→ TpM of (4.2) satisfies

dρ(p, e)(X∗, Y ) = X∗p − Y ∗p , X, Y ∈ g. (4.9)

The vertical space3 at (p, e) for the Riemannian submersion ρ is formed by the pairs

(Z∗, Z) ∈ TpM ⊕ g. Thus, the vector (X∗, Y ) ∈ TpM ⊕ g is
(
g⊕ 1

t
Q
)
-orthogonal to

all pairs (Z∗, Z), and hence horizontal for ρ, if and only if for all Z ∈ g,

0 = g(X∗, Z∗) + 1
t
Q(Y, Z) = Q(P0Xm, Z) +Q(1

t
Y, Z) = Q

(
P0Xm + 1

t
Y, Z

)
,

that is, Y = −tP0Xm. Here, for X ∈ g, we denote by Xm the component of X in mp.

In particular, the horizontal lift with respect to the Riemannian submersion ρ of the

action field X∗ ∈ TpM is given by (W ∗,−tP0Wm) ∈ TpM ⊕ g where W ∈ g satisfies

X∗ = dρ(p, e)(W ∗,−tP0Wm). Using (4.9), this becomes X∗p = W ∗
p + (tP0Wm)∗p =(

(Id +tP0)Wm

)∗
p
, to which W = (Id +tP0)−1X ∈ m is clearly a solution. Therefore,

the horizontal lift of X∗ ∈ TpM is given by

X∗ =
((

(Id +tP0)−1X
)∗
,−tP0(Id +tP0)−1X

)
∈ TpM ⊕ g. (4.10)

Since P0(Id +tP0)−1 = P0

(
P0(P−1

0 + t Id)
)−1

= P0(P−1
0 + t Id)−1P−1

0 = (P−1
0 + t Id)−1,

the above horizontal lift (4.10) can be rewritten as:

X∗ =
((
P−1

0 (P−1
0 + t Id)−1X

)∗
p
,−t(P−1

0 + t Id)−1X
)
∈ TpM ⊕ g. (4.11)

3Recall that vertical/horizontal spaces for the submersion ρ : M × G → M are subspaces of
TpM ⊕ g, see (2.23), and vertical/horizontal spaces Vp and Hp in (4.5) are subspaces of TpM .
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Rewriting it in this way is convenient for the computations in the remainder of this

proof, see (4.13). Analogously, the horizontal lift of a vector V = V V + V H =

(Vm)∗p + V Hp ∈ TpM , is given by

V =
((
P−1

0 (P−1
0 + t Id)−1Vm

)∗
p

+ V Hp ,−t(P−1
0 + t Id)−1Vm

)
∈ TpM ⊕ g, (4.12)

since V is horizontal for ρ and dρ(p, e)V = V .

Since ρ :
(
M × G, g⊕ 1

t
Q
)
→ (M, gt) is a Riemannian submersion, the square

norm of X∗ ∈ TpM with respect to gt equals the square norm of its horizontal lift

(4.11) with respect to g⊕ 1
t
Q. Thus, we have that for all X ∈ m,

gt(X
∗
p , X

∗
p ) = g

((
P−1

0 (P−1
0 + t Id)−1X

)∗
p
,
(
P−1

0 (P−1
0 + t Id)−1X

)∗
p

)
+ 1

t
Q
(
t(P−1

0 + t Id)−1X, t(P−1
0 + t Id)−1X

)
= Q

(
(P−1

0 + t Id)−1X,P−1
0 (P−1

0 + t Id)−1X
)

+ tQ
(
(P−1

0 + t Id)−1X, (P−1
0 + t Id)−1X

)
= Q

(
(P−1

0 + t Id)−1X,P−1
0 (P−1

0 + t Id)−1X + t(P−1
0 + t Id)−1X

)
= Q

(
(P−1

0 + t Id)−1X,(P
−1
0 + t Id)(P−1

0 + t Id)−1X
)

= Q
(
(P−1

0 + t Id)−1X,X
)
,

(4.13)

which, according to the definition (4.6), proves that Pt = (P−1
0 +t Id)−1. The formula

for Ct follows immediately from the above and (4.7).

Remark 4.3. From (4.8), if P0 has eigenvalues λi, then Ct has eigenvalues 1
1+tλi

cor-

responding to the vertical directions and eigenvalues 1 in the horizontal directions.

Thus, as t grows, the metric gt shrinks in the direction of the orbits and remains

unchanged in the orthogonal directions. Note that the speed in which the orbits

shrink may vary with the orbit. As t ↗ +∞, the manifolds (M, gt) converge, in

Gromov-Hausdorff sense, to the orbit space M/G equipped with the orbital distance.
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Example 4.4. In the case of the S1-action on S2n+1 discussed in the beginning of this

section, mp is 1-dimensional for all p ∈ S2n+1 and the automorphism P0 : mp → mp

has the unique eigenvalue λ1 = 1. Thus, denoting by g0 = g the round metric,

we have that the Cheeger deformed metric gt is a Berger metric on S2n+1 given by

gt = 1
1+t

gV ⊕ gH, where g = gV ⊕ gH is the splitting of g into vertical and horizontal

parts for the Hopf bundle S1 → S2n+1 → CP n. In this case, all orbits are shrunk

at the same speed, since the action fields have constant norm. Note that (S2n+1, gt)

converges in Gromov-Hausdorf sense to CP n with its standard metric as t ↗ +∞.

Moreover, note that the metrics λ gV⊕gH, λ > 1, are not Cheeger deformations of g.

4.2 Evolution of sectional curvatures

As mentioned in the previous section, we are particularly interested in deforming

metrics with secg ≥ 0. Cheeger deformations are remarkably useful in this context

due to the following fundamental result.

Proposition 4.5. Let (M, g) be a Riemannian manifold with secg ≥ 0, and let gt be

a Cheeger deformation of g. Then secgt ≥ 0 for all t ≥ 0.

Proof. Recall that a Lie group (G, Q) with bi-invariant metric has secQ ≥ 0, see

(2.17). Thus, if secg ≥ 0, then M × G with the product metric g ⊕ 1
t
Q also has

sec ≥ 0. Since ρ :
(
M ×G, g⊕ 1

t
Q
)
→ (M, gt) is a Riemannian submersion, see (4.2),

it follows from the Gray-O’Neill formula (2.28) that secgt ≥ 0 for all t ≥ 0.

As observed by Müter [72], in order to study in further details how curvature

evolves along a Cheeger deformation, it is very convenient to define a reparametriza-

tion of Gr2TM using the automorphism Ct defined in (4.7) and computed in (4.8).

Given σ = X ∧ Y ∈ Gr2(TpM), set

C−1
t (σ) := C−1

t (X ∧ Y ) = C−1
t X ∧ C−1

t Y, t ≥ 0.
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The above is a 1-parameter family of bundle automorphisms of Gr2TM , called

Cheeger reparametrization, which considerably simplifies curvature computations, cf.

the horizontal lifts (4.12) and (4.18).

The following result, due to Müter [72, Satz 3.10] (see also Ziller [111, Prop. 1.3]),

completely determines how sectional curvatures evolve along a Cheeger deformation.

Proposition 4.6. Let (M, g) be a Riemannian manifold, and let X, Y ∈ TpM be

g-orthonormal vectors. Let gt be a Cheeger deformation of g, and set

kC(t) := gt
(
Rt(C

−1
t X, C−1

t Y )C−1
t X, C−1

t Y
)
, (4.14)

where Rt is the curvature tensor of gt, so that the sectional curvature of C−1
t (X∧Y ) is

secgt
(
C−1
t (X ∧ Y )

)
=

kC(t)∥∥C−1
t (X ∧ Y )

∥∥2

gt

. (4.15)

Then, denoting by Sg the unit sphere in the Lie algebra g with respect to the bi-

invariant metric Q and using the same notation as in Proposition 4.2, we have that:

kC(t) = secg(X ∧ Y ) +
t3

4

∥∥[P0Xm, P0 Ym]
∥∥2

Q

+
3t

4
max
Z∈Sg

(
d(Z∗)[(X, Y ) + tQ

([
P0Xm, P0 Ym

]
, Z
))2

t g(Z∗, Z∗) + 1
,

(4.16)

and

∥∥C−1
t (X ∧ Y )

∥∥2

gt
= t2

∥∥P0Xm ∧ P0 Ym
∥∥2

Q
+ t
(∥∥P0Xm

∥∥2

Q
+
∥∥P0 Ym

∥∥2

Q

)
+ 1. (4.17)

Proof. In order to explicitly compute kC(t), we use the Gray-O’Neill formula for the

defining Riemannian submersion ρ :
(
M×G, g⊕ 1

t
Q
)
→ (M, gt), see (4.2). From (4.8)
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and (4.10), if X ∈ TpM , the horizontal lift of C−1
t (X) =

(
(Id +tP0)(Xm)

)∗
p

+XH is

C−1
t (X) =

(
X,−tP0Xm

)
∈ TpM ⊕ g. (4.18)

Recall from the proof of Proposition 4.2 that the vertical space of the Riemannian

submersion ρ consists of the vectors (Z∗, Z) ∈ TpM ⊕ g, where Z ∈ g. In particular,

using (2.26), we have that the square norm of the tensor A applied to horizontal lifts

C−1
t (X) and C−1

t (Y ) with respect to
(
g⊕ 1

t
Q
)

is4

∥∥∥A
C−1
t (X)

C−1
t (Y )

∥∥∥2

= max
Z∈Sg

(
g⊕ 1

t
Q
)(
A
C−1
t (X)

C−1
t (Y ), (Z∗, Z)

)2(
g⊕ 1

t
Q
)(

(Z∗, Z), (Z∗, Z)
)

= max
Z∈Sg

(
1
2
d
(
(Z∗, Z)[

)(
C−1
t (X), C−1

t (Y )
))2

g(Z∗, Z∗) + 1
t
Q(Z,Z)

=
1

4
max
Z∈Sg

(
d(Z∗)[(X, Y ) + d(Z[)

(
− tP0Xm,−tP0 Ym

))2

g(Z∗, Z∗) + 1
t

=
t

4
max
Z∈Sg

(
d(Z∗)[(X, Y ) + tQ

([
P0Xm, P0 Ym

]
, Z
))2

t g(Z∗, Z∗) + 1
.

Thus, applying the Gray-O’Neill formula, see (2.27) and (2.28), to the Riemannian

submersion ρ, and using (2.16) and (4.18), one deduces the desired formula (4.16):

kC(t) = g(R(X, Y )X, Y ) +
1

4t

∥∥[tP0Xm, tP0 Ym]
∥∥2

Q
+ 3

∥∥∥A
C−1
t (X)

C−1
t (Y )

∥∥∥2

= secg(X ∧ Y ) +
t3

4

∥∥[P0Xm, P0 Ym]
∥∥2

Q

+
3t

4
max
Z∈Sg

(
d(Z∗)[(X, Y ) + tQ

([
P0Xm, P0 Ym

]
, Z
))2

t g(Z∗, Z∗) + 1
.

4Here, we are using the elementary fact that, in a vector space V with inner product 〈·, ·〉, one can
write ‖v‖2 = max

w∈SV

〈v, w〉2 where SV is the unit sphere of V . The advantage of expressing this term

in such way is that it allows to use (2.26), which provides a tensorial expression on X,Y ∈ TpM ,
without resorting to local extensions of these vectors.
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Finally, formula (4.17) follows by applying (4.6), (4.7) and (4.8),

∥∥C−1
t (X ∧ Y )

∥∥2

gt
= gt(C

−1
t X,C−1

t X) gt(C
−1
t Y,C−1

t Y )− gt(C
−1
t X,C−1

t Y )2

= g(X,C−1
t X) g(Y,C−1

t Y )− g(X,C−1
t Y )2

=
(
1 + t

∥∥P0Xm

∥∥2

Q

)(
1 + t

∥∥P0 Ym
∥∥2

Q

)
−
(
tQ(P0Xm, P0 Ym)

)2

= t2
∥∥P0Xm ∧ P0 Ym

∥∥2

Q
+ t
(∥∥P0Xm

∥∥2

Q
+
∥∥P0 Ym

∥∥2

Q

)
+ 1.

With (4.16) and (4.17), one completely determines secgt
(
C−1
t (X∧Y )

)
, see (4.15).

Remark 4.7. Note that Proposition 4.5 also follows by direct inspection of (4.16).

Corollary 4.8. Let (M, g) be a Riemannian manifold with secg ≥ 0, and let gt be

a Cheeger deformation of g. If X, Y ∈ TpM are g-orthonormal vectors such that

[P0Xm, P0 Ym] 6= 0, then secgt
(
C−1
t (X ∧ Y )

)
> 0 for all t > 0. In particular, if

G = SO(3) or G = SU(2) and the vertical projection5 of X ∧ Y ∈ Gr2(TpM) is

2-dimensional, then secgt
(
C−1
t (X ∧ Y )

)
> 0 for all t > 0.

Proof. If [P0Xm, P0 Ym] 6= 0, then kC(t) > 0 for all t > 0 by Proposition 4.6, so

secgt
(
C−1
t (X ∧ Y )

)
> 0 for all t > 0. Moreover, if G = SO(3) or G = SU(2), then

secQ > 0 and hence [P0Xm, P0 Ym] 6= 0 whenever Xm 6= 0 and Ym 6= 0, see (2.17).

Remark 4.9. More generally, it follows from (2.17) that for any compact Lie group

(G, Q), we have [P0Xm, P0 Ym] 6= 0 if and only if secQ
(
P0Xm ∧ P0 Ym

)
> 0.

4.3 First-order properties

In the last section of this chapter, we analyze Cheeger deformations from the

first-order viewpoint of Chapter 3.

5By vertical projection of X ∧ Y ∈ Gr2(TpM) we mean the projection onto TpG(p) ⊂ TpM .
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Let (M, g) be a Riemannian manifold with secg ≥ 0 and let gt be a Cheeger

deformation of g. By Proposition 4.5, if σ ∈ sec−1
g (0) is a flat plane, then secgt(σ) ≥ 0

for all t ≥ 0, and an explicit formula for secgt
(
C−1
t (σ)

)
is given in Proposition 4.6.

This formula can be used to compute the first variation of secgt(σ), without the

Cheeger reparametrization Ct, since σ has extremal curvature. More precisely, since

secg ≥ 0 and secg(σ) = 0 is a minimum, it follows that that σ is a critical point of

secg : Gr2TM → R, i.e., d(secg)(σ) = 0. Thus, by the chain rule,

d

dt
secgt

(
C−1
t (σ)

)∣∣∣
t=0

=
d

dt
secgt(σ)

∣∣∣
t=0

+ d(secg)(σ)σ′

=
d

dt
secgt(σ)

∣∣∣
t=0
,

where σ′ is the first variation of C−1
t (σ) at t = 0, that is, C−1

t (σ) = σ + t σ′ + O(t2)

in ∧2TM . Furthermore, we can compute the above first variation directly from the

unnormalized curvature kC(t), since secg(σ) = 0 and hence by (4.15),

k′C(0) =
d

dt

∥∥C−1
t (σ)

∥∥2

gt

∣∣∣
t=0

secg(σ) + ‖σ‖2
g

d

dt
secgt

(
C−1
t (σ)

)∣∣∣
t=0

=
d

dt
secgt

(
C−1
t (σ)

)∣∣∣
t=0
.

Thus, altogether, we have d
dt

secgt(σ)
∣∣
t=0

= k′C(0).

Let X, Y ∈ TpM be g-orthonormal vectors such that σ = X ∧Y , and differentiate

(4.16) at t = 0 to obtain

d

dt
secgt(σ)

∣∣∣
t=0

= k′C(0) = 3
4

max
Z∈Sg

d(Z∗)[(X, Y )2. (4.19)

Notice that d
dt

secgt(σ)
∣∣
t=0
≥ 0, and d

dt
secgt(σ)

∣∣
t=0

= 0 if and only if d(Z∗)[(X, Y ) = 0

for all Z ∈ g, in which case (4.16) simplifies to

kC(t) =
t3

4

∥∥[P0Xm, P0 Ym]
∥∥2

Q
+

3t3

4
max
Z∈Sg

Q
([
P0Xm, P0 Ym

]
, Z
)2

t g(Z∗, Z∗) + 1
. (4.20)
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In particular, if d
dt

secgt(σ)
∣∣
t=0

= 0, then (4.20) implies that either secgt
(
C−1
t (σ)

)
> 0

for all t > 0, or secgt
(
C−1
t (σ)

)
= 0 for all t > 0; according to [P0Xm, P0 Ym] 6= 0 or

[P0Xm, P0 Ym] = 0. Notice also that if d
dt

secgt(σ)
∣∣
t=0

= k′C(0) = 0, then by (4.20),

k′′C(0) = 0,

k′′′C (0) =
3

2

∥∥[P0Xm, P0 Ym]
∥∥2

Q
+

9

2
max
Z∈Sg

Q
([
P0Xm, P0 Ym

]
, Z
)2

= 6
∥∥[P0Xm, P0 Ym]

∥∥2

Q
,

(4.21)

cf. Müter [72, Satz 4.9] and Ziller [111, Cor. 1.4].

Remark 4.10. By the above observations, the 2-forms d(Z∗)[ ∈ ∧2TM , with Z ∈ g,

play a fundamental role in the study of kC(t) and secgt
(
C−1
t (σ)

)
. Note that, since Z∗

is a Killing vector field, denoting by X, Y ∈ TM local coordinate fields that extend

X, Y ∈ TpM , we have from (3.6) that

d(Z∗)[(X, Y ) = X
(
g(Z∗, Y )

)
− Y

(
g(Z∗, X)

)
= g(∇XZ

∗, Y )− g(∇YZ
∗, X)

= 2 g(∇XZ
∗, Y ).

(4.22)

In particular, if p ∈Mprinc, see Remark 4.1, then by (2.24) and (2.26),

d(Z∗)[(X, Y ) =


−2 g(AXY, Z

∗
p), if X, Y ∈ Hp,

−2 g(TXY, Z
∗
p) = 2g

(
IIp(X,Z

∗
p), Y

)
, if X ∈ Vp, Y ∈ Hp,

Q
(
[P0Xm, Y ] + [X,P0 Ym] + P0 [Xm, Ym], Z

)
, if X, Y ∈ Vp,

where T and A are the tensors of the Riemannian submersion π : Mprinc →Mprinc/G,

and IIp is the second fundamental form of the orbit G(p), see Müter [72, Lemma 4.15]

or Ziller [111, Prop. 1.6] for details.

As discussed in Section 3.4, the presence of totally geodesic immersed flat tori is
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a first-order obstruction to deforming metrics with sec ≥ 0 to sec > 0. From the

above computation (4.19) of the first variation of sectional curvature for a Cheeger

deformation, one deduces the following obstruction, cf. Ziller [111, Cor. 1.5].

Proposition 4.11. Let (M, g) be a Riemannian manifold with secg ≥ 0, and gt be a

Cheeger deformation of g. If σ ∈ Gr2TM is tangent to a totally geodesic flat torus

in (M, g) and σ contains a horizontal direction, then secgt
(
C−1
t (σ)

)
= 0 for all t ≥ 0.

Proof. Let i : T → M be the totally geodesic flat torus in (M, g), and let e1, e2 be a

global orthonormal frame on (T, i∗g). Define vector fields X and Y along i : T →M

by setting X(p) := di(p)e1 and Y (p) := di(p)e2 for all p ∈ T . From (4.19) and

Lemma 3.7, the function kC(t) defined as the unnormalized gt-sectional curvature of

C−1
t (X ∧ Y ) satisfies

k′C(0) =
d

dt
secgt(X ∧ Y )

∣∣∣
t=0

=
d

dt
seci∗gt(e1 ∧ e2)

∣∣∣
t=0
. (4.23)

On the other hand, by the Gauss-Bonnet Theorem, for all t ≥ 0,

∫
T

seci∗gt(e1 ∧ e2) voli∗gt = 2πχ(T ) = 0.

Thus, differentiating the above at t = 0 and using (4.23), we have

0 =
d

dt

∫
T

seci∗gt(e1 ∧ e2) voli∗gt

∣∣∣
t=0

=

∫
T

d

dt
seci∗gt(e1 ∧ e2)

∣∣∣
t=0

voli∗g +

∫
T

seci∗g(e1 ∧ e2)
d

dt
voli∗gt

∣∣∣
t=0

=

∫
T

d

dt
seci∗gt(e1 ∧ e2)

∣∣∣
t=0

voli∗g

=

∫
T

k′C(0) voli∗g.

Since the above integrand k′C(0) is nonnegative by (4.19), we have that k′C(0) = 0

on all of T . In particular, if σ = X ∧ Y contains a horizontal direction, then either

44



Xm = 0 or Ym = 0, hence [P0Xm, P0 Ym] = 0. Thus, it follows from (4.20) that for all

t ≥ 0 we have kC(t) = 0 and hence secgt
(
C−1
t (σ)

)
= 0.

We conclude this section computing the first variation of a Cheeger deformation gt,

that combined with the first variation formula (3.13), can be used to reobtain (4.19).

Proposition 4.12. Let (M, g) be a Riemannian manifold and gt be a Cheeger defor-

mation of g with respect to a G-action on M . Let {Zi}, 1 ≤ i ≤ n, be a Q-orthonormal

basis of g. Then gt = g + t h +O(t2), where h = −
∑n

i=1(Z∗i )[ ⊗ (Z∗i )[ ∈ ∨2TM∗.

Proof. From (4.8), we have that given X ∈ TpM , the first variation of Ct(X) is

d
dt
Ct(X)

∣∣
t=0

= d
dt

(
(Id +tP0)−1(Xm)∗p +XH

)∣∣
t=0

=
(

d
dt

(Id +tP0)−1(Xm)
∣∣
t=0

)∗
p

= (−P0Xm)∗p.

(4.24)

Thus, if X, Y ∈ TpM , we have from the above, (4.6) and (4.7) that

d
dt
gt(X, Y )

∣∣
t=0

= d
dt
g(Ct(X), Y )

∣∣
t=0

= g
(
(−P0Xm)∗p, Y

)
= −Q(P0Xm, P0 Ym)

= −
∑n

i=1 Q(P0Xm, Zi)Q(P0 Ym, Zi)

= −
∑n

i=1 g(X,Z∗i ) g(Y, Z∗i )

= −
(∑n

i=1(Z∗i )[ ⊗ (Z∗i )[
)

(X, Y ),

proving that h = −
∑n

i=1(Z∗i )[ ⊗ (Z∗i )[ is the first variation of gt.
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PART II

WEAKLY POSITIVE CURVATURE

46



CHAPTER 5

AVERAGING SECTIONAL CURVATURES

In this chapter, we discuss two weakly positive curvature conditions, defined in

terms of averages of pairs of sectional curvatures. Although we focus on averaging

only 2 sectional curvatures, we remark that notable results on curvature positiv-

ity conditions with averages of more sectional curvatures have been obtained by

Labbi [62, 63] and Wu [108], among others.

5.1 Distance between planes

Let V be a real vector space of finite dimension dimV = n endowed with an inner

product. We denote by Gr2(V ) the Grassmannian of 2-planes in V . In this section,

we compare three distance functions dist : Gr2(V ) × Gr2(V ) → R, that provide a

notion of aperture, or gap, between 2-planes in V and induce the standard topology

on Gr2(V ).

Let σ, σ′ ∈ Gr2(V ) and denote by Sσ and Sσ′ the great circles in the unit sphere

SV := {v ∈ V : ‖v‖ = 1}, obtained by intersecting it with the 2-planes σ and σ′,

respectively. The spherical distance between σ, σ′ ∈ Gr2(V ) is defined as:

distS(σ, σ′) := distH

(
Sσ, Sσ′

)
, (5.1)

where distH is the Hausdorff distance between closed subsets of the sphere SV . By
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the properties of the Hausdorff distance, we have

distS(σ, σ′) = max

{
max
v∈Sσ

dist(v, Sσ′), max
w∈Sσ′

dist(w, Sσ)

}
, (5.2)

where the distance between a point in SV and a great circle is measured with respect

to the round metric on SV . In particular, we have that 0 ≤ distS(σ, σ′) ≤ π
2
.

Remark 5.1. Suppose σ, σ′ ∈ Gr2(V ) achieve the above maximum distS(σ, σ′) = π
2
.

The linear subspace of V spanned by σ and σ′ has dimension 3 or 4, according to

whether the great circles Sσ, Sσ′ ⊂ SV intersect or not. In the first case, there are

orthonormal vectors e1, e2, e3 ∈ V such that σ = e1 ∧ e2 and σ′ = e1 ∧ e3, while in

the second case, there are orthonormal vectors e1, e2, e3, e4 ∈ V such that σ = e1 ∧ e2

and σ′ = e3 ∧ e4, that is, σ and σ′ are orthogonal.

Another definition of distance between σ, σ′ ∈ Gr2(V ) can be given in terms of

the operators of orthogonal projection onto these subspaces. Let Πσ : V → V be

the orthogonal projection operator onto σ ⊂ V , and analogously for σ′. The chordal

distance between σ, σ′ ∈ Gr2(V ) is defined as:

distC(σ, σ′) := ‖Πσ − Πσ′‖. (5.3)

Since orthogonal projection operators have norm ≤ 1 and the vectors Πσ(Id−Πσ′)v

and (Id−Πσ)Πσ′v are orthogonal for all v ∈ TpM , we have that

‖(Πσ − Πσ′)v‖2 =
∥∥(Πσ(Id−Πσ′)− (Id−Πσ)Πσ′

)
v
∥∥2

= ‖Πσ(Id−Πσ′)v‖2 + ‖(Id−Πσ)Πσ′v‖2

≤ ‖(Id−Πσ′)v‖2 + ‖Πσ′v‖2

≤ ‖v‖2,

(5.4)

which implies 0 ≤ distC(σ, σ′) ≤ 1. It is proved in Akhiezer and Glazman [1, §34]
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that (5.3) can also be written as

distC(σ, σ′) = max

{
max
v∈Sσ

inf
w∈σ′
‖v − w‖, max

w∈Sσ′
inf
v∈σ
‖v − w‖

}
. (5.5)

This allows us to compare distS and distC , using (5.2) and (5.5). Notice that the

first arguments are the maximum over v ∈ Sσ of the distance between v and σ′,

either measured in the spherical fashion dist(v, Sσ′) = min
w∈Sσ′

arccos |〈v, w〉|, i.e., taking

the length of the shortest path on SV that joins v to σ′; or in the chordal fashion

‖v − Πσ′(v)‖ = inf
w∈σ′
‖v − w‖, i.e., taking the length of the shortest straight line

segment that joins v to σ′. An analogous statement holds for the second arguments,

interchanging the roles of σ and σ′. This geometric interpretation is what motivates

the above terminology, and it also implies

distC(σ, σ′) = sin
(
distS(σ, σ′)

)
, (5.6)

proving that distS and distC are, in fact, equivalent in the above context.1

Remark 5.2. The maximum in (5.2) is achieved simultaneously by both expressions,

that is,

distS(σ, σ′) = max
v∈Sσ

dist(v, Sσ′) = max
w∈Sσ′

dist(w, Sσ) (5.7)

and analogously for the maximum in (5.5),

distC(σ, σ′) = max
v∈Sσ

inf
w∈σ′
‖v − w‖ = max

w∈Sσ′
inf
v∈σ
‖v − w‖. (5.8)

A proof of the above can be found in Morris [71, Lemma 3.2].

Remark 5.3. If σ, σ′ ∈ Gr2(V ) achieve the maximum distC(σ, σ′) = 1, then it follows

from (5.6) that the same conclusions as in Remark 5.1 are valid for σ and σ′.

1A detailed comparison of the distance functions distS and distC in more general contexts (such
as Banach spaces) can be found in Berkson [11], see also Kato [57, Chap. IV §2.1].
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Our last distance function in Gr2(V ) is obtained via the diffeomorphism

Gr2(V ) ∼=
O(n)

O(2)O(n− 2)
. (5.9)

In order to describe the distance function induced by the Riemannian metric on (5.9)

that makes it a symmetric space, we first discuss basic properties of the principal

angles between two subspaces, see [40, 54, 73] for details.

Definition 5.4. Given σ, σ′ ∈ Gr2(V ), the principal angles 0 ≤ θ1 ≤ θ2 ≤ π
2

between

σ and σ′ are respectively the smallest and the largest angle that a line in σ makes

with the plane σ′. In other words,

θ1 = arccos

(
max
v∈Sσ

max
w∈Sσ′

〈v, w〉
)

and θ2 = arccos

(
min
v∈Sσ

max
w∈Sσ′

〈v, w〉
)
. (5.10)

It is easy to see that interchanging the roles of σ and σ′ does not change these

angles. Clearly, θ1 = 0 if and only if σ and σ′ intersect nontrivially, and θ1 = θ2 = 0 if

and only if σ = σ′. Furthermore, θ1 = θ2 = π
2

if and only if σ and σ′ are orthogonal,

that is, σ′ ⊂ σ⊥, where σ⊥ is the complement of σ in V such that σ ⊕ σ⊥ = V is an

orthogonal direct sum. More generally, if the principal angles between σ, σ′ ∈ Gr2(V )

are θ1 and θ2, then there are orthonormal vectors e1, e2, e3, e4 ∈ V such that σ = e1∧e2

and σ′ = (cos θ1e1+sin θ1e3)∧(cos θ2e2+sin θ2e4). In particular, 〈σ, σ′〉 = cos θ1 cos θ2.

Remark 5.5. A useful alternative characterization of principal angles θ1 and θ2 be-

tween σ and σ′ is that cos θ1 and cos θ2 are the singular values2 of the operator

(Πσ′)|σ : σ → σ′ of orthogonal projection of σ onto σ′. Direct computations show that

the principal angles between σ, σ′ ∈ Gr2(V ) are θi = arccos
√
λi, where λ1 ≥ λ2 ≥ 0

are the roots of the polynomial3 Pσ,σ′(λ) = λ2−
(
1−‖σ ∧ σ′‖2 + 〈σ, σ′〉2

)
λ+ 〈σ, σ′〉2.

2Recall that the singular values of an operator A : V → V are the eigenvalues of
√
A∗A.

3In particular, notice that θ1 = θ2 = 0 if and only if λ1 = λ2 = 1, which is equivalent to
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The symmetric space distance between σ, σ′ ∈ Gr2(V ) is defined as:

distSS(σ, σ′) =
√
θ2

1 + θ2
2, (5.11)

where θi are the principal angles between σ and σ′. This is the length of the short-

est geodesic in (5.9) that joins σ and σ′, which can be computed to be γ(t) =(
cos(tθ1)e1 + sin(tθ1)e3

)
∧
(
cos(tθ2)e2 + sin(tθ2)e4

)
in terms of the above orthonormal

vectors e1, e2, e3, e4 ∈ V such that γ(0) = σ and γ(1) = σ′.

Remark 5.6. From (5.7) and (5.10), it follows that the spherical distance between

σ, σ′ ∈ Gr2(V ) is precisely the largest principal angle between these planes, i.e.,

distS(σ, σ′) = θ2. In particular, by (5.6), the chordal distance is distC(σ, σ′) = sin θ2.

Remark 5.7. From the above discussion, σ, σ′ ∈ Gr2(V ) achieve the maximum dis-

tance distSS(σ, σ′) = π√
2

if and only if σ and σ′ are orthogonal. Thus, there is more

information about planes at maximal distance with respect to distSS than planes at

maximal distance with respect to distS or distC , see Remarks 5.1 and 5.3.

5.2 The family of conditions secθ > 0

Let M be a manifold and fix a fiberwise distance function dist on Gr2TM , that

is, a distance function on each Gr2(TpM) that varies continuously with p ∈ M . For

instance, endowing M with a Riemannian metric g, one may use local orthonormal

frames to construct smoothly varying linear isometries ιp : V → TpM , and define a

distance function on Gr2(TpM) by setting

dist(σ, σ′) := distGr2(V )

(
ι−1
p (σ), ι−1

p (σ′)
)
, for all σ, σ′ ∈ Gr2(TpM), (5.12)

〈σ, σ′〉 = 1 and ‖σ ∧ σ′‖ = 0, that is, σ = σ′. Similarly, θ1 = θ2 = π
2 if and only if λ1 = λ2 = 0,

which is equivalent to 〈σ, σ′〉 = 0 and ‖σ ∧ σ′‖ = 1, that is, σ and σ′ are orthogonal.
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where distGr2(V ) is a distance function on Gr2(V ), e.g., one of (5.1), (5.3) or (5.11).

Given a Riemannian metric g on M and θ > 0, we define:

secθg : Gr2TM → R, secθg(σ) := min
σ′∈Gr2(TpM)
dist(σ,σ′)≥θ

1
2

(
secg(σ) + secg(σ

′)
)
. (5.13)

Note secθg > 0 means that, at every point p ∈M , the average of sectional curvatures

of any 2-planes tangent at p that are at least θ apart from each other is positive. One

can intuitively think of θ as a lower bound for the aperture, or gap, between the planes

considered in the averaging, see the previous section for geometric interpretations.

Clearly, if secg > 0, then secθg > 0 for any θ > 0. Moreover, if θ1 < θ2, then

secθ1g > 0 implies secθ2g > 0. Thus, secθg > 0 is a family of curvature positivity

conditions parametrized by θ > 0, that becomes stronger as θ ↘ 0. At the limit

θ = 0, the condition secθg > 0 is equivalent to secg > 0, since:

secg(σ) = 1
2

(
secg(σ) + secg(σ)

)
≥ min
σ′∈Gr2(TpM)
dist(σ,σ′)≥0

1
2

(
secg(σ) + secg(σ

′)
)

= sec0
g(σ).

In the setting of Section 2.3, secθg > 0 are pointwise curvature conditions if dist is of

the form (5.12), since secθg > 0 corresponds to the open O(n)-invariant convex cone

Csecθ>0 :=

R ∈ Sb(∧2V ) :
〈R(σ), σ〉+ 〈R(σ′), σ′〉 > 0

for all σ, σ′ ∈ Gr2(V ) such that distGr2(V )(σ, σ
′) ≥ θ

.
5.3 The condition sec0+ > 0

Using the above family of conditions secθ > 0 without fixing the metric g, consider

the following curvature positivity condition on M regarding the limit θ ↘ 0.

Definition 5.8. A manifold M satisfies sec0+ > 0 if, for all θ > 0, there exists a

Riemannian metric gθ on M with secθ
gθ
> 0, and gθ converges to a metric g0 as θ ↘ 0.
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Remark 5.9. The notion of convergence gθ → g0 in the above definition can be

chosen, e.g., as convergence in the Ck-topology for some k ≥ 2, and is only explicitly

mentioned if necessary. Note that the choice of fiberwise distance function on Gr2TM

is not very important in this context, since we are interested in θ ↘ 0, and also note

that sec0+ > 0 is not a pointwise curvature condition in the sense of Section 2.3.

The interest in sec0+ > 0 is mainly due to its relation with sec > 0 and Ric > 0:

Proposition 5.10. If M satisfies sec > 0, then it also satisfies sec0+ > 0. If M is

compact and satisfies sec0+ > 0, then it also satisfies Ric > 0 and sec ≥ 0.

Proof. If M admits a Riemannian metric g with secg > 0, then setting gθ = g for all

θ > 0 we have that M satisfies sec0+ > 0.

Given a Riemannian metric g on a compact manifold M , we define:

θ0(g) := min
p∈M

min
v∈SpM

min
ei,ej∈SpM,
g(v,ei)=0,
g(ei,ej)=δij

dist
(
v ∧ ei, v ∧ ej

)
. (5.14)

The above is clearly a positive number, that depends continuously on g. Moreover,

if secθg > 0 for some 0 < θ ≤ θ0(g), then Ricg > 0. In fact, Ricg(v) > 0 for any

direction v ∈ TM , since, by (2.9) and (5.14), this is a sum of sectional curvatures

whose pairwise average is positive.

If M satisfies sec0+ > 0, set G := {gθ : θ ∈ [0, 1]}, and θ∗ := min{θ0(g) : g ∈ G}.

Since θ0(g) depends continuously on g and G is compact, we have that θ∗ > 0. By

the above, for any 0 < θ ≤ θ∗, we have Ricgθ > 0. Therefore, M satisfies Ric > 0.

Moreover, we claim that secg0 ≥ 0 and hence M satisfies sec ≥ 0. In fact, given

σ ∈ Gr2(TpM), let θn be a sequence of positive numbers converging to 0, say θn = 1
n
,

and let σn ∈ Gr2(TpM) be a sequence such that dist(σ, σn) = θn. Then, we have:

0 < secθn
gθn

(σ) = min
σ′∈Gr2(TpM)
dist(σ,σ′)≥θn

1
2

(
secgθn (σ) + secgθn (σ′)

)
≤ 1

2

(
secgθn (σ) + secgθn (σn)

)
.
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As n→ +∞, the right-hand side of the above inequality converges to secg(σ), which

is hence a nonnegative number, concluding the proof.

By the above, on compact manifolds, sec0+ > 0 is an intermediate curvature

positivity condition between sec > 0 and Ric > 0, as well as sec > 0 and sec ≥ 0.

We remark that sec0+ > 0 is indeed intermediate, since there are compact manifolds

M that have Ric > 0 but do not have sec0+ > 0; and that have sec0+ > 0 but do

not have sec > 0. Namely, the connected sum #k(Sn × Sm), k ∈ N, has Ric > 0

by the work of Sha and Yang [89], and, for k sufficiently large, it does not have

sec ≥ 0 by the celebrated a priori bounds on Betti numbers of Gromov [41], see also

Petersen [75, Thm. 86, p. 357]. Thus, by Proposition 5.10, #k(Sn × Sm) does not

satisfy sec0+ > 0 for k sufficiently large. Moreover, it is proved in Corollary 6.6 that

RP 2 ×RP 2 satisfies sec0+ > 0, and it does not satisfy sec > 0 by Synge’s Theorem,

see Petersen [75, Thm. 26, p. 172].

5.4 The condition sec⊥ > 0

The range of θ > 0 for which secθg > 0 is a meaningful condition is between 0

and the diameter of the largest fiber of Gr2TM , according to the chosen fiberwise

distance. In the previous section, we explored the limit θ ↘ 0, and, in this section,

we discuss a curvature positivity condition related to the opposite limit. Differently

from the previous section, the choice of fiberwise distance function is very important

here. As observed in Remark 5.7, 2-planes σ, σ′ ∈ Gr2(V ) are at maximal distance

distSS(σ, σ′) = π√
2

with respect to the symmetric space distance (5.11) if and only if

they are orthogonal, that is, σ′ ⊂ σ⊥, while this is not necessarily the case if σ and σ′

are at maximal distance with respect to the distances (5.1) or (5.3). For this reason,

given a metric g on M , we use the symmetric space distance via (5.12) to define the
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biorthogonal curvature of σ ∈ Gr2(TpM) as sec⊥g (σ) := secθg(σ) with θ = π√
2
, that is,

sec⊥g (σ) := min
σ′∈Gr2(TpM)

σ′⊂σ⊥

1
2

(
secg(σ) + secg(σ

′)
)
. (5.15)

Note sec⊥g > 0 means that, at every point p ∈M , the average of sectional curvatures

of any 2-planes tangent at p that are orthogonal to each other is positive. Clearly,

this condition is vacuous4 if dimM ≤ 3, so we henceforth assume dimM ≥ 4.

In the setting of Section 2.3, sec⊥g > 0 is a pointwise curvature condition , corre-

sponding to the open O(n)-invariant convex cone

Csec⊥>0 :=

R ∈ Sb(∧2V ) :
〈R(σ), σ〉+ 〈R(σ′), σ′〉 > 0

for all σ, σ′ ∈ Gr2(V ) such that σ′ ⊂ σ⊥

, (5.16)

which is precisely the cone Csecθ>0, with distGr2(V ) = distSS and θ = π√
2
.

Definition 5.11. A manifold M satisfies sec⊥ > 0 if there exists a Riemannian

metric g on M with sec⊥g > 0.

Since the conditions secθ > 0 become weaker as θ grows, it is natural to expect

that the maximal possible θ yields a condition much weaker than sec > 0. Indeed,

while sec0+ > 0 is intermediate between sec > 0 and Ric > 0 (see Proposition 5.10),

we now verify that sec⊥ > 0 is intermediate between sec > 0 and scal > 0.

Proposition 5.12. If (M, g) has secg > 0, then it also has sec⊥g > 0. If M has

sec⊥g > 0, then it also has scalg > 0.

Proof. If a Riemannian metric g on M has secg > 0, then by definition (5.15) it clearly

has sec⊥g > 0. Moreover, if the metric g has sec⊥g > 0, then it also has scalg > 0,

4On 3-manifolds, there are no pairs of orthogonal 2-planes. However, requiring that averages of
sectional curvatures of 2-planes at maximal distance (with respect to (5.11)) is positive determines
an intermediate condition between sec > 0 and Ric > 0.
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since, by (2.10), scalg is a sum of sectional curvatures of pairwise orthogonal 2-planes.

Alternatively, note that Csec>0 ⊂ Csec⊥>0 ⊂ Cscal>0 := {R ∈ Sb(∧2V ) : trR > 0}.

Remark 5.13. There are manifolds that have sec⊥ > 0 but do not have Ric > 0, for

example Sn−1 × S1. The standard product metric g on Sn−1 × S1 has sec⊥g > 0,

since it has secg ≥ 0 and the only 2-planes with secg(σ) = 0 are mixed planes, i.e.,

those of the form σ = v ∧ ∂
∂θ

, where v is tangent to Sn−1 and ∂
∂θ

is tangent to S1. In

particular, if one of the two sectional curvatures in the average (5.15) vanishes, then

the other is positive, since it is the sectional curvature of a plane orthogonal to ∂
∂θ

,

hence tangent to Sn−1. On the other hand, Sn−1 × S1 does not satisfy Ric > 0 by

the Bonnet-Myers Theorem (see Petersen [75, p. 171]), since its fundamental group

π1(Sn−1 × S1) ∼= Z is infinite.

In Proposition 7.11, we prove that connected sums of manifolds with sec⊥ > 0 also

satisfy sec⊥ > 0. In particular, it follows that Mk = #k(Sn−1 × S1), k ∈ N, satisfy

sec⊥ > 0. Since π1(Mk) is the free group in k generators, the class of manifolds

that satisfy sec⊥ > 0 is much larger than that of manifolds that satisfy Ric > 0.

Furthermore, in Chapters 6 and 7, we prove that also #k(S2 × S2), k ∈ N, satisfy

sec⊥ > 0, see Remark 7.15.

Riemannian manifolds with sec⊥ > 0, particularly pinched biorthogonal curva-

ture, were first studied by Seaman [84–86]. The biorthogonal curvature of (M, g) is

said to be weakly 1
4
-pinched if there is a nonnegative function δ : M → R+ such that

δ
4
≤ sec⊥g (σ) ≤ δ, for all σ ∈ Gr2TM, (5.17)

and strictly 1
4
-pinched if at least one of the above inequalities is strict. The following

common feature with manifolds whose sectional curvature is 1
4
-pinched was observed

by Seaman [84–86], using the Berger inequalities for the curvature tensor.
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Proposition 5.14. Let (M, g) be a Riemannian manifold. If (M, g) has weakly

1
4
-pinched biorthogonal curvature, then it has nonnegative isotropic curvature. More-

over, if (M, g) has strictly 1
4
-pinched biorthogonal curvature, then it has positive

isotropic curvature.

Proof. Suppose (M, g) has weakly 1
4
-pinched biorthogonal curvature, i.e., satisfies

(5.17). Let σ ∈ Gr2(TpM)C be an isotropic 2-plane, and X, Y, Z,W ∈ TpM be

orthonormal vectors such that σ = (X+iY )∧(Z+iW ). From the Berger inequalities

for Rg, see Seaman [84, Prop. 2.7], [85, Prop. 1.1] or Karcher [56], it follows that

∣∣〈Rg(X, Y )Z,W 〉
∣∣ ≤ 2

3
(δ − δ

4
) = δ

2
. (5.18)

Thus, from (2.12) and (5.18), we have that

secCg (σ) = 2 sec⊥g (X ∧ Z) + 2 sec⊥g (X ∧W )− 2 〈Rg(X, Y )Z,W 〉

≥ δ − 2 〈Rg(X, Y )Z,W 〉

≥ 0,

(5.19)

hence (M, g) has nonnegative isotropic curvature. Similarly, if (M, g) has strictly

1
4
-pinched biorthogonal curvature, then (5.19) is strict and hence (M, g) has positive

isotropic curvature.

The following is a direct consequence of Proposition 5.14 and the recent extensions

of the classical work of Micallef and Moore [67] by Brendle and Schoen [20], using

the results of Böhm and Wilking [17].

Corollary 5.15. Let (M, g) be a simply-connected Riemannian manifold with strictly

1
4
-pinched biorthogonal curvature. Then M is diffeomorphic to a sphere.

Proposition 5.14 was also used by Seaman [84, 85] to study manifolds with weakly

1
4
-pinched biorthogonal curvature. Finally, the following was proved by Seaman [86,
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Thm. A], and independently by Micallef and Wang [68].

Theorem 5.16. Let M be an even-dimensional closed orientable manifold such that

b2(M) 6= 0. Suppose M admits a Riemannian metric g with nonnegative isotropic

curvature and sec⊥g > 0 at a point.5 Then M is simply-connected, b2(M) = 1 and

(M, g) is Kähler.

5.5 The condition sec⊥ > 0 in dimension 4

The condition sec⊥ > 0 is particularly interesting in the lowest possible dimension

where it is meaningful, dimM = 4. In this case, the orthogonal complement of any

2-plane σ ∈ Gr2(TpM) is another 2-plane σ⊥ ∈ Gr2(TpM). Thus, (5.15) is simply:

sec⊥g (σ) = 1
2

(
secg(σ) + secg(σ

⊥)
)
. (5.20)

A classification (up to homeomorphism) of closed simply-connected 4-manifolds with

sec⊥ > 0 is given in Chapter 7, see Theorem 7.1. In what follows, we recall previous

results in the literature related to 4-manifolds with sec⊥ > 0 and prove a new defor-

mation result for 4-manifolds with sec ≥ 0 and sec⊥ > 0 at a point (Proposition 5.19).

We begin by observing that, from Proposition 5.12, if a 4-manifold M satisfies

sec⊥ > 0, then M satisfies scal > 0 and hence its Seiberg-Witten invariants vanish,

see Moore [70] for details. Let (M, g) be a Riemannian 4-manifold and denote by

∗ : ∧2 TM → ∧2TM the Hodge star operator. Then σ⊥ = ∗σ and, since ∗ is self-

adjoint, the biorthogonal curvature sec⊥ coincides with the quadratic form

sec⊥g : Gr2TM → R, sec⊥g (σ) = 1
2
〈(Rg + ∗Rg∗)(σ), σ〉, (5.21)

cf. (2.7). Consider the decomposition ∧2TM = ∧2
+TM ⊕ ∧2

−TM into self-dual and

5That is, sec⊥g (σ) > 0 for all 2-planes σ ⊂ Tp0M tangent to M at a point p0 ∈M .
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anti-self-dual parts, i.e., into the eigenspaces of ∗ : ∧2TM → ∧2TM with eigenvalues

+1 and −1, respectively. The curvature operator Rg : ∧2 TM → ∧2TM decomposes

as

Rg =

W+
g +

scalg
12

Id Ric0
g(

Ric0
g

)t
W−

g +
scalg
12

Id

, (5.22)

where W±
g are self-dual and anti-self-dual parts of the Weyl tensor Wg, and Ric0

g :=

Ricg− scalg
4
g is the trace-free Ricci tensor, identified as Ric0

g : ∧2
− TM → ∧2

+TM , see

Besse [12, p. 51] for details. We recall the following result that follows from the above

decomposition (5.22), due to Singer and Thorpe [91, Thm. 1.3, 1.4].

Proposition 5.17. Let (M4, g) be a 4-manifold. The following are equivalent:

(i) (M4, g) is Einstein, that is, Ricg = λ g;

(ii) The curvature operator of (M4, g) commutes with ∗, that is, ∗Rg = Rg∗;

(iii) secg(σ) = sec⊥g (σ) for all σ ∈ Gr2TM .

Proof (Sketch). In order to prove that (i) and (ii) are equivalent, note that Ricg = λ g

if and only if Ric0
g = 0, which is equivalent to Rg and ∗ commuting by (5.22). If

(ii) holds, then Rg + ∗Rg∗ = 2Rg and hence (iii) follows from (5.21). Conversely,

if (iii) holds, then Rg − ∗Rg∗ has identically zero sectional curvature and satisfies

b(Rg − ∗Rg∗) = 0, from which Rg − ∗Rg∗ = 0 (see Lemma 8.1), hence (ii) holds.

In particular, Proposition 5.17 shows that the problem of classifying Einstein 4-

manifolds with sec > 0 is precisely the same as classifying Einstein 4-manifolds with

sec⊥ > 0. We recall that both the Hopf Problem I and the Local Hopf Problem I

regarding S2 × S2 are open even when restricted to Einstein metrics.6

6Partial results in this direction have been obtained by Gursky and LeBrun [48] and Yang [109].
The former implies that a closed oriented Einstein 4-manifold with sec ≥ 0 (or sec⊥ ≥ 0) and definite
intersection form (see Section 7.1 for details) is isometric to CP 2 with a multiple of its standard
metric. The latter implies that an Einstein 4-manifold with secg ≥ 0 (or sec⊥g ≥ 0), Ricg = g, and

sufficiently large sectional curvature (secg ≥ ε0 ∼= 0.1) is isometric to either S4, RP 4, or CP 2 with
a multiple of its standard metric.
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Note that, in terms of the decomposition ∧2TM = ∧2
+TM⊕∧2

−TM , the operator

1
2
(Rg + ∗Rg∗) whose quadratic form restricted to Gr2TM is sec⊥g , see (5.21), reads

1
2
(Rg + ∗Rg∗) =

W+
g +

scalg
12

Id 0

0 W−
g +

scalg
12

Id

. (5.23)

Since b(Rg) = 0, we have 0 = 〈Rg, ∗〉 = tr(Rg ∗) = tr(∗Rg ∗ ∗) = 〈∗Rg∗, ∗〉, so

also b(∗Rg∗) = 0, and hence 1
2
(Rg + ∗Rg∗) is an algebraic curvature operator, see

Sections 2.3 and 8.2 for details. Furthermore, it is an Einstein algebraic curvature

operator, since it clearly commutes with ∗.

Recently, 4-manifolds with sec⊥ > 0 have been studied by Bettiol [13], Costa [25],

Costa, Diógenes and Ribeiro [26], and Costa and Ribeiro [27]. A few remarks related

to the Hopf Problem I are made in Costa [25], where it is asked whether S2 × S2

satisfies sec⊥ > 0. This question was answered affirmatively in Bettiol [13], see also

Theorem 6.1 and Remark 6.3. Costa and Ribeiro [27, Thm. 1] proved the following:

Theorem 5.18. Let (M, g) be a closed simply-connected 4-manifold such that

sec⊥g ≥
scalg
24

> 0. (5.24)

Then (M, g) has nonnegative isotropic curvature, and is diffeomorphic to S4 or CP 2.

Proof (Sketch). Decomposing σ ∈ Gr2TM as σ = σ+ +σ− ∈ ∧2
+TM⊕∧2

−TM , where

‖σ±‖2 = 1
2
, cf. (6.5), we have from (5.21) and (5.23) that7

sec⊥g (σ) =
scalg
12

+ 〈W+
g (σ+), σ+〉+ 〈W−

g (σ−), σ−〉. (5.25)

Thus, from (5.24) and (5.25) it follows that
scalg

6
Id−Wg is positive-semidefinite.

This is well-known to imply that (M, g) has nonnegative isotropic curvature, see

7In particular, note that sec⊥g −
scalg
12 is a conformally invariant quantity.
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Micallef and Moore [67, p. 201]. If (M, g) has positive isotropic curvature, then M

is diffeomorphic to S4 by [67]. Else, by the work of Seshadri [88], either (M, g) is

locally symmetric or Kähler. Using (5.24) and results of Derdziński [29] and Micallef

and Wang [68], the conclusion that M is diffeomorphic to S4 or CP 2 follows.

We conclude this section with a new deformation result for closed 4-manifolds

with sec ≥ 0 and sec⊥ > 0 at a point, illustrating some of the techniques discussed

in Chapter 3.

Proposition 5.19. If (M4, g) is a closed 4-manifold with secg ≥ 0 and sec⊥g > 0 at

a point p0 ∈M , then M satisfies sec⊥ > 0.

Proof. In order to prove that M admits Riemannian metrics with sec⊥ > 0, we

exhibit a first-order conformal deformation gs of g such that sec⊥gs > 0 for all s > 0

sufficiently small. In particular, the metrics with sec⊥ > 0 (on all of M) can be

chosen arbitrarily close to g, and in the same conformal class.

Denote by π : Gr2TM → M the projection of the Grassmannian bundle of 2-

planes tangent to M , so that π−1(p) = Gr2(TpM) for all p ∈ M . By continuity

of sec⊥g : Gr2TM → R and compactness of π−1(p0), there exist ε > 0 and an open

neighborhood U of p0 ∈M , such that sec⊥g (σ) ≥ ε for all σ ∈ π−1(U). Let ψ : M → R

be a smooth function such that ψ(x) = 1 for all x ∈M\U and
∫
M
ψ = 0. By standard

elliptic PDE results, see, e.g., Aubin [4, Thm. 4.7], there exists a smooth function

φ : M → R such that ∆φ = ψ. Consider the first-order conformal deformation

gs := g + s h, with h := φ g, and set f : [0, S]×Gr2TM → R, f(s, σ) := sec⊥gs(σ).

Since secg ≥ 0, we have that f(0, σ) ≥ 0 for all σ ∈ Gr2TM . Furthermore, if

σ ∈ Gr2(TpM) is such that f(0, σ) = 0, then σ ∈ Gr2(TpM) for some p ∈M \U . Let

{ei} be a g-orthonormal basis of TpM , so that σ = e1 ∧ e2 and σ⊥ = e3 ∧ e4. From
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(5.20) and Corollary 3.4, we have that

∂f

∂s
(0, σ) =

d

ds

1

2

(
secgs(e1 ∧ e2) + secgs(e3 ∧ e4)

)∣∣∣
s=0

= −1

4

4∑
i=1

Hessφ(ei, ei)

= 1
4

(∆φ)(p)

= 1
4
ψ(p)

= 1
4
.

(5.26)

Therefore, by Lemma 3.5, there exists s∗ > 0 such that f(s, σ) = sec⊥gs(σ) > 0 for all

σ ∈ Gr2TM and 0 < s < s∗, concluding the proof.

Remark 5.20. The above technique can also be used to prove that a closed manifold

M (of any dimension) satisfies sec > 0 if it has a Riemannian metric g with quasi-

positive curvature (that is, secg ≥ 0 and secg > 0 at a point p0 ∈ M), and all flat

planes sec−1
g (0) ⊂ Gr2TM are contained in a fixed nonholonomic rank 2 distribution8

D on M . Similarly to Proposition 5.19, there exist ε > 0 and an open neighborhood

U of p0 ∈ M , such that secg(σ) ≥ ε for all σ ∈ π−1(U). Let ψ : M → R be a

smooth function with ψ(x) = 1 for all x ∈ M \ U and
∫
M
ψ = 0. Since D is

nonholonomic, there exists a smooth function φ : M → R such that ∆Dφ = ψ,

where ∆D is the sub-Laplacian associated with the distribution D, see Khesin and

Lee [59, Prop. 2.7]. Setting gs := g + s h, with h := φ g, we have by Corollary 3.4

that d
ds

secgs(σ)
∣∣
s=0

= 1
2
(∆Dφ)(p) = 1

2
ψ(p) = 1

2
whenever σ ∈ Gr2(TpM) satisfies

secg(σ) = 0, since we are assuming this implies σ = Dp. Thus, by Corollary 3.6,

there exists s∗ > 0 such that secgs > 0 for all 0 < s < s∗.

8A rank 2 distribution D on M is a rank 2 subbundle of TM , and it is said to be nonholonomic,
or bracket-generating, if local vector fields tangent to D and their iterated Lie brackets span TM .
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CHAPTER 6

IMPROVING THE CURVATURE OF S2 × S2

The goal of this chapter is to prove the following result, from Bettiol [13].

Theorem 6.1. The manifold S2 × S2 satisfies sec0+ > 0.

There are two main sources of motivation for the above result. The first is that it

plays a crucial role in the classification of closed simply-connected 4-manifolds that

satisfy sec⊥ > 0, discussed in Chapter 7. The second is its connection with the Hopf

Problem I, since, by Proposition 5.10, it implies that S2×S2 satisfies an intermediate

curvature condition between sec > 0 and sec ≥ 0, as well as between sec > 0 and

Ric > 0. It is also related to the Local Hopf Problem I, since the metrics gθ with

secθ
gθ
> 0 that imply the sec0+ > 0 condition can be constructed arbitrarily close to

the standard product metric g0 as θ ↘ 0.

Let us give a brief outline of how Theorem 6.1 is proved, which also informs the

organization of this chapter. After recalling basic properties of g0 in Section 6.1, we

proceed to the construction of the metrics gθ with secθ
gθ
> 0, which is done in two

steps. First, in Section 6.2, we perform a Cheeger deformation of g0 with respect to

the diagonal SO(3)-action (6.6). This produces a 1-parameter family gt of metrics

with secgt ≥ 0 and secθgt > 0 on an open and dense subset (given by the complement

of two submanifolds), for any θ > 0 and t > 0, see Proposition 6.2. Second, in

Section 6.3, we perform a first-order local conformal deformation of gt supported

near these submanifolds, which yields the desired metrics gt,s that have secθgt,s > 0 if

s > 0 is sufficiently small and t > 0, see Proposition 6.5. Finally, a few comments

regarding this construction are made in Section 6.4.
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6.1 Standard product metric

Let us briefly recall some properties of the standard product metric g0 on S2×S2.

The manifold (S2×S2, g0) can be isometrically embedded into R3⊕R3 as the product

of unit spheres, hence this is a homogeneous space (actually, a symmetric space) and

the identity connected component of its isometry group is SO(3)×SO(3). As described

in Section 2.5, given p = (p1, p2) ∈ S2×S2, we have that Tp(S
2×S2) = Tp1S

2⊕Tp2S2,

and for each X ∈ Tp(S2×S2), we write X = (X1, X2), where Xi ∈ TpiS2. The product

metric g0 is given by

g0(X, Y ) = 〈X1, Y1〉+ 〈X2, Y2〉, (6.1)

where Xi, Yi ∈ TpiS2 ∼= {pi}⊥ ⊂ R3 and 〈·, ·〉 is the standard metric in R3. Routine

computations, see (2.18), show that the curvature operator of g0 is the positive-

semidefinite operator R0 : ∧2 T (S2 × S2)→ ∧2T (S2 × S2) given by

g0(R0(X ∧ Y ), Z ∧W ) = 〈X1 ∧ Y1, Z1 ∧W1〉+ 〈X2 ∧ Y2, Z2 ∧W2〉. (6.2)

In particular, the sectional curvature of (S2 × S2, g0) is given by, see (2.19),

secg0(X ∧ Y ) = ‖X1 ∧ Y1‖2 + ‖X2 ∧ Y2‖2. (6.3)

Thus, secg ≥ 0 and secg(X∧Y ) = 0 if and only if X∧Y is a mixed plane, i.e., X1 = 0

and Y2 = 0, or X2 = 0 and Y1 = 0. Therefore, for each p ∈ S2×S2, the 2-torus given

by the product of the unit spheres in TpiS
2,

T :=
{

(v, 0) ∧ (0, w) ∈ Gr2(Tp(S
2 × S2)) : v ∈ Sp1S2, w ∈ Sp2S2

}
, (6.4)

consists of flat planes, i.e., secg0 : Gr2(Tp(S
2×S2))→ R vanishes on the submanifold

T and is positive everywhere else.

64



In order to give another description of the above, see Viaclovsky [101, §11], recall

that as dimTp(S
2×S2) = 4, we have Gr2(Tp(S

2×S2)) ∼= Gr2(R4) ∼= S2×S2. Indeed,

consider the decomposition ∧2R4 = ∧2
+R

4 ⊕ ∧2
−R

4 into self-dual and anti-self-dual

parts, i.e., into the eigenspaces of the Hodge star operator ∗ : ∧2 R4 → ∧2R4 with

eigenvalues +1 and −1, respectively. Since α ∈ ∧2R4 is decomposable if and only if

α ∧ α = 0, writing α = α+ + α− ∈ ∧2
+R

4 ⊕ ∧2
−R

4,

0 = α ∧ α = 〈α, ∗α〉 vol = 〈α+ + α−, α+ − α−〉 = (‖α+‖2 − ‖α−‖2) vol,

and ‖α‖2 = ‖α+‖2 + ‖α−‖2. Thus, the Grassmannian of 2-planes in R4 is given by

Gr2(R4) =
{
α ∈ ∧2R4 : α ∧ α = 0, ‖α‖ = 1

}
=
{

(α+, α−) ∈ ∧2
+R

4 ⊕ ∧2
−R

4 : ‖α+‖2 = ‖α−‖2 = 1
2

}
,

(6.5)

which is clearly diffeomorphic to S2 × S2, since dim∧2
±R

4 = 3. Under this identifi-

cation, the sectional curvature function secg0 : Gr2(Tp(S
2 × S2))→ R is, see (6.3),

secg0(α) = g0

(
R0(α), α

)
= 1

2
〈α+, ω+〉2 + 1

2
〈α−, ω−〉2,

for α = (α+, α−) ∈ Gr2(Tp(S
2×S2)), where ω± := vol1±vol2 ∈ ∧2

±(Tp1S
2⊕Tp2S2) ∼=

∧2
±R

4 and voli are the volume forms of each sphere factor.1 In particular, its zero

locus T , see (6.4), is the subset of 2-planes α = (α+, α−) such that 〈α+, ω+〉 = 0 and

〈α−, ω−〉 = 0. In other words, T ∼= S1×S1 is the 2-torus given by the product of the

equators in Gr2(Tp(S
2 × S2)) ∼= S2 × S2, see (6.5).

From the above, for all θ > 0, p ∈ S2 × S2, and σ ∈ Gr2(Tp(S
2 × S2)), we have

that secθg0(σ) ≥ 0 and the equality secθg0(σ) = 0 holds if and only if σ is a mixed

1Moreover, the curvature operator R0 : ∧2 T (S2 × S2) → ∧2T (S2 × S2) given by (6.2) is the
identity on span{ω+, ω−} = span{vol1, vol2} and vanishes identically on its orthogonal complement.
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plane, i.e., σ ∈ T . In fact, if σ ∈ T , then any neighborhood of σ in Gr2(Tp(S
2 × S2))

contains other mixed planes σ′ ∈ T . Furthermore, also sec⊥g0(σ) ≥ 0 and sec⊥g0(σ) = 0

if and only if σ ∈ T , since σ ∈ T if and only if σ⊥ ∈ T .

Finally, note that taking a trace of (6.2), we have Ricg0 = g0, that is, g0 is an

Einstein metric; and, in particular, it has Ricg0 > 0.

6.2 First step

The first step to produce the desired metrics on S2 × S2 is to perform a Cheeger

deformation with respect to the diagonal SO(3)-action, given by

A · (p1, p2) = (Ap1, A p2), A ∈ SO(3). (6.6)

By (6.1), this is clearly an isometric action. The isotropy group of p = (p1, p2) is

trivial if p1 6= ±p2, since there are no linear isometries A ∈ SO(3) of R3 that fix

two linearly independent directions. Otherwise, if p1 = ±p2, then the isotropy group

of p consists of linear isometries A ∈ SO(3) of R3 that fix the line spanned by p1

and p2, which is hence isomorphic to SO(2). Thus, the principal orbits of (6.6) are

hypersurfaces in S2 × S2 diffeomorphic to RP 3 and the only nonprincipal orbits are

the singular orbits given by the diagonal and anti-diagonal submanifolds

±∆S2 :=
{

(p1,±p1) ∈ S2 × S2 : p1 ∈ S2
}
,

which are diffeomorphic to S2. Consider the geodesic segment given by

γ :
[
0, π

2

]
→ S2 × S2, γ(r) =

(
(cos r)e1 + (sin r)e2, (cos r)e1 − (sin r)e2

)
,

where {ei} is the standard basis in R3. Clearly, γ(0) ∈ ∆S2 and γ(π
2
) ∈ −∆S2, and

γ(r) intersects all orbits of (6.6). Thus, (6.6) is a cohomogeneity one action, whose
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orbit space is isometric to
[
0, π

2

]
. The geodesic γ(r) is horizontal, i.e., intersects all

orbits perpendicularly, and is hence a section for this polar action.

The evolution of secθ on S2×S2 along the Cheeger deformation of g0 with respect

to this action (6.6) is described in the following result, which follows from Müter [72,

Satz 4.26], see also Ziller [111, p. 5] and Kerin [58, Rem. 4.3].

Proposition 6.2. Let gt be the Cheeger deformation of g0 with respect to (6.6).

Then, secθgt(σ) ≥ 0 for all θ > 0, t ≥ 0 and σ ∈ Gr2(T (S2 × S2)). Moreover,

for t > 0, the equality secθgt(σ) = 0 holds only if σ ∈ Gr2(Tp(S
2 × S2)) for some

p = (p1,±p1) ∈ ±∆S2, and, in this case, σ is not tangent to the submanifold ±∆S2.

In particular, secθgt > 0 on an open and dense subset for any θ > 0 and t > 0.

Proof. From Proposition 4.5, for all t ≥ 0, we have that secgt ≥ 0 and hence secθgt ≥ 0

for all θ > 0 by definition (5.13).

In order to analyze sec−1
gt

(0), we use the results and notation from Chapter 4.

Identify the Lie algebra of SO(3) with (R3,∧), where ∧ : R3 ×R3 → R3 is the cross

product, via

so(3) 3 Z =

 0 −z3 z2

z3 0 −z1

−z2 z1 0

←→
z1

z2

z3

 = z ∈ R3. (6.7)

Considering (so(3), Q) endowed with the standard bi-invariant metric, the above is

an isometric identification with Euclidean space (R3, 〈·, ·〉). Since the Lie exponential

in SO(3) is given by matrix exponentiation, the action field induced by Z ∈ so(3) is:

Z∗p =
(
Z∗p1 , Z

∗
p2

)
= (Z p1, Z p2) = (z ∧ p1, z ∧ p2) ∈ Tp(S2 × S2), (6.8)

see (4.4). Recall that the vertical space is Vp =
{(
X∗p1 , X

∗
p2

)
: X ∈ mp

}
, and the

horizontal space Hp is its orthogonal complement, see (4.5). From (6.1) and (6.8), if
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x, y ∈ R3 satisfy 〈x, p1〉 = 〈y, p2〉 = 0, then for all z ∈ R3,

g0

(
(X∗p1 , Y

∗
p2

), Z∗p
)

= 〈x ∧ p1, z ∧ p1〉+ 〈y ∧ p2, z ∧ p2〉

= 〈p1 ∧ (x ∧ p1), z〉+ 〈p2 ∧ (y ∧ p2), z〉

=
〈
〈p1, p1〉x− 〈x, p1〉p1, z

〉
+
〈
〈p2, p2〉y − 〈y, p2〉p2, z

〉
= 〈x+ y, z〉.

(6.9)

Therefore,
(
X∗p1 ,−X

∗
p2

)
∈ Tp(S

2 × S2) is horizontal if x ∈ {p1, p2}⊥ := {x ∈ R3 :

〈x, p1〉 = 〈x, p2〉 = 0}. By dimensional reasons, it follows that the horizontal space is

Hp =
{(
X∗p1 ,−X

∗
p2

)
∈ Tp(S2 × S2) : x ∈ {p1, p2}⊥

}
.

Notice that dimHp = dim{p1, p2}⊥ is either equal to 1 or 2, according respectively

to p /∈ ±∆S2 or p ∈ ±∆S2. For any x, y ∈ R3, analogously to (6.9), we have:

g0

(
X∗p , Y

∗
p

)
= g0

((
X∗p1 , X

∗
p2

)
,
(
Y ∗p1 , Y

∗
p2

))
= 〈x ∧ p1, y ∧ p1〉+ 〈x ∧ p2, y ∧ p2〉

= 〈p1 ∧ (x ∧ p1), y〉+ 〈p2 ∧ (x ∧ p2), y〉

=
〈
(2x− 〈x, p1〉p1 − 〈x, p2〉p2), y

〉
.

By the definition (4.6) of P0 : mp → mp, we have that the above is 〈P0X, Y 〉, hence

P0X = 2X − 〈X, p1〉p1 − 〈X, p2〉p2.

In particular, it follows that the subspace {p1, p2}⊥ ⊂ mp is invariant under P0 and

hence under Pt, see Proposition 4.2.

Let π : {p1, p2}⊥ → {p1, p2}⊥/ ∼ be the projection onto the corresponding real

projective space. Note that π({p1, p2}⊥) is diffeomorphic to either RP 0 ∼= {1} or
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RP 1 ∼= S1, according respectively to p /∈ ±∆S2 or p ∈ ±∆S2. For each x ∈ {p1, p2}⊥,

define σπ(x) ∈ Gr2(Tp(S
2 × S2)) as the mixed plane

σπ(x) :=
(
X∗p1 , 0

)
∧
(
0, X∗p2

)
=
(
X∗p1 , X

∗
p2

)
∧
(
X∗p1 ,−X

∗
p2

)
. (6.10)

Clearly, this is the unique mixed plane at p that contains the horizontal vector(
X∗p1 ,−X

∗
p2

)
. Furthermore, since {p1, p2}⊥ is invariant under Pt, these planes are

fixed under the Cheeger reparametrization, i.e.,

C−1
t (σπ(x)) = σπ(x), for all t ≥ 0. (6.11)

Thus, by Proposition 4.11, we have that secgt(σπ(x)) = 0 for all t ≥ 0, since σπ(x), such

as any other mixed plane in (S2 × S2, g0), is tangent to a totally geodesic flat torus.

Furthermore, by Corollary 4.8, these are the only g0-flat planes that remain gt-flat

for t > 0, since all the other mixed planes have 2-dimensional vertical projection.

Therefore, for any t > 0, we have that σ ∈ Gr2(Tp(S
2×S2)) satisfies secgt(σ) = 0

if and only if σ = σπ(x) for some x ∈ {p1, p2}⊥. The set of flat planes in Tp(S
2 × S2),

sec−1
gt

(0) =
{
σπ(x) ∈ Gr2(Tp(S

2 × S2)) : x ∈ {p1, p2}⊥
}
, (6.12)

is parametrized by π({p1, p2}⊥) and hence consists of a unique plane if p /∈ ±∆S2,

and of a circle’s worth of planes if p ∈ ±∆S2. Thus, by definition (5.13), for all θ > 0

and t > 0, a plane σ ∈ Gr2(Tp(S
2 × S2)) can only have secθgt(σ) = 0 if p ∈ ±∆S2, in

which case σ is not tangent to ±∆S2, as it contains a horizontal vector, see (6.10).

Remark 6.3. By the above Proposition 6.2, the manifolds (S2×S2, gt) have sec⊥gt ≥ 0

and sec⊥gt > 0 on the open and dense subset S2 × S2 \ {±∆S2}. Furthermore, if

p ∈ ±∆S2, the set of flat planes (6.12) at p contains pairs of orthogonal planes, hence

gt does not have sec⊥gt > 0 globally. However, in order to prove that S2 × S2 satisfies
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sec⊥ > 0, one can use Proposition 5.19 to deform gt into metrics with sec⊥ > 0.

In the next section, we perform an analogous but slightly more careful first-order

deformation to obtain the stronger conclusion that S2 × S2 satisfies sec0+ > 0.

Remark 6.4. For n ≥ 3, there exists a diagonal SO(n + 1)-action on Sn × Sn of

cohomogeneity one, analogous to (6.6). Nevertheless, since SO(n + 1) has secQ ≥ 0

but does not have secQ > 0 when n ≥ 3, the Cheeger deformation of the standard

product metric on Sn × Sn fails to destroy so many flat planes, cf. Remark 4.9. As

a result, this step in the construction of metrics with secθ > 0 only works if n = 2.

6.3 Second step

The second step in the construction of the desired metrics on S2×S2 is to perform

a first-order local conformal deformation on a Cheeger deformed metric gt with t > 0.

Proposition 6.5. Let gt be the Cheeger deformation of g0 with respect to (6.6), and

fix t > 0. There exists a smooth function φ : S2×S2 → R supported in a neighborhood

of ±∆S2, such that for each θ > 0, there exists s∗ > 0, such that gt,s := (1 + s φ) gt

satisfies secθgt,s > 0 if 0 < s < s∗.

Proof. Denote by distgt the distance function on (S2×S2, gt), and define the functions

ψ± : S2 × S2 → R, ψ±(x) := distgt(x,±∆S2)2. (6.13)

In a sufficiently small tubular neighborhood D(±∆S2) of ±∆S2, the function ψ± is

smooth. Let χ± : S2 × S2 → R be smooth cutoff functions that vanish outside the

corresponding D(±∆S2) and are equal to 1 on a smaller tubular neighborhood of

±∆S2. Set

φ : S2 × S2 → R, φ := −χ+ψ+ − χ−ψ−. (6.14)

By construction, ψ is a smooth function supported in a neighborhood of ±∆S2. At
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a point p ∈ ∆S2, the Hessian of φ coincides with the Hessian of ψ+,

Hessφ(X,X) = Hessψ+(X,X) = −2 gt(X
⊥, X⊥) = −2 ‖X⊥‖2

gt
, (6.15)

where X⊥ ∈ Tp(∆S2)⊥ is the normal component of X ∈ Tp(S2 × S2). A completely

analogous formula holds for points p ∈ −∆S2. Thus, setting h := φ gt, Corollary 3.4

and (6.10) imply that the first-order variation gt,s = gt + s h = (1 + s φ) gt satisfies

d

ds
secgt,s(σπ(x))

∣∣∣
s=0

= −1
2

Hessφ
((
X∗p1 , X

∗
p2

)
, (X∗p1 , X

∗
p2

))
− 1

2
Hessφ

((
X∗p1 ,−X

∗
p2

)
,
(
X∗p1 ,−X

∗
p2

))
=
∥∥(X∗p1 ,−X∗p1)∥∥2

gt

> 0,

(6.16)

for all gt-flat planes σπ(x) ∈ Gr2(Tp(S
2 × S2)) with p ∈ ±∆S2.

For any θ > 0, consider the subset of M × Gr2(T (S2 × S2)) × Gr2(T (S2 × S2))

given by Kθ :=
{

(p, σ, σ′) : σ, σ′ ∈ Gr2(Tp(S
2 × S2)), dist(σ, σ′) ≥ θ

}
, and define

f : [0, S]×Kθ → R, f
(
s, (p, σ, σ′)

)
:= 1

2

(
secgt,s(σ) + secgt,s(σ

′)
)
. (6.17)

From Proposition 6.2, we have that f
(
0, (p, σ, σ′)

)
≥ 0 for all (p, σ, σ′) ∈ Kθ, and

f
(
0, (p, σ, σ′)

)
= 0 if only if p ∈ ±∆S2 and σ, σ′ are of the form (6.10). In partic-

ular, by (6.16), we have that ∂f
∂s

(
0, (p, σ, σ′)

)
> 0 if f

(
0, (p, σ, σ′)

)
= 0. Thus, by

Lemma 3.5, there exists s∗ > 0 such that f
(
s, (p, σ, σ′)

)
> 0 for all (p, σ, σ′) ∈ Kθ

and 0 < s < s∗, which by definition (5.13) means that secθgt,s > 0 if 0 < s < s∗.

The above concludes the proof of Theorem 6.1, see Definition 5.8. Note that, in

Proposition 6.5, as θ ↘ 0, also s∗ ↘ 0 (see Remark 6.10) and hence the metrics gt,s

with secθgt,s > 0 converge to gt. In particular, the metrics gθ with secθ
gθ
> 0 may be

selected among gt,s in such way that gθ → g0 as θ ↘ 0.
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6.4 Comments

We conclude this chapter with some comments on the above construction.

Corollary 6.6. The manifold RP 2 ×RP 2 satisfies sec0+ > 0.

Proof. Consider the free isometric Z2 ⊕ Z2-action on (S2 × S2, g0) given by

(±1,±1) · (p1, p2) = (±p1,±p2), (6.18)

whose orbit space is RP 2 × RP 2. Since the actions (6.18) and (6.6) commute, this

action remains isometric under the Cheeger deformation gt of g0. Furthermore, the

cutoff functions χ± in the proof of Proposition 6.5 can be chosen to be invariant under

(6.18), and hence this action is also isometric on (S2 × S2, gt,s) for t > 0 and s > 0.

In particular, the metrics gθ that verify sec0+ > 0 on S2 × S2 descend to metrics on

RP 2 ×RP 2, proving that it also satisfies sec0+ > 0.

Recall that RP 2×RP 2 does not have sec > 0 by Synge’s Theorem, see Section 5.3.

Remark 6.7. An argument totally analogous to the proof of Corollary 6.6 shows that

the metrics gθ with secθ > 0 on S2×S2 can be chosen to be invariant under the circle

action given by the subaction of (6.6) by the maximal torus of SO(3).

Corollary 6.8. The manifolds S2 × S2 and RP 2 ×RP 2 satisfy sec⊥ > 0.

Proof. Follows directly from Theorem 6.1, Corollary 6.6 and Definition 5.11.

Remark 6.9. The first-order deformation in Proposition 6.5 produces metrics with

secθ > 0 globally because the only points p ∈ S2×S2 that have pairs of planes σ, σ′ ∈

Gr2(Tp(S
2 × S2)) with f

(
0, (p, σ, σ′)

)
= 0 are along the submanifolds ±∆S2. These

submanifolds admit a neighborhood with compact closure where ∂f
∂s

(
0, (p, σ, σ′)

)
> 0.

Clearly, analogous techniques cannot be used to obtain sec > 0 globally because at

every point in S2 × S2 there is at least one plane σ with secgt(σ) = 0. Furthermore,
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by Corollary 3.9, see also Strake [95, Prop. 4.3], the presence of totally geodesic flat

tori in (S2 × S2, gt) prevents first-order deformations from developing sec > 0, and

the same can be inferred in this case using that, by Corollary 6.6, the metrics gt,s

descend to RP 2 ×RP 2, which does not have sec > 0.

Remark 6.10. The metrics gt,s on S2 × S2 do not have secgt,s ≥ 0 if t > 0 and s > 0.

In fact, the existence of planes with negative curvature can be proved using the above

mentioned totally geodesic flat tori in (S2 × S2, gt), such as

i : T → S2 × S2, i(r1, r2) :=
(
(cos r1)e1 + (sin r1)e2, (cos r2)e1 − (sin r2)e2

)
,

where {ei} is the standard basis in R3, with an argument analogous to the proof of

Proposition 4.11. Namely, let e1, e2 be a global orthonormal frame on (T, i∗gt,s) and

define vector fields X and Y along i : T → S2×S2 by setting X(r1, r2) := di(r1, r2)e1

and Y (r1, r2) := di(r1, r2)e2 for all (r1, r2) ∈ T . By the Gauss-Bonnet Theorem, for

all s ≥ 0, ∫
T

seci∗(gt,s)(e1 ∧ e2) voli∗(gt,s) = 2πχ(T ) = 0.

Thus, from Lemma 3.7, differentiating the above at s = 0 we have:

0 =
d

ds

∫
T

seci∗(gt,s)(e1 ∧ e2) voli∗(gt,s)

∣∣∣
s=0

=

∫
T

d

ds
seci∗(gt,s)(e1 ∧ e2)

∣∣∣
s=0

voli∗(gt) +

∫
T

seci∗(gt)(e1 ∧ e2)
d

ds
voli∗(gt,s)

∣∣∣
s=0

=

∫
T

d

ds
seci∗(gt,s)(e1 ∧ e2)

∣∣∣
s=0

voli∗(gt)

=

∫
T

d

ds
secgt,s(X ∧ Y )

∣∣∣
s=0

voli∗(gt).

By the construction of gt,s, the above integrand is positive on the intersection of

T and ±∆S2, see (6.16). Since the above integral vanishes, this integrand is also

negative somewhere, which (by an argument analogous to Lemma 3.5) implies that
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there exists planes σ ∈ Gr2(Tp(S
2 × S2)) with secgt,s(σ) < 0 if t > 0 and s > 0.

With regard to extending the construction in this chapter to other 4-manifolds,

we remark that similar techniques to those used for S2 × S2 yield the following, see

Bettiol [13, Prop. 5.1] and Müter [72, Satz 4.29].

Proposition 6.11. The manifold CP 2#CP
2

satisfies sec⊥ > 0.

Proof. The starting point is a metric g0 on CP 2#CP
2

with secg0 ≥ 0, obtained as

follows. Consider the round spheres S3 = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 = 1} and

S2 = {(z3, h) ∈ C ⊕ R : |z3|2 + h2 = 1}, and define the diagonal circle action on

S3 × S2 via the Hopf action on S3 and a rotation action on S2, i.e., given by

eiθ ·
(
(z1, z2), (z3, h)

)
:=
(
(eiθz1, e

iθz2), (ekiθz3, h)
)
, eiθ ∈ S1, k ∈ N. (6.19)

This is a free isometric action, whose orbit space is diffeomorphic to CP 2#CP
2

if k

is an odd number.2 Choosing, e.g., k = 1, we have that there exists a Riemannian

metric g0 on CP 2#CP
2

such that the quotient map π : S3 × S2 → CP 2#CP
2

is a

Riemannian submersion, where S3×S2 is endowed with the standard product metric.

In particular, from (2.19) and the Gray-O’Neill formula (2.28), we have that secg0 ≥ 0.

Furthermore, the flat planes σ ∈ sec−1
g0

(0) on
(
CP 2#CP

2
, g0

)
are precisely the images

under dπ of mixed planes σ̃ on S3×S2 that are orthogonal to the action field induced

by (6.19). Note that at all points p̃ =
(
(z1, z2), (z3, h)

)
∈ S3 × S2 with |h| < 1, these

mixed planes σ̃ contain a vector of the form (0, X) ∈ Tp̃(S3 × S2) where X ∈ Tp̃2S2

is orthogonal to the rotation action field, i.e., X is tangent to a great circle on S2

that passes through the North and South poles. Thus, all flat planes σ ∈ sec−1
g0

(0) ⊂

Gr2

(
Tp
(
CP 2#CP

2))
, where p = π(p̃), must intersect along a line, and hence cannot

2The manifold CP 2#CP
2

can also be thought of as two copies of the normal disk bundle of the
equatorial CP 1 ⊂ CP 2 glued together along the boundary. This decomposition lifts to S3 ×D2

+ ∪
S3 ×D2

−, where D2
± ⊂ S2 are disks of radius π/2 around the North and South poles.
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be orthogonal. Thus, sec⊥g0 > 0 on an open and dense subset of CP 2#CP
2
, cf.

Proposition 6.2. The conclusion now follows from Proposition 5.19.

Remark 6.12. It is not known whether CP 2#CP
2

satisfies sec0+ > 0 (or sec > 0).

Note that, at all points on
(
CP 2#CP

2
, g0

)
, there are pairs of flat planes at arbitrarily

small distance, hence the methods from Section 6.3 do not apply in this case.

Remark 6.13. The transitive SU(2)-action on S3 given by left translation induces

an isometric action on S3 × S2 that commutes with (6.19), and hence descends to

an isometric SU(2)-action on CP 2#CP
2
. This is a cohomogeneity one action whose

principal orbits are hypersurfaces diffeomorphic to S3 and singular orbits have codi-

mension 2 and are diffeomorphic to S2, analogously to the SO(3)-action (6.6). The

points p = π(p̃) ∈ CP 2#CP
2

where p̃ =
(
(z1, z2), (z3, h)

)
∈ S3 × S2 with |h| < 1 are

precisely those that do not belong to singular orbits. Since sec⊥g0 is already positive

at such points, we do not need to use a Cheeger deformation with respect to this

SU(2)-action. In fact, none of these flat planes on
(
CP 2#CP

2
, g0

)
gain positive cur-

vature under this Cheeger deformation, see Müter [72, Satz 4.29]. We also observe

that there are pairs of orthogonal flat planes at all points on CP 2#CP
2

that lie on

singular orbits, hence sec⊥g0 attains zero along these submanifolds.

Remark 6.14. If k is an even number, the orbit space of the free circle action (6.19)

is diffeomorphic to S2 × S2. Furthermore, if k = 0, the above mentioned isometric

SU(2)-action on S3 × S2 descends to the SO(3)-action (6.6) on S2 × S2, after also

taking the quotient by the ineffective kernel Z2 ⊂ SU(2). Analogous cohomogeneity

one actions on S2× S2 and CP 2#CP
2

are obtained for all even and odd values of k,

respectively, with principal orbits S3/Zk covered by the above principal orbits.

Remark 6.15. By Theorem 5.16, metrics with sec⊥ > 0 on S2 × S2 and CP 2#CP
2

do not have nonnegative isotropic curvature. Thus, by Proposition 5.14 and Theo-

rem 5.18, they do not have 1
4
-pinched biorthogonal curvature or sec⊥ ≥ scal

24
> 0.
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CHAPTER 7

SIMPLY-CONNECTED 4-MANIFOLDS WITH sec⊥ > 0

The goal of this chapter is to prove the following classification result.

Theorem 7.1. Let M4 be a smoothable closed simply-connected topological 4-mani-

fold. Up to endowing M with different smooth structures, the following are equivalent:

(i) M4 satisfies sec⊥ > 0;

(ii) M4 satisfies Ric > 0;

(iii) M4 satisfies scal > 0.

The equivalence between (ii) and (iii) above was established by Sha and Yang [90].

Furthermore, the fact that (i) implies (iii) follows from Proposition 5.12. Thus, in

order to prove Theorem 7.1, we must show that (iii) implies (i), for which we use a

strategy similar to that of Sha and Yang [90]. The starting point is the classifica-

tion of closed simply-connected 4-manifolds that satisfy scal > 0, which is described

in Section 7.2 (see Theorem 7.8), after recalling the foundational work of Donald-

son and Freedman in Section 7.1. Knowing the homeomorphism types of closed

simply-connected 4-manifolds on which metrics with sec⊥ > 0 need to be constructed,

we combine results from Chapters 5 and 6 with a recent surgery stability result of

Hoelzel [51] to verify that these constructions can be carried out, in Section 7.3.

Finally, a few comments are made in Section 7.4.

Although a recent paper of Costa and Ribeiro [27] claims to contain a classification

of closed 4-manifolds with sec⊥ ≥ 0 (a result that would extend Theorem 7.1), no

classification statements are provided. In fact, all results of [27] concern 4-manifolds

satisfying curvature conditions more restrictive than sec⊥ > 0, see e.g. Theorem 5.18.
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7.1 Donaldson-Freedman classification

In this section, we state the classification of (smooth) closed simply-connected 4-

manifolds, that follows from the classical works of Donaldson [30] and Freedman [38],

following Donaldson and Kronheimer [31], see also Mandelbaum [66] and Scorpan [83].

If M is a closed simply-connected topological 4-manifold, by the Hurewicz Theo-

rem and Poincaré duality, both H1(M,Z) and H3(M,Z) are trivial, so all the homo-

logical information of M is contained in H2(M,Z). Furthermore, by the Universal

Coefficient Theorem, H2(M,Z) ∼= Hom(H2(M,Z),Z) is a free abelian group. The

isomorphismH2(M,Z) ∼= H2(M,Z) given by Poincaré duality can hence be expressed

as a unimodular symmetric bilinear form, called intersection form,

QM : H2(M,Z)×H2(M,Z)→ Z, QM(α, β) := (α ∪ β)[M ], (7.1)

where [M ] ∈ H4(M,Z) ∼= Z is the fundamental class of M . If Sα and Sβ are

embedded surfaces in general position that represent the homology classes Poincaré

dual to α, β ∈ H2(M,Z), then QM(α, β) is the intersection number of Sα and Sβ.

Since H2(M,Z) ∼= Zr, where r = b2(M), the intersection form QM is represented

by a symmetric matrix QM ∈ GL(r,Z) with detQM = ±1. We call r the rank of QM .

Denoting by b+
2 (M) and b−2 (M) the dimensions of the largest subspaces where QM is

positive-definite and negative-definite, the signature of QM is the difference

signQM := b+
2 (M)− b−2 (M). (7.2)

Clearly, b+
2 (M) + b−2 (M) = b2(M) = r. We say that QM is positive or negative if

the corresponding matrix is positive-definite or negative-definite, and we say that

QM is indefinite if it is not positive nor negative. Finally, we say that QM is even if

QM(α, α) ≡ 0 mod 2 for all α, otherwise QM is called odd.
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Denoting by M the manifold M with opposite orientation, routine arguments

show that QM = −QM . Furthermore, if M1 and M2 are closed simply-connected

topological 4-manifolds, then the intersection form of their connected sum M1#M2

is QM1#M2 = QM1 ⊕ QM2 . In addition, we say that QM1 and QM2 are isomorphic if

there is an isomorphism φ : H2(M1,Z) → H2(M2,Z) that commutes with QM1 and

QM2 . Elementary examples of intersection forms are the following:

(i) The intersection form of S4 has rank zero;

(ii) The intersection form of CP 2 is QCP 2 =
(
1
)
, which has rank 1, signature 1, and

is positive and odd;

(iii) The intersection form of CP
2

is Q
CP

2 =
(
−1
)
, which has rank 1, signature −1,

and is negative and odd;

(iv) The intersection form of S2× S2 is QS2×S2 =

(
0 1
1 0

)
, which has rank 2, signa-

ture 0, and is indefinite and even.

Remark 7.2. By the above, the intersection form of CP 2#CP
2

is
(
1
)
⊕
(
−1
)
, which

is conjugate to the intersection form of S2×S2 over a ring of coefficients that admits

an inverse of 2, such as Q or R. Furthermore, the cohomology rings of CP 2#CP
2

and S2 × S2 over Q or R are isomorphic, but not over Z, cf. Theorem 7.3.

Another important example is the intersection form QE8 , whose matrix is deter-

mined by the Dynkin diagram E8, by labeling the vertices from 1 through 8 in the

standard way and defining the (i, j)th entry as 2 if i = j, and as the number of

edges connecting the vertices i and j if i 6= j. The form QE8 has rank 8, signature 8,

and is positive and even. Furthermore, there is a topological 4-manifold ME8 whose

intersection form is QE8 , cf. Theorem 7.4. However, ME8 does not admit any smooth

structures, by a result of Rokhlin [79], which states that if the intersection form of a

smooth 4-manifold M is even, then signQM ≡ 0 mod 16.

By a result of Serre [87], two indefinite symmetric bilinear unimodular forms are

isomorphic if and only if they have the same rank, signature and parity. However,
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there is no classification of definite symmetric bilinear unimodular forms, and the

number of different examples grows astonishingly fast with the rank.

The following classical homotopy type classification was proved by Milnor [69], as

a consequence of the work of Whitehead [105].

Theorem 7.3. Two closed simply-connected topological 4-manifolds are homotopy

equivalent if and only if their intersection forms are isomorphic. In particular, the

cohomology ring of such topological 4-manifolds is completely determined by the in-

tersection form.

A major breakthrough came from Freedman [38], who proved the following:

Theorem 7.4. For any integral symmetric unimodular form Q, there is a closed

simply-connected topological 4-manifold whose intersection form is Q. Furthermore,

if Q is even, then there is exactly one such manifold, and if Q is odd there are exactly

two such manifolds (at least one of which does not admit any smooth structures).1

In particular, from Theorem 7.4, two closed simply-connected smooth 4-manifolds

are homeomorphic if and only if their intersection forms are isomorphic.2 Although

all the candidates to intersection forms are realized by topological 4-manifolds by

Theorem 7.4, including the vast number of definite forms, this is not the case among

smooth 4-manifolds due to the next major breakthrough obtained by Donaldson [30],

who proved the following:

Theorem 7.5. The only definite symmetric bilinear unimodular forms that can be

realized as intersection forms of a smooth 4-manifold are ⊕m(1) and ⊕m(−1).

1The Kirby-Siebenmann obstruction ks(M) ∈ H4(M,Z2) ∼= Z2 is an obstruction to the existence
of a smooth structure on M , which vanishes if QM is even. More generally, Freedman’s theorem
states that if ks ∈ Z2 and Q is an integral symmetric unimodular form such that ks ≡ 1

8 signQ
mod 2, then there exists a closed simply-connected 4-manifold M , with QM = Q and ks(M) = ks.
Moreover, two closed simply-connected 4-manifolds are homeomorphic if and only if their intersec-
tion forms are isomorphic and their Kirby-Siebenmann invariants are equal.

2Furthermore, these manifolds become diffeomorphic after taking a sufficiently large number of
connected sums with S2 × S2, by the sum stabilization results of Wall, see Scorpan [83, p. 155].
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Combining the above results, we arrive to the following classification:

Theorem 7.6. Let M4 be a smoothable closed simply-connected topological 4-mani-

fold. Then M4 is homeomorphic to S4, #mCP 2 #nCP
2
, or #±mME8 #n(S2 × S2).3

It is important to stress that, in the above result, not all of #±mME8 #n(S2×S2)

admit smooth structures. Furthermore, for later purposes, note that:

(i) The intersection form of #mCP 2 #nCP
2

has rank m+ n, signature m− n and
is odd;

(ii) The intersection form of #±mME8 #n(S2×S2) has rank 8m+n, signature ±8m
and is even.

Finally, we remark that the parity of the intersection form QM is related to the exis-

tence of a spin structure on M . Namely, if M is simply-connected, then M admits a

spin structure if and only if QM is even. Thus, in Theorem 7.6, the spin manifolds are

S4 and #±mME8 #n(S2×S2), while the nonspin manifolds are #mCP 2 #nCP
2
. Fur-

thermore, the sentence following Theorem 7.4 can be rephrase as two closed simply-

connected smooth 4-manifolds are homeomorphic if and only if they have the same

Euler characteristic, their intersection forms have the same signature, and they are

both spin or nonspin.

7.2 Positive scalar curvature

The question of which closed manifolds satisfy scal > 0 is also a central problem

in Riemannian geometry, similarly to the question of which closed manifolds satisfy

sec > 0 mentioned in the Introduction, see the surveys [80, 93] for details. There

are, however, remarkable differences between what is known regarding each of these

problems, and also in the nature of the techniques used in their study. In this section,

we very briefly state well-known obstructions to scal > 0 that, in conjunction with the

3Here, the connected sum of −m copies of ME8 means the connected sum of m copies of ME8 .
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Donaldson-Freedman classification discussed in Section 7.1, yield the classification of

closed simply-connected 4-manifolds that satisfy scal > 0, see Theorem 7.8.

As an instance of the so-called Bochner technique, Lichnerowicz [65] proved that

spin manifolds with scal > 0 do not admit nontrivial harmonic spinors.4 By the cel-

ebrated Atiyah-Singer Index Theorem, in dimensions multiple of 4, this corresponds

to the vanishing of an invariant called the Â-genus, yielding the following:

Theorem 7.7. If M is a closed spin manifold of dimension 4k that satisfies scal > 0,

then Â(M) = 0.

By the Hirzebruch Signature Theorem, the Â-genus of a 4-manifold is given by:

Â(M) = −1
8

signQM .

In particular, a closed spin 4-manifold whose intersection form has nonzero signature

does not satisfy scal > 0 by Theorem 7.7. Thus, from Theorem 7.6, we conclude:

Theorem 7.8. A closed simply-connected 4-manifold that satisfies scal > 0 is home-

omorphic to either S4, #mCP 2 #nCP
2
, or #n(S2 × S2).

Conversely, all the above topological 4-manifolds are known to admit smooth

structures with metrics with scal > 0, since the connected sum of 4-manifolds that

satisfy scal > 0 also satisfies scal > 0 (see Section 7.3) and the standard metrics on

S4, CP 2, and S2 × S2 have scal > 0. Nevertheless, some of the above topological

4-manifolds also admit exotic smooth structures without any metrics of scal > 0. For

example, the Barlow surface is a complex surface homeomorphic (but not diffeomor-

phic) to CP 2#8CP
2
, with nonvanishing Seiberg-Witten invariant, which hence does

not carry metrics with scal > 0, see [22, 74, 80] for details and further examples.

4A harmonic spinor is a section of the spinor bundle whose Laplacian vanishes, see [64, §2.8].
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Remark 7.9. Any 4-manifold M4 = S4#mCP 2 #nCP
2
#p(S2×S2) is homeomorphic

to one of the 4-manifolds in Theorem 7.8. This follows easily from Theorem 7.4 and

the fact that there are orientation preserving diffeomorphisms between S2 × S2 and

S2 × S2, and between CP 2#(S2 × S2) and #2CP 2 #CP
2
, see Scorpan [83, p. 151].

7.3 Surgery stability of sec⊥ > 0

In this section, we discuss the surgery results that allow to construct metrics with

sec⊥ > 0 on all the manifolds listed in Theorem 7.8, which yields the proof of Theo-

rem 7.1. Gromov and Lawson [42], and independently Schoen and Yau [81], pioneered

surgery techniques that imply stability of scal > 0 under surgery of codimension ≥ 3.

This means that if M satisfies scal > 0, then any manifold M ′ obtained from M by

surgery of codimension ≥ 3 also satisfies scal > 0. This result was recently extended

to more general pointwise curvature conditions by Hoelzel [51, Thm. B], as follows.

Theorem 7.10. Let C ⊂ Sb(∧2Rn) be a curvature condition given by open O(n)-

invariant convex cone, such that the curvature operator of the standard product metric

on Sn−k−1 × Rk+1 belongs to C for some k ∈ {0, . . . , n − 3}. Suppose (M1, g1) and

(M2, g2) are n-dimensional Riemannian manifolds that satisfy C, and let N1 ⊂ M1

and N2 ⊂ M2 be closed l-dimensional submanifolds, with 0 ≤ l ≤ k. If there is an

isomorphism Φ: TN⊥1 → TN⊥2 between the normal bundles of N1 and N2, then

M1#ΦM2 :=
(
M1 \D(N1)

)
tΦ

(
M2 \D(N2)

)
(7.3)

admits a Riemannian metric that satisfies C, where D(Ni) are tubular neighborhoods

of Ni and the gluing is given by the diffeomorphism D(N1) ∼= D(N2) induced by Φ.

We use this result with k = 0, in which case N1 and N2 are points, and (7.3) is

the connected sum M1#M2, to prove that sec⊥ > 0 is stable under connected sums:
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Proposition 7.11. If M1 and M2 are n-dimensional manifolds that satisfy sec⊥ > 0,

then also M1#M2 satisfies sec⊥ > 0.

Proof. Recall that sec⊥ > 0 is a pointwise curvature condition that corresponds to the

open O(n)-invariant convex cone Csec⊥>0 given by (5.16). Furthermore, the curvature

operator R of the standard product metric on Sn−1 ×R satisfies, see (2.18),

〈R(X ∧ Y ), X ∧ Y 〉 = ‖X1 ∧ Y1‖2, (7.4)

where X = (X1, X2) ∈ Tp1Sn−1 ⊕ R. Thus, 〈R(σ), σ〉 ≥ 0 for all σ ∈ Gr2(Rn) and

〈R(σ), σ〉 = 0 if and only if σ is a mixed plane on Tp(S
n−1×R), i.e., σ = (X1, 0)∧(0, 1)

for some unit vector X1 ∈ Tp1Sn−1. In particular, whenever 〈R(σ), σ〉 = 0, we have

〈R(σ′), σ′〉 = ‖σ′‖2 = 1 for all σ′ ⊂ σ⊥, cf. Remark 5.13. Therefore, R ∈ Csec⊥>0 and

hence the conclusion follows from Theorem 7.10.

This concludes the proof of Theorem 7.1, since it follows that (iii) implies (i).

Indeed, if M is a closed simply-connected 4-manifold that satisfies scal > 0, then it is

homeomorphic to S4, #mCP 2 #nCP
2
, or #n(S2×S2), by Theorem 7.8. Clearly, S4

and CP 2 satisfy sec⊥ > 0, since they satisfy sec > 0. Furthermore, by Theorem 6.1

(see also Remark 6.3), S2×S2 satisfies sec⊥ > 0. Thus, by Proposition 7.11, connected

sums of S4, CP 2, CP
2

and S2 × S2 satisfy sec⊥ > 0; in particular, all closed simply-

connected 4-manifolds that satisfy scal > 0 also satisfy sec⊥ > 0.

Remark 7.12. The surgery stability result in Theorem 7.10 can be used more generally

to show that secθ > 0 is stable under connected sums if θ > π
2

and the distance is

induced via (5.12) by the symmetric space distance distSS given by (5.11). Recall that

the corresponding cone Csecθ>0 is an open O(n)-invariant convex cone. Furthermore,

if 〈R(σ), σ〉 = 0 and distSS(σ, σ′) > π
2
, then θ1 > 0 and hence, by (5.10), the plane σ′

does not contain the direction spanned by (0, 1) ∈ Tp1Sn−1 ⊕ R, so 〈R(σ′), σ′〉 > 0.

Thus, R ∈ Csecθ>0 and Theorem 7.10 applies. Note, however, that the same does not
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hold if the distance is induced via (5.12) by any of the other distances (5.1) or (5.3),

since, in this case, there are pairs of mixed planes for Sn−1 × R at all distances, cf.

Remarks 5.1 and 5.3.

Remark 7.13. Theorem 7.10 cannot be used to generalize Proposition 7.11 to surgeries

along submanifolds of lower codimension. Indeed, for any k ≥ 1, the curvature

operator of Sn−k−1 × Rk+1 does not belong to Csec⊥>0, since, when k ≥ 1, there are

pairs of mixed planes for Sn−k−1 ×Rk+1 that are orthogonal.5

7.4 Comments

We conclude this chapter with some remarks on 4-manifolds with sec⊥ > 0, com-

plementing Section 5.5 after the proof of Theorem 7.1.

Remark 7.14. Since the above classification of closed simply-connected 4-manifolds

with sec⊥ > 0 was only obtained up to homeomorphisms, it is natural to wonder

if this can be improved to diffeomorphisms. The first difficulties in achieving this

originate from the (rather serious) difficulties in strengthening Theorem 7.8 to a

result that detects not only homeomorphism type but also diffeomorphism type. The

only currently known invariants that distinguish 4-manifolds that are homeomorphic

but not diffeomorphic are the Donaldson invariants (see [31]) and Seiberg-Witten

invariants (see [70]). These invariants vanish on smooth 4-manifolds that satisfy

scal > 0, preventing the distinction of diffeomorphism types. Further difficulties

arise from the fact that the surgery construction via Proposition 7.11 only yields

metrics with sec⊥ > 0 on the manifolds listed in Theorem 7.8 with their standard

smooth structure, and new constructions would be necessary to produce metrics with

sec⊥ > 0 on such manifolds endowed with exotic smooth structures.

5The main result of Hoelzel [51, Thm. B] actually has slightly weaker hypotheses than Theo-
rem 7.10. Namely, instead of requiring that the curvature operator of Sn−k−1×Rk+1 belongs to C,
it suffices to have that C satisfies an inner cone condition with respect to the curvature operator
of Sn−k−1 ×Rk+1. However, it is not clear whether Csec⊥>0 satisfies this hypothesis when k ≥ 1.
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Remark 7.15. It follows from Theorem 6.1 (see also Remark 6.3) and Proposition 7.11

that, for all n ∈ N, the manifold #n(S2 × S2) satisfies sec⊥ > 0. In particular, there

is no upper bound on the total Betti number for closed 4-manifolds with sec⊥ > 0.

Furthermore, the above provide examples of closed simply-connected 4-manifolds that

satisfy sec⊥ > 0 but do not satisfy sec ≥ 0, by the a priori bounds on Betti numbers

of Gromov [41], see also Petersen [75, Thm. 86, p. 357].

Remark 7.16. Although Theorem 7.1 only deals with simply-connected 4-manifolds,

many of the above techniques can be used in the non-simply-connected case. Recall

from Corollary 6.6 that RP 2 × RP 2 satisfies sec⊥ > 0, and from Remark 5.13 that

also S3×S1 and (S3×R)/Γ satisfy sec⊥ > 0, where Γ is a discrete cocompact group.

By Proposition 7.11, connected sums of such manifolds satisfy sec⊥ > 0 , providing

many examples of non-simply-connected 4-manifolds with sec⊥ > 0. In particular,

we can e.g. construct 4-manifolds M with sec⊥ > 0 whose fundamental group is

π1(M) ∼= ∗mZ ∗n1 (Zp1 ⊕ Z) · · · ∗nk (Zpk ⊕ Z) ∗r (Z2 ⊕ Z2),

where ∗ denotes the free product and p1, . . . , pk are prime, by taking the connected

sum M = #m(S3 × S1)#n1(S3/Zp1 × S1) . . .#nk(S3/Zpk × S1)#r(RP 2 ×RP 2).

As observed above, although sec⊥ > 0 is stable under connected sums, it is

not clear whether sec⊥ > 0 is stable under surgeries of lower codimension (see Re-

mark 7.13). However, note that if sec⊥ > 0 on 4-manifolds were also invariant under

surgeries of codimension 3, then it would follow that all finitely presented groups

could be realized as the fundamental group of a 4-manifold with sec⊥ > 0. Namely, a

finitely presented group with n generators and r relations is the fundamental group of

the 4-manifold obtained from #n(S3 × S1) after r surgeries of codimension 3, where

tubular neighborhoods S1 ×D3 of r loops representing the relations are replaced by

S2 ×D2. This is the exact same construction that yields that any finitely presented
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group is realized as the fundamental group of a 4-manifold with scal > 0.

Remark 7.17. Although the proof of Theorem 7.10 is constructive, and yields metrics

with sec⊥ > 0 on the connected sums of S4, CP 2, CP
2

and S2×S2, the only explicit

metrics known (besides the trivial cases on S4 and CP 2) are those constructed in

Chapter 6 on S2 × S2 and CP 2#CP
2
. Furthermore, analogously to Remark 6.15,

none of these 4-manifolds with sec⊥ > 0 (except for S4 and CP 2) can have nonnegative

isotropic curvature, 1
4
-pinched biorthogonal curvature, or sec⊥ ≥ scal

24
> 0.

Remark 7.18. The surgery stability criterion (Theorem 7.10) has an equivariant ver-

sion [51, §5] that, under the same conditions, allows to endow M1#ΦM2 with a

G-invariant metric satisfying C, provided Mi have G-invariant metrics satisfying C

such that Ni are fixed by the G-action and Φ is G-equivariant. This result may be

used to endow the manifolds #mCP 2 #nCP
2

and #n(S2 × S2) with metrics that

are invariant under a circle action and satisfy either scal > 0 or sec⊥ > 0. Namely,

consider the circle action on CP 2 given as a subaction of the transitive SU(3)-action

by the maximal torus of SU(2) ⊂ SU(3), and the circle action on S2 × S2 given as

a subaction of the SO(3)-action (6.6) by the maximal torus of SO(3). These actions

have respectively 3 and 4 fixed points.6 The standard metrics on CP 2 and S2 × S2

are invariant under these actions, and so are the metrics with sec⊥ > 0 on the latter,

constructed in Chapter 6, see Remark 6.7. Performing surgeries (connected sums)

using these fixed points as Ni, the above equivariant version of the surgery stability

criterion implies that #mCP 2 #nCP
2

and #n(S2×S2) carry invariant metrics with

scal > 0 or sec⊥ > 0. Although it does not follow from the original construction of

Sha and Yang [90] that these manifolds carry invariant metrics with Ric > 0, this

was recently proved7 by Bazăıkin and Matvienko [6]. Clearly, also the round metric

6Recall that the Euler characteristic of the fixed point set of a torus action on a closed manifold
is the same as the Euler characteristic of the manifold. Thus, the above number of fixed points
agrees with the fact that χ(CP 2) = 3 and χ(S2 × S2) = 4.

7In fact, it is shown in [6] that these manifolds carry metrics with Ric > 0 invariant under a
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on S4 satisfies all of these curvature conditions and is invariant under a circle action.

Thus, in all items in Theorem 7.1, the metric satisfying that curvature condition may

be chosen invariant under a circle action.

2-torus action.
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PART III

STRONGLY POSITIVE CURVATURE
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CHAPTER 8

STRONGLY POSITIVE CURVATURE

In this chapter, we study a curvature positivity condition called strongly posi-

tive curvature, which stems from the work of Thorpe [96, 97] on algebraic properties

of curvature operators. This condition has been implicitly studied by other au-

thors, including Zoltek [113], Puttmann [77], Dearricott [28], and Grove, Verdiani

and Ziller [44], who coined the term. However, a systematic study of this condition

was only recently initiated by Bettiol and Mendes [14, 15]. Although this chapter

is based on the latter references, it contains several examples, auxiliary results, and

proofs that were omitted in these papers.

8.1 Modified curvature operators

Let V be an n-dimensional real vector space, endowed with an inner product.

Recall from Section 2.3 that the space of symmetric linear operators on ∧2V splits

as the orthogonal direct sum

S(∧2V ) = Sb(∧2V )⊕ ∧4V,

where Sb(∧2V ) = ker b is the space of algebraic curvature operators, given by the

kernel of the Bianchi map b : S(∧2V )→ ∧4V . Consider the Grassmannian of 2-planes

Gr2(V ) =
{
σ ⊂ V : dimσ = 2

}
=
{
σ ∈ ∧2V : σ ∧ σ = 0 and ‖σ‖2 = 1

}
,

(8.1)
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which (as before) we identify with its double covering, the Grassmannian of oriented

2-planes. Note that σ ∈ Gr2(V ) if and only if there exist orthonormal vectors X, Y ∈

V such that σ = X∧Y . The sectional curvature function of an operator R ∈ S(∧2V )

is defined as the quadratic form associated to R restricted to Gr2(V ),

secR : Gr2(V )→ R, secR(σ) := 〈R(σ), σ〉, (8.2)

cf. (2.7). The observation that secR only depends on the component of R in Sb(∧2V )

is at the foundations of the theory of strongly positive curvature.

Lemma 8.1. Let R1, R2 ∈ S(∧2V ). Then secR1 = secR2 if and only if R1−R2 ∈ ∧4V .

Proof. Since secR1 − secR2 = secR1−R2 , see (8.2), it suffices to show that R ∈ S(∧2V )

satisfies secR = 0 if and only if R ∈ ∧4V . Suppose secR = 0, i.e., for all X, Y ∈ V ,

〈R(X ∧ Y ), X ∧ Y 〉 = 0. (8.3)

Replacing X by X + Z in (8.3), we have

0 =
〈
R
(
(X + Z) ∧ Y

)
, (X + Z) ∧ Y

〉
= 〈R(X ∧ Y ), X ∧ Y 〉+ 2 〈R(X ∧ Y ), Z ∧ Y 〉+ 〈R(Z ∧ Y ), Z ∧ Y 〉

= 2 〈R(X ∧ Y ), Z ∧ Y 〉.

Furthermore, since the above vanishes, replacing Y with Y +W , we have

0 =
〈
R
(
X ∧ (Y +W )

)
, Z ∧ (Y +W )

〉
= 〈R(X ∧ Y ), Z ∧ Y 〉+ 〈R(X ∧ Y ), Z ∧W 〉

+ 〈R(X ∧W ), Z ∧ Y 〉+ 〈R(X ∧W ), Z ∧W 〉

= 〈R(X ∧ Y ), Z ∧W 〉+ 〈R(X ∧W ), Z ∧ Y 〉.

(8.4)
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Since R : ∧2 V → ∧2V is symmetric, it follows from (8.4) that

〈R(X ∧ Y ), Z ∧W 〉 = 〈R(Y ∧ Z), X ∧W 〉.

Thus, 〈R(X∧Y ), Z∧W 〉 is invariant under cyclic permutations of X, Y, Z, and hence

R = b(R) ∈ ∧4V .

Conversely, if R ∈ ∧4V , then (2.13) and (8.1) imply that, for all σ ∈ Gr2(V ),

secR(σ) = 〈R(σ), σ〉 = 〈R, σ ∧ σ〉 = 0,

concluding the proof.

By Lemma 8.1, if R ∈ Sb(∧2V ) is an algebraic curvature operator, then for all

ω ∈ ∧4V the sectional curvature functions secR and secR+ω coincide, since

secR+ω(σ) = 〈(R + ω)(σ), σ〉 = 〈R(σ), σ〉+ 〈ω(σ), σ〉 = secR(σ). (8.5)

The operator R + ω is called a modified curvature operator.

Definition 8.2. An operator R ∈ S(∧2V ) has strongly positive curvature if there

exists ω ∈ ∧4V such that (R + ω) : ∧2 V → ∧2V is positive-definite. Similarly,

R ∈ S(∧2V ) has strongly nonnegative curvature if there exists ω ∈ ∧4V such that

R + ω is positive-semidefinite.

Definition 8.3. A Riemannian manifold (M, g) has strongly positive curvature if,

for all p ∈ M , the curvature operator Rg : ∧2 TpM → ∧2TpM has strongly positive

curvature; and similarly for strongly nonnegative curvature.

In other words, strongly positive curvature is a pointwise curvature condition in
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the sense of Section 2.3, corresponding to the open O(n)-invariant convex cone

Cstr. pos. :=

R ∈ Sb(∧2V ) :
there exists ω ∈ ∧4V, such that

〈(R + ω)(α), α〉 > 0 for all α ∈ ∧2V, α 6= 0

, (8.6)

and analogously for strongly nonnegative curvature.

Proposition 8.4. If (M, g) has positive-definite curvature operator, then it has

strongly positive curvature. If (M, g) has strongly positive curvature, then it has

secg > 0.

Proof. If the curvature operator Rg is positive-definite, then it has strongly positive

curvature, using, e.g., ω = 0. From (8.5), if Rg has strongly positive curvature, then

secg > 0. Alternatively, note that CR>0 ⊂ Cstr. pos. ⊂ Csec>0.

By Proposition 8.4, strongly positive curvature is an intermediate curvature con-

dition between R > 0 and sec > 0, and, analogously, strongly nonnegative curvature

is an intermediate curvature condition between R ≥ 0 and sec ≥ 0. In dimensions

≤ 3, these conditions are clearly equivalent.1 Remarkably, strongly positive curvature

and sec > 0 remain equivalent in dimension 4, see Proposition 8.9, and analogously

for nonnegative curvature.

Remark 8.5. From the above definition, if (M, g) has strongly positive curvature,

then the assignment M 3 p 7→ ωp ∈ ∧4TpM such that R+ω is positive-definite may,

in principle, fail to be smooth. However, since (8.6) is open, a standard perturbation

argument shows that there exists a smooth 4-form ω̃ ∈ ∧4TM such that R + ω̃

is positive-definite, see also Remark 8.7. The same argument does not work for

strongly nonnegative curvature, as the corresponding cone is not open in Sb(∧2V ),

see Remark 8.11 and Bettiol and Mendes [15, §6.4] for details.

1Recall that in dimensions ≤ 3, secg > 0 if and only if Rg > 0, see Besse [12, 1.119].
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Regarding the set of 4-forms that can be used to modify a given algebraic curva-

ture operator to make it positive-definite, we have the following elementary result.

Proposition 8.6. Given an operator R ∈ S(∧2V ) with strongly positive curvature,

the set ΩR := {ω ∈ ∧4V : R + ω > 0} is open, bounded and convex.

Proof. Openness of ΩR is evident from the definition. For any ω ∈ ∧4V , the induced

operator ω : ∧2 V → ∧2V via (2.13) clearly satisfies trω = 0, and hence has eigenval-

ues of both signs. Thus, if ω ∈ ΩR, then λω /∈ ΩR if |λ| is sufficiently large, proving

that ΩR is bounded. Finally, convexity of ΩR follows from the convexity of the subset

of positive-definite operators.

Remark 8.7. Since ΩR is bounded and convex, it has a center of mass ωR ∈ ΩR. If

(M, g) has strongly positive curvature, then the center of mass ωR of ΩR ⊂ ∧4TpM

can be used to construct a smooth 4-form ωR ∈ ∧4TM such that R+ ωR is positive-

definite.

We conclude this section proving that algebraic curvature operators can be real-

ized as the curvature operator of a Riemannian manifold at one given point.

Proposition 8.8. Let R ∈ Sb(∧2V ) be an algebraic curvature operator on V , with

dimV = n. Then there exists a smooth n-dimensional submanifold M ⊂ V × Rk,

k ≤ 1
2
n(n− 1), whose curvature operator at (0, 0) ∈M is given by R.

Proof. Since b(R) = 0, it follows from [53, p. 102], see also [92, p. 422], that there

exist symmetric linear operators Hj : V → V , 1 ≤ j ≤ k ≤ 1
2
n(n − 1), such that

R = −
∑k

j=1(Hj ∧Hj), where (Hj ∧Hj)(X ∧ Y ) := HjX ∧HjY . In particular,

〈R(X ∧ Y ), Z ∧W 〉 =
k∑
j=1

〈HjX,W 〉〈HjY, Z〉 − 〈HjX,Z〉〈HjY,W 〉. (8.7)

For each 1 ≤ j ≤ k, consider the quadratic functions fj : V × R → R, given by
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fj(v, yj) := yj + 1
2
〈Hjv, v〉, and set

f : V ×Rk → Rk, f(v, y1, . . . , yk) :=
(
f1(v, y1), . . . , fk(v, yk)

)
.

Then f(0, 0) = 0 and 0 ∈ Rk is a regular value of f , hence M := f−1(0) ⊂ V × Rk

is a smooth submanifold of codimension k. We have T(0,0)M = V , and the second

fundamental form II : V × V → Rk of M at this point is

II(v, w) = −
k∑
j=1

〈
∇v(grad fj), w

〉
grad fj = −

k∑
j=1

〈
Hjv, w

〉
grad fj.

Thus, (8.7) is the Gauss equation of M ⊂ V ×Rk, cf. (2.21), proving that its curvature

operator at (0, 0), with the induced metric, is exactly R.

8.2 Modified curvature operators in dimension 4

Modified curvature operators are particularly interesting in the lowest meaningful

dimension, dimV = 4. In this case, there is an isometry ∧4V ∼= R given by the

Hodge star operator, since any ω ∈ ∧4V is a multiple of the volume form of V . In

particular, any ω ∈ ∧4V determines an operator ω : ∧2 V → ∧2V via (2.13) which is

a multiple of ∗ : ∧2 V → ∧2V . Furthermore, strongly positive curvature and sec > 0

are equivalent in dimension 4. This was originally proved by Thorpe [97]; however, a

much simpler proof was communicated to us by Püttmann (see also [77]), as follows.

Proposition 8.9. An operator R ∈ S(∧2V ) with dimV ≤ 4 has strongly positive

curvature if and only if secR > 0.

Proof. The only nontrivial implication is that if dimV = 4 and secR > 0, then R has

strongly positive curvature. For each modified curvature operator (R+ω) ∈ S(∧2V ),
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denote by λ1(R + ω) := min Spec(R + ω) its smallest eigenvalue. Consider

λ := sup
ω∈∧4V

λ1(R + ω). (8.8)

Since the endomorphisms ω : ∧2 V → ∧2V are traceless by (2.13), the above supre-

mum λ is achieved at some ωmax ∈ ∧4V . Denote by Eλ the subspace of ∧2V formed

by the eigenvectors of R + ωmax with eigenvalue λ. If there exists σ ∈ Eλ ∩ Gr2(V ),

then λ = secR(σ) > 0 and hence R + ωmax is positive-definite. Otherwise, the map

q : ∧2 V → ∧4V ∼= R, q(α) := α ∧ α,

satisfies q(α) 6= 0 for all nonzero α ∈ Eλ. We claim that the image q(Eλ \ {0}) ⊂

R \ {0} is contained in a half-line, say R+ := {x > 0}. Indeed, this is clear if

dimEλ = 1, and if dimEλ ≥ 2, then Eλ\{0} is connected and hence so is q(Eλ\{0}).

Therefore, for any nonzero α ∈ Eλ, we can construct a new modified curvature

operator R + ωmax + α ∧ α that satisfies

〈
(R + ωmax + α ∧ α)(β), β

〉
=
〈
(R + ωmax)(β), β

〉
+ q(α)‖β‖2 > λ‖β‖2,

for all β ∈ ∧2V , contradicting the maximality (8.8) of λ.

A completely analogous statement to Proposition 8.9 holds for nonnegative cur-

vature, following the same proof. In addition, by Definition 8.3, we have:

Corollary 8.10. A Riemannian manifold (M, g) with dimM ≤ 4 has strongly posi-

tive curvature if and only if secg > 0, and analogously for nonnegative curvature.

Remark 8.11. In the case dimV = 4, it follows from Proposition 8.9 and Thorpe [96,

Thm. 2.1] that if R ∈ Sb(∧2V ) has strongly nonnegative curvature and there ex-

ists σ ∈ Gr2(V ) such that secR(σ) = 0, then there exists a unique ω ∈ ∧4V such
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that R + ω is positive-semidefinite, which is given by ωmax. In particular, if (M, g)

is a 4-manifold with strongly nonnegative curvature, then any ω such that R + ω

is positive-semidefinite is completely determined on the subset Z := π
(

sec−1
g (0)

)
,

where π : Gr2TM → M is the bundle projection. In connection to Remark 8.5,

this implies that smoothness of a 4-form ω = f volg ∈ ∧4TM such that R + ω is

positive-semidefinite is the same as smoothness of f : Z → R. On the other hand, if

dimV ≥ 5 and R ∈ Sb(∧2V ) has strong nonnegative curvature (but does not have

strongly positive curvature), then the uniqueness of ω ∈ ∧4V such that R + ω is

positive-semidefinite may fail. For instance, the curvature operator of S4 × S1 can

be modified with any sufficiently small multiple of the volume form of S4, remaining

positive-semidefinite.

Recall that curvature operators of 4-manifolds decompose as (5.22). In terms of

this decomposition, Proposition 8.9 yields the following statement regarding sec > 0.

Corollary 8.12. Let (M, g) be a Riemannian manifold with dimM = 4. Then

secg > 0 if and only if there exists a function f : M → R such that Rg + f ∗ > 0, i.e.,

W+
g +

(
scalg
12

+ f
)

Id Ric0
g(

Ric0
g

)t
W−

g +
(

scalg
12
− f

)
Id

 (8.9)

is a positive-definite operator on ∧2TM = ∧2
+TM ⊕ ∧2

−TM .

Analogously to Corollary 8.12, a similar characterization of sec⊥ > 0 also follows

from Proposition 8.9 and (5.23).

Corollary 8.13. Let (M, g) be a Riemannian manifold with dimM = 4. Then

sec⊥g > 0 if and only if there exists a function f : M → R such that 1
2
(Rg + ∗Rg∗) +

f∗ > 0, i.e., W+
g +

(
scalg
12

+ f
)

Id 0

0 W−
g +

(
scalg
12
− f

)
Id

 (8.10)
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is a positive-definite operator on ∧2TM = ∧2
+TM ⊕ ∧2

−TM .

We remark that the existence of f such that (8.9) is positive-definite forces a cer-

tain constraint on Wg, scalg and Ric0
g, which, in the Einstein case2 (8.10), is precisely

the inequality described in Gursky and LeBrun [48, Lemma 1], cf. Theorem 5.18.

We conclude this section by describing the known examples of 4-manifolds with

sec > 0 and sec ≥ 0 endowed with standard metrics, under the light of strongly

positive and nonnegative curvature. The corresponding modified curvature operators

are written according to the decomposition ∧2TM = ∧2
+TM⊕∧2

−TM , i.e., as in (8.9).

The curvature operator of the round sphere S4 is the identity, hence

RS4 + f ∗ =

(
(1 + f) Id 0

0 (1− f) Id

)
. (8.11)

This modified curvature operator is positive-definite if and only if −1 < f < 1.

In particular, at each p ∈ S4, the set ΩR ⊂ ∧4TpS
4 ∼= R of Proposition 8.6 is

ΩR = (−1, 1).

The modified curvature operator of CP 2 is given by

RCP 2 + f ∗ =

(
diag(6 + f, f, f) 0

0 (2− f) Id

)
. (8.12)

This operator is positive-definite if and only if 0 < f < 2. In particular, at each p ∈

CP 2, the set ΩR ⊂ ∧4TpCP
2 ∼= R of Proposition 8.6 is ΩR = (0, 2), see Remark 8.21.

The curvature operator of the standard product metric on S2 × S2 is described

in Section 6.1, from which it follows that

RS2×S2 + f ∗ =

(
diag(1 + f, f, f) 0

0 diag(1− f,−f,−f)

)
. (8.13)

2Recall Proposition 5.17.
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This operator is positive-semidefinite if and only if f = 0, cf. Remark 8.11.

Note that RS4 , RCP 2 and RS2×S2 are Einstein, i.e., have Ric0 = 0, and are homo-

geneous, i.e., do not depend on the point p ∈M .

Finally, we describe the curvature operator of CP 2#CP
2
, with the metric g0 in-

duced by the standard product metric under the submersion π : S3×S2 → CP 2#CP
2
,

see Proposition 6.11. Differently from the previous examples, this metric g0 is not ho-

mogeneous, hence the curvature operator is not constant. However,
(
CP 2#CP

2
, g0

)
admits an SU(2)-action of cohomogeneity one (see Remark 6.13), so its curvature

operator depends on only one parameter h ∈ [−1, 1], that corresponds to the height

on the second factor of S3 × S2. More precisely, if p̃ =
(
(z1, z2), (z3, h0)

)
∈ S3 × S2

and p = π(p̃) ∈ CP 2#CP
2
, then h(p) = h0 ∈ [−1, 1]. With this notation,

R
CP 2#CP

2 + f ∗ =

R11 + f Id R12(
R12

)t
R22 − f Id

 , (8.14)

where the blocks R11, R12 and R22 are given by:

R11 = diag
(

(1−h2)
√

2−h2−2h

2(2−h2)3/2
, (1−h2)

√
2−h2−2h

2(2−h2)3/2
, 2h4−7h2+12+4h

√
2−h2

2(2−h2)2

)
,

R12 =

 0 0 1−h2
2(2−h2)

0 1−h2
2(2−h2)

0
7h2−8

2(2−h2)2
0 0

 ,

R22 = diag
(

2h4−7h2+12−4h
√

2−h2
2(2−h2)2

, (1−h2)
√

2−h2+2h

2(2−h2)3/2
, (1−h2)

√
2−h2+2h

2(2−h2)3/2

)
.

It is not difficult to check that this operator is positive-semidefinite if and only if

f(h) = h(2− h2)−3/2, cf. Remark 8.11.

98



8.3 Constructions regarding strongly positive curvature

In this section, we discuss the relation between strongly positive curvature and

group actions, immersions, submersions and Cheeger deformations, following Bettiol

and Mendes [15, §2]. We remark that Propositions 8.14 and 8.15 were also observed

by Püttmann [77]. Although the results in this section are only stated for manifolds

with strongly positive curvature, the analogous statements for strongly nonnegative

curvature hold, and their proof is straightforward from the positive curvature case.

As the set of 4-forms that modify a curvature operator to become positive-definite

is bounded and convex (see Proposition 8.6), a routine averaging technique yields:

Proposition 8.14. Let (M, g) be a Riemannian manifold with strongly positive cur-

vature, on which a compact Lie group G acts isometrically. Then there exists a

G-invariant 4-form ω ∈ ∧4TM such that Rg + ω is positive-definite.

Proof. Let ω ∈ ∧4TM be such that Rg +ω is positive-definite and let ω :=
∫
G
g∗ω dg

be the result of averaging it with the G-action. Since the G-action is isometric, Rg

is G-invariant and hence Rg + ω = Rg +
∫
G
g∗ω dg =

∫
G
g∗(Rg + ω) dg, which is

positive-definite by convexity of the set of positive-definite operators.

We now study the behavior of modified curvature operators under immersions and

submersions, extending well-known results for sec > 0 to strongly positive curvature.

Proposition 8.15. Let i : (M, g)→ (M, g) be a totally geodesic immersion. If (M, g)

has strongly positive curvature, then also (M, g) has strongly positive curvature.

Proof. Given p ∈ M , set V = TpM and V = Ti(p)M . For any X ∈ V , we write

X = di(p)X ∈ V . Since i : M → M is totally geodesic, from the Gauss formula

(2.21), we have that 〈R(X ∧ Y ), Z ∧W 〉 = 〈R(X ∧ Y ), Z ∧W 〉. Thus, if there exists

ω ∈ ∧4V such that R+ω is positive-definite, then its restriction ω = (di(p))∗ω ∈ ∧4V

is such that R + ω is positive-definite.
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Theorem 8.16. Let π : (M, g) → (M, g) be a Riemannian submersion. If (M, g)

has strongly positive curvature, then also (M, g) has strongly positive curvature.

Proof. Given that strongly positive curvature is a pointwise condition, choose p ∈M

and p ∈ M such that π(p) = p, and set V = TpM and V = TpM . For any X ∈ V ,

we denote by X ∈ V its horizontal lift and consider the inclusion map i : V ↪→ V ,

i(X) = X, through which we identify V with a subspace of V , that we call horizontal.

We denote by V V the orthogonal complement of this subspace, that we call vertical.

The tensor A of the submersion satisfies AXY = 1
2
[X,Y ]V for all X, Y ∈ V , where

X,Y are horizontal lifts of local extensions of X, Y , see (2.25). Thus, A induces a

skew-symmetric map A : V × V → V V , which can be interpreted as A : ∧2 V → V V .

Set α := A∗A ∈ S(∧2V ), i.e., for all X, Y, Z,W ∈ V ,

〈α(X ∧ Y ), Z ∧W 〉 = 〈AXY,AZW 〉. (8.15)

Clearly, α : ∧2 V → ∧2V is a positive-semidefinite operator, whose rank is ≤ dimV V .

From the Gray-O’Neill formula (2.27),

〈R(X ∧ Y ), Z ∧W 〉 = 〈R(X ∧ Y ), Z ∧W 〉+ 2〈AXY ,AZW 〉

− 〈AYZ,AXW 〉+ 〈AXZ,AYW 〉

= 〈R(X ∧ Y ), Z ∧W 〉+ 3〈α(X ∧ Y ), Z ∧W 〉

− 〈α(Y ∧ Z), X ∧W 〉 − 〈α(Z ∧X), Y ∧W 〉

− 〈α(X ∧ Y ), Z ∧W 〉

= 〈R(X ∧ Y ), Z ∧W 〉+ 3〈α(X ∧ Y ), Z ∧W 〉

− 3b(α)(X,Y , Z,W ).

Thus, if there exists ω ∈ ∧4V such that R + ω is positive-definite, it follows that

R + ω becomes positive-definite by setting ω = i∗ω + 3b(α) ∈ ∧4V .
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Remark 8.17. The above way of rewriting the Gray-O’Neill formula for curvature

operators as

〈R(X ∧ Y ), Z ∧W 〉 = 〈R(X ∧ Y ), Z ∧W 〉+ 3〈α(X ∧ Y ), Z ∧W 〉

− 3b(α)(X,Y , Z,W ),

(8.16)

where α is given by (8.15), seems more natural than its conventional presentation

(2.27). Notice that formula (8.16) can also be deduced from Lemma 8.1 and the

standard Gray-O’Neill formula (2.28), since these imply that R and i∗R + 3α must

differ by an element of ∧4V , namely b
(
R− i∗R− 3α

)
= −3b(α).

Recall from (2.16) that the curvature operator of a compact Lie group (G, Q) is

positive-semidefinite, hence (G, Q) has strongly nonnegative curvature. It follows eas-

ily from (2.18) that products of manifolds with strongly nonnegative curvature also

have strongly nonnegative curvature. Thus, if (M, g) has strongly nonnegative cur-

vature and an isometric action of a compact Lie group G, then the product manifold(
M × G, g⊕ 1

t
Q
)

and hence the Cheeger deformation (M, gt) have strongly nonnega-

tive curvature for all t ≥ 0, by (the nonnegative curvature version of) Theorem 8.16,

cf. Proposition 4.5. Furthermore, just like Cheeger deformations preserve sec > 0,

they also preserve strongly positive curvature, as follows.

Proposition 8.18. If (M, g) has strongly positive curvature and an isometric action

of a compact Lie group G, then also the corresponding Cheeger deformation (M, gt)

has strongly positive curvature for all t ≥ 0.

Proof. In this proof, we use the same notation as in Chapter 4. Applying (8.16) to the

Riemannian submersion ρ :
(
M × G, g⊕ 1

t
Q
)
→ (M, gt), we have that the curvature

operator Rt : ∧2 TpM → ∧2TpM of (M, gt) is given by

〈
Rt

(
C−1
t (X ∧ Y )

)
, C−1

t (Z ∧W )
〉
t

= 〈R(X ∧ Y ), Z ∧W 〉
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+
t3

4
Q
(
[P0Xm, P0Ym], [P0Zm, P0Wm]

)
+ 3

〈
α
(
C−1
t X ∧ C−1

t Y
)
, C−1

t Z ∧ C−1
t W

〉
− 3b(α)

(
C−1
t X,C−1

t Y ,C−1
t Z,C−1

t W
)
,

where α = A∗A is the positive-semidefinite operator given by (8.15). Similarly, the

second term is a multiple of the quadratic form associated to the positive-semidefinite

operator L∗L, where L(X ∧ Y ) = [P0Xm, P0Ym]. Notice that the above formula

recovers the formula for sectional curvatures in Proposition 4.6.

If there exists ω such that R + ω is positive-definite, then setting ωt so that

ωt

(
C−1
t X,C−1

t Y ,C−1
t Z,C−1

t W
)

= ω(X, Y, Z,W )

+ 3b(α)
(
C−1
t X,C−1

t Y ,C−1
t Z,C−1

t W
)
,

it follows that Rt + ωt is positive-definite for all t ≥ 0, concluding the proof.

Via the above formula for the curvature operator of (M, gt), other results from

Chapter 4 regarding evolution of sectional curvatures along Cheeger deformations

can be transplanted to the realm of strongly positive (and nonnegative) curvature.

8.4 Homogeneous spaces

Let (G, Q) be a compact Lie group endowed with a bi-invariant metric. Let H be a

closed subgroup, and denote by h the corresponding Lie subalgebra of g. Define m as

the subspace such that g = h⊕m is aQ-orthogonal direct sum. Recall that the tangent

space to the homogeneous space G/H at the identity class (eH) ∈ G/H is identified

with m, and the isotropy representation of H on T(eH)G/H ∼= m corresponds to the

adjoint representation Ad: H → SO(m). In particular, G-invariant metrics on G/H

are in 1-to-1 correspondence with Ad(H)-invariant inner products on m. Any such

inner product 〈·, ·〉 is determined by the Q-symmetric H-equivariant automorphism
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P : m→ m such that 〈X, Y 〉 = Q(PX, Y ).

The G-invariant metric on G/H induced by the inner product Q|m, i.e., correspond-

ing to P = Id, is called a normal homogeneous metric. Consider the Riemannian

submersion π : (G, Q)→ (G/H, Qm) given by the quotient map. As the horizontal lift

of X ∈ m is simply its inclusion X ∈ g and the vertical projection XV is given by its

component Xh in h, the corresponding operator αG/H ∈ S(∧2m) defined in (8.15) can

be computed using (2.25) as:

〈
αG/H(X ∧ Y ), Z ∧W

〉
= 1

4
Q
(
[X, Y ]h, [Z,W ]h

)
. (8.17)

Thus, the curvature operator of the normal homogeneous space (G/H, Q|m) is

〈
RG/H(X ∧ Y ), Z ∧W

〉
= 1

4
Q([X, Y ], [Z,W ]) + 3

4
Q
(
[X, Y ]h, [Z,W ]h

)
− 3b(αG/H)(X, Y, Z,W ).

(8.18)

As observed above, (G, Q) has strongly nonnegative curvature, and hence (G/H, Q|m)

also has strongly nonnegative curvature. Furthermore, it is clear from (8.18) that the

operator RG/H : ∧2 m → ∧2m can be modified with the 4-form 3b(αG/H) ∈ ∧4m to

become positive-semidefinite.

More generally, if P : m → m is not the identity map, the curvature operator

of the corresponding G-invariant metric on G/H can be computed in terms of the

bilinear forms B± given by

B±(X, Y ) := 1
2

(
[X,PY ]∓ [PX, Y ]

)
,

using a formalism due to Püttmann [77, Lemma 3.6]. Similarly to (8.15), define the

positive-semidefinite operator β ∈ S(∧2m), by

〈
β(X ∧ Y ), Z ∧W

〉
:= 1

4
Q
(
[X, Y ]m, [Z,W ]m

)
, (8.19)
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where Xm denotes the component of X ∈ g in m. Rearranging the formula for the

curvature operator R of G/H in terms of the Bianchi map (analogously to the proof

of Theorem 8.16), one obtains the following expression:

〈R(X ∧ Y ), Z ∧W 〉 = 1
2

(
Q(B−(X, Y ), [Z,W ]) +Q([X, Y ], B−(Z,W ))

)
+Q(B+(X,W ), P−1B+(Y, Z))

−Q(B+(X,Z), P−1B+(Y,W ))

− 3〈β(X ∧ Y ), Z ∧W 〉+ 3b(β)(X, Y, Z,W ).

(8.20)

Note that in the normal homogeneous case discussed above, B+(X, Y ) = 0 and

B−(X, Y ) = [X, Y ], so formula (8.20) simplifies to RG/H = 4RG − 3β + 3b(β), where

RG is the curvature operator (2.16) of (G, Q). As RG = α+β by (8.17) and (8.19), it

follows that this agrees with RG/H = RG + 3α− 3b(α), which is the formula in (8.18).

Finally, we remark that the curvature operator (8.20) of a general G-invariant metric

on G/H might fail to have strongly nonnegative curvature.

We conclude this section with the observation that the moduli space of G-invariant

metrics with strongly nonnegative curvature on a homogeneous space G/H is path-

connected (actually, in some sense, star-shaped). The corresponding statement re-

garding sec ≥ 0 was proved by Schwachhöfer and Tapp [82, Prop 1.1], as an applica-

tion of Cheeger deformations, and our proof is based on the same method.

Theorem 8.19. The moduli space of G-invariant metrics on a compact homogeneous

space G/H with strongly nonnegative curvature is path-connected.

Proof. Let g∗ := Q|m be a normal homogeneous metric. Given an invariant metric

g on G/H with strongly nonnegative curvature, let gt be the corresponding Cheeger

deformation with respect to the left-translation G-action on G/H. Consider the path
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of metrics (1 + t) gt obtained by rescaling gt. From (4.6) and (4.8), we have

(1 + t) gt(X, Y ) = Q
(
(1 + t)Pt(Xm), Ym

)
= Q

(
(1 + t)P0 (Id +tP0)−1Xm, Ym

)
= Q

(
P0

(
1

1+t
Id + t

1+t
P0

)−1

Xm, Ym

)
.

As t ↗ +∞, the above clearly converges to Q(Xm, Ym). Thus, (1 + t) gt converges

to g∗ as t ↗ +∞. Evidently, (1 + t)gt converges to g as t ↘ 0. By the nonnegative

curvature version of Proposition 8.18, each metric (1 + t) gt has strongly nonnegative

curvature. Therefore, any two G-invariant metrics on G/H with strongly nonnegative

curvature can be joined by a path of G-invariant metrics with the same property,

passing through a normal homogeneous metric.

8.5 Compact Rank One Symmetric Spaces

In this section, we discuss metrics with strongly positive (and nonnegative) cur-

vature on the Compact Rank One Symmetric Spaces (CROSS). Recall that these are

the homogeneous spaces G/K, where (G,K) is a symmetric pair of rank one, i.e.:

(i) Spheres Sn = SO(n+ 1)/SO(n);

(ii) Complex projective spaces CP n = SU(n+ 1)/S(U(n)U(1));

(iii) Quaternionic projective spaces HP n = Sp(n+ 1)/Sp(n);

(iv) Cayley plane CaP 2 = F4/Spin(9).

The standard metrics on the above manifolds are normal homogeneous metrics,3 and

hence have strongly nonnegative curvature (see Section 8.4). We now analyze in

which cases the curvature operator of the above spaces can be further modified to

3Furthermore, the normal homogeneous metric in each of the above is the unique G-invariant
metric, since the corresponding isotropy representation Ad(K) is irreducible.

105



become positive-definite. Throughout this section, Sn, CP n, HP n and CaP 2 are

always assumed to be endowed with their standard metric.

Theorem 8.20. The spaces Sn, CP n and HP n have strongly positive curvature.

Proof. The curvature operator of Sn is the identity map Id: ∧2 TSn → ∧2TSn,

which is clearly positive-definite, hence Sn has strongly positive curvature. The

curvature operators of CP n and HP n are positive-semidefinite, but have nontrivial

kernel. However, since the Hopf bundles

S1 −→ S2n+1 −→ CP n and S3 −→ S4n+3 −→ HP n

are Riemannian submersions, Theorem 8.16 implies that CP n and HP n also have

strongly positive curvature.

Remark 8.21. In the case of CP n, the operator α defined in (8.15) can be computed

to be ωFS ⊗ ωFS, where ωFS is the standard Kähler form. In particular, the 4-form

3b(α) = 1
2
ωFS ∧ ωFS modifies the curvature operator of CP n to become positive-

definite. In the case n = 2 computed explicitly in (8.12), this 4-form corresponds

precisely to the volume form of CP 2, which is the center of mass 1 ∈ ΩR.

An analogous statement holds for HP n, in terms of its hyper-Kähler structure.

Notice that the above argument does not apply to CaP 2, given that there are no

submersions from round spheres to the Cayley plane.4 The following result (combined

with Theorem 8.16) provides an alternative proof of this fact.

Theorem 8.22. The space CaP 2 does not have strongly positive curvature.

Proof. Assume by contradiction that CaP 2 has strongly positive curvature. Then,

by Proposition 8.14, there exists an F4-invariant ω ∈ ∧4TCaP 2 such that R + ω is

4Even more, for topological reasons, there are no fiber bundles π : Sn → CaP 2, see Browder [21].
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positive-definite. Notice that ω 6= 0, since R is positive-semidefinite but has nontrivial

kernel. Since CaP 2 = F4/Spin(9) is a compact symmetric space, ω is F4-invariant if

and only if it is harmonic, see e.g. Helgason [50, p. 227]. By Hodge theory, this

implies that [ω] ∈ H4(CaP 2,R) is a nontrivial cohomology class, contradicting the

fact that b4(CaP 2,R) = 0.

The first examples of algebraic curvature operators R ∈ Sb(∧2V ) with dimV ≥ 5,

that have secR > 0 but do not have strongly positive curvature were found by

Zoltek [113]. As proved in Proposition 8.8, every algebraic curvature operator can

be realized as the curvature operator of a Riemannian manifold at one point. Never-

theless, to our knowledge, no closed manifolds with sec > 0 were known not to have

strongly positive curvature, and, by Theorem 8.22, the Cayley plane CaP 2 is one such

example. Other examples can be found on homogeneous spaces such as W 24, B13,

S4n+3, and S15, see Theorems 9.8 and 9.11, and Remarks 9.12, 10.12 and 10.15; the

two latter remarkably have sec > 0 and do not have strongly nonnegative curvature.

We stress that the above does not imply that the manifold CaP 2 does not carry

any metrics with strongly positive curvature. In fact, this is a topic of current

investigation by the author.
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CHAPTER 9

HOMOGENEOUS CLASSIFICATION

The goal of this chapter is to provide the classification of simply-connected ho-

mogeneous spaces with strongly positive curvature, which follows from Bettiol and

Mendes [14, 15]. More precisely, we prove the following result:

Theorem 9.1. All simply-connected homogeneous spaces with sec > 0 admit a ho-

mogeneous metric with strongly positive curvature, except for the Cayley plane CaP 2.

The simply-connected homogeneous spaces that admit an invariant metric with

sec > 0 were classified in even dimensions by Wallach [102] and in odd dimensions

by Bérard-Bergery [7], see also Aloff and Wallach [3], Berger [8], and Wilking and

Ziller [107]. Apart from the CROSS described in Section 8.5, other examples appear in

dimensions 6, 7, 12, 13 and 24. More explicitly, the complete list of simply-connected

closed manifolds to admit a homogeneous metric with sec > 0 is the following:

(i) Compact Rank One Symmetric Spaces: Sn, CP n, HP n and CaP 2;

(ii) Wallach flag manifolds: W 6 = SU(3)/T2, W 12 = Sp(3)/Sp(1)Sp(1)Sp(1) and
W 24 = F4/Spin(8);

(iii) Aloff-Wallach spaces: W 7
k,` = SU(3)/S1

k,`, gcd(k, `) = 1, k`(k + `) 6= 0;

(iv) Aloff-Wallach space: W 7
1,1 = SU(3)SO(3)/U(2);

(v) Berger spaces: B7 = SO(5)/SO(3) and B13 = SU(5)/Sp(2) · S1.

For details on the construction of these spaces, see Sections 9.3, 9.4, 9.5, 9.6, 9.7, 9.8,

and 10.1, as well as Ziller [112]. In order to prove Theorem 9.1, we show that all the

above homogeneous spaces, except for CaP 2, have strongly positive curvature.
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The case of CROSS follows from the results in Section 8.5. Namely, by The-

orem 8.20, Sn, CP n and HP n endowed with their standard homogeneous metrics

have strongly positive curvature. Furthermore, up to rescaling, CaP 2 = F4/Spin(9)

admits a unique F4-invariant metric (the normal homogeneous metric) because the

corresponding isotropy representation is irreducible. Thus, by Theorem 8.22, there

are no homogeneous metrics with strongly positive curvature on CaP 2.

Regarding the remaining spaces, with two exceptions, the construction of homo-

geneous metrics with strongly positive curvature uses the fact that they are the total

space of a homogeneous fibration. In other words, the above spaces G/H are such

that there exists an intermediate Lie group H ⊂ K ⊂ G and a homogeneous bundle

K/H −→ G/H
π−→ G/K, π(gH) = gK. (9.1)

A unified approach to construct homogeneous metrics with sec > 0 on G/H as above

was discovered by Wallach [102, §7], see also Eschenburg [37] and Ziller [112, Prop.

4.3]. This approach, that we call Wallach’s Theorem (see Theorem 9.2), gives suffi-

cient conditions on (9.1) to imply that G/H has homogeneous metrics with sec > 0.

Along Sections 9.1 and 9.2, we strengthen it to handle strongly positive curvature.

Denote by h ⊂ k ⊂ g the Lie algebras of H ⊂ K ⊂ G. With respect to the

bi-invariant metric Q on G, consider the Q-orthogonal splittings

g = k⊕m, [k,m] ⊂ m, and k = h⊕ p, [h, p] ⊂ p, (9.2)

so that there are natural identifications of the tangent spaces

m ∼= T(eK)G/K, p ∼= T(eH)K/H, and m⊕ p ∼= T(eH)G/H.

With the above, we also identify Ad-invariant inner products on m with the induced G-
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invariant metrics on G/K, Ad-invariant elements of ∧km with the induced G-invariant

forms in ∧kT (G/K), and analogously for the homogeneous spaces K/H and G/H.

Consider the homogeneous metrics on G/H given by

gt := tQ|p ⊕Q|m, t > 0, (9.3)

so that g1 is a normal homogeneous metric, and gt is obtained by rescaling it by t in

the vertical direction for (9.1). With this setup, Wallach’s Theorem reads as follows:

Theorem 9.2. Suppose that the homogeneous fibration (9.1) satisfies:

(i) the base (G/K, Q|m) is a CROSS and (g, k) is a symmetric pair;1

(ii) the fiber (K/H, Q|p) has sec > 0;

(iii) the bundle is fat.2

Then (G/H, gt) has sec > 0 for all 0 < t < 1.

In order to strengthen the hypotheses above to yield that (G/H, gt) has strongly

positive curvature for all 0 < t < 1, we introduce the notion of strongly fat ho-

mogeneous bundles in Section 9.1. The strengthened version of Wallach’s Theorem

(Theorem 9.5) is established in Section 9.2. Along Sections 9.3, 9.4, 9.6 and 9.8 we

verify that the above listed homogeneous spaces with sec > 0 satisfy its hypotheses,

with two exceptions: the Berger space B7 and the Wallach flag manifold W 24.

The Berger space B7 does not have the structure (9.1) of a homogeneous bundle,

and it is verified to have strongly positive curvature in Section 9.7 by direct inspection.

The Wallach flag manifold W 24 admits the structure (9.1) of a homogeneous

bundle, with base space given by the Cayley plane CaP 2 with its standard metric.

Endowing W 24 with any of the metrics gt defined in (9.3), the bundle projection

1Recall that (g, k) is a symmetric pair if and only if [m,m] ⊂ k.

2See Definition 9.3.
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π : (W 24, gt) → CaP 2 is a Riemannian submersion. Thus, by Theorems 8.16 and

8.22, the manifold (W 24, gt) does not have strongly positive curvature. A direct

construction of homogeneous metrics with strongly positive curvature on W 24 is car-

ried out in Section 9.5 using different methods, which were developed in Bettiol and

Mendes [14].

9.1 Strong fatness

As introduced by Weinstein [104], a bundle is fat if all planes spanned by a vertical

and a horizontal vector have positive curvature, see also Ziller [110]. In the above

setup of homogeneous bundles, this property can be stated as follows, cf. (8.18).

Definition 9.3. The homogeneous bundle (9.1) is called fat if, for all X ∈ m and

Y ∈ p, we have that ‖[X, Y ]‖2 = 0 implies X = 0 or Y = 0.

In order to establish the appropriate generalization to strong fatness, recall that

∧2(m⊕ p) = ∧2m⊕ ∧2p⊕ (m⊗ p),

∧4(m⊕ p) = ∧4m⊕ ∧4p⊕ (∧3m⊗ p)⊕ (∧2m⊗ ∧2p)⊕ (m⊗ ∧3p).

(9.4)

Consider the linear map L given on decomposable elements of m⊗ p by

L : m⊗ p→ m, L(X ∧ Y ) := [X, Y ], (9.5)

and extended by linearity to the entire m⊗ p. This linear map induces the operator

F : m⊗ p→ m⊗ p, F := L∗L, (9.6)

which is clearly positive-semidefinite and has nontrivial kernel3 equal to kerL. Given

3Unless dim p = 1, in which case F can have trivial kernel, and hence be positive-definite.
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that F is a self-adjoint linear operator on a subspace of ∧2(m⊕ p), we can to add to

it a 4-form τ ∈ ∧2m ⊗ ∧2p ⊂ ∧4(m ⊕ p), by using (2.13). This allows to state the

appropriate strengthening of fatness to study strongly positive curvature as follows:

Definition 9.4. The homogeneous bundle (9.1) is called strongly fat if there exists

τ ∈ ∧2m ⊗ ∧2p ⊂ ∧4(m ⊕ p), such that the operator (F + τ) : m ⊗ p → m ⊗ p is

positive-definite.

Since decomposable elements of m⊗ p are of the form X ∧ Y , where X ∈ m and

Y ∈ p, and
〈
(F + τ)(X ∧ Y ), X ∧ Y

〉
= ‖L(X ∧ Y )‖2 = ‖[X, Y ]‖2, strong fatness

clearly implies fatness.

9.2 Strong Wallach Theorem

The goal of this section is to prove the following strengthening of Wallach’s The-

orem (Theorem 9.2), from Bettiol and Mendes [15, Thm. 4.2].

Theorem 9.5. Suppose that the homogeneous fibration (9.1) satisfies:

(i) the base (G/K, Q|m) is a CROSS different from CaP 2 and (g, k) is a symmetric
pair;

(ii) the fiber (K/H, Q|p) has constant positive curvature, and either (k, h) is a sym-
metric pair or dimK/H ≤ 3;

(iii) the bundle is strongly fat.

Then (G/H, gt) has strongly positive curvature for all 0 < t < 1.

In the proof of this result, as well as in the remainder of this chapter, we make

repeated use of the following fact that follows easily from Lemma 3.5.

Lemma 9.6. Let V be a finite-dimensional real vector space, endowed with an in-

ner product. Let A and B be symmetric operators on V , such that A is positive-

semidefinite and B : kerA→ kerA is positive-definite. Then there exists s∗ > 0 such

that A+ sB is positive-definite for all 0 < s < s∗.

112



Proof. Let SV = {x ∈ V : ‖x‖ = 1} be the unit sphere in V , and set

f : [0, 1]× SV → R, f(s, x) := 〈(A+ sB)x, x〉.

Since A is positive-semidefinite, f(0, x) ≥ 0. Furthermore, since B : kerA → kerA

is positive-definite, ∂f
∂s

(0, x)
∣∣
s=0

= 〈Bx, x〉 > 0 for all x such that f(0, x) = 0. The

result now follows from Lemma 3.5.

We are now ready to prove the main result of this section.

Proof of Theorem 9.5. The starting point to show that (G/H, gt) has strongly positive

curvature is to compute its curvature operator. This is done with the Riemannian

submersions (
G× K, Q⊕ 1

s
Q|k
) π1−→ (G, Qt)

π2−→ (G/H, gt), (9.7)

where π2 is the quotient map and π1 is of the form (4.2), corresponding to the fact

that Qt := tQ|k ⊕ Q|m, t < 1, is the result of a Cheeger deformation of (G, Q) with

respect to the K-action by left multiplication. From (4.8), it is easy to see that

t = 1
1+s

, where s is the parameter of the Cheeger deformation. In particular, large

values of s = 1−t
t
> 0 correspond to small values of 0 < t < 1.

It follows from (4.12) that the horizontal lift of X ∈ g with respect to the Rieman-

nian submersion π1 is X =
(
Xm + 1

1+s
Xk,− s

1+s
Xk

)
=
(
Xm + tXk, (t− 1)Xk

)
∈ g⊕ k,

where Xm and Xk respectively denote the components of X ∈ g in m and k. Thus,

by (2.18) and (2.16), the curvature operator RG×K of
(
G× K, Q⊕ 1

s
Q|k
)

satisfies

〈RG×K(X ∧ Y ), Z ∧W 〉 = 1
4
Q
(
[Xm + tXk, Ym + tYk], [Zm + tZk,Wm + tWk]

)
+ 1

4s
Q
(
[(t− 1)Xk, (t− 1)Yk], [(t− 1)Zk, (t− 1)Wk]

)
= 1

4
Q
(
[Xm + tXk, Ym + tYk], [Zm + tZk,Wm + tWk]

)
+ t(1−t)3

4
Q
(
[Xk, Yk], [Zk,Wk]

)
.
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Denote by α1 and α2 the positive-semidefinite operators on ∧2(m ⊕ p) induced

as in (8.15) by the tensors A of the Riemannian submersions π1 and π2 respectively.

The tensor A1 of π1 can be computed using (2.25) and (9.2) as follows:

(A1)XY = 1
2

[
X,Y

]V
= 1

2

([
Xm + tXk, Ym + tYk

]
,
[
(1− t)Xk, (1− t)Yk

])V
= 1

2

(
(1− t)

[
Xm + tXk, Ym + tYk

]
k
+ t
[
(1− t)Xk, (1− t)Yk

]
,

(1− t)
[
Xm + tXk, Ym + tYk

]
k
+ t
[
(1− t)Xk, (1− t)Yk

])
= 1

2

(
(1− t)[Xm, Ym] + t(1− t)[Xk, Yk], (1− t)[Xm, Ym] + t(1− t)[Xk, Yk]

)
= (1−t)

2

(
[Xm, Ym] + t[Xk, Yk], [Xm, Ym] + t[Xk, Yk]

)
.

Thus, the operator α1 is given by the following expression, where X, Y, Z,W ∈ m⊕p,

〈α1(X ∧ Y ), Z ∧W 〉 = 〈AXY ,AZW 〉

=
(
1 + 1

s

) (1−t)2
4

Q
(
[Xm, Ym] + t[Xp, Yp], [Zm,Wm] + t[Zp,Wp]

)
= 1−t

4
Q
(
[Xm, Ym] + t[Xp, Yp], [Zm,Wm] + t[Zp,Wp]

)
.

The tensor A2 of π2 can also be computed using (2.25), resulting

(A2)XY = 1
2
[X, Y ]h,

where Xh denotes the component of X in h. Thus, the operator α2 is given by the

following expression, where X, Y, Z,W ∈ m⊕ p, cf. (8.17),

〈α2(X ∧ Y ), Z ∧W 〉 = t
4
Q
(
[X, Y ]h, [Z,W ]h

)
.

Thus, applying twice formula (8.16) with the setup (9.7), we obtain that the
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curvature operator Rt : ∧2 (m⊕ p)→ ∧2(m⊕ p) of (G/H, gt) is given by

〈Rt(X ∧ Y ), Z ∧W 〉t = 〈RG×K(X ∧ Y ), Z ∧W 〉

+ 3〈α1(X ∧ Y ), Z ∧W 〉+ 3〈α2(X ∧ Y ), Z ∧W 〉

− 3b(α1)(X,Y , Z,W )− 3b(α2)(X, Y, Z,W )

= 1
4
Q
(
[Xm + tXp, Ym + tYp], [Zm + tZp,Wm + tWp]

)
(9.8)

+ t(1−t)3
4

Q
(
[Xp, Yp], [Zp,Wp]

)
+ 3(1−t)

4
Q
(
[Xm, Ym] + t[Xp, Yp], [Zm,Wm] + t[Zp,Wp]

)
+ 3t

4
Q
(
[X, Y ]h, [Z,W ]h

)
− 3b(α1)(X,Y , Z,W )− 3b(α2)(X, Y, Z,W ).

Note that in the limit t → 1, the above coincides with the formula (8.18) for the

curvature operator of the normal homogeneous space (G/H, g1). Fix 0 < t < 1 and

consider the positive-semidefinite operator given by

R̂ := Rt + 3b(α1) + 3b(α2) : ∧2 (m⊕ p)→ ∧2(m⊕ p).

Then (G/H, gt) has strongly positive curvature if and only if there exists ω ∈ ∧4(m⊕p)

such that R̂ + ω is positive-definite.

Using the natural decomposition (9.4), we can write R̂ in blocks as follows:



∧2m ∧2p m⊗ p

∧2m R̂11 R̂12 0

∧2p R̂ t
12 R̂22 0

m⊗ p 0 0 R̂33

 (9.9)

The zeros above are obtained directly from (9.2) and (9.8), using that [m,m] ⊂ k,
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since G/K is a CROSS. Moreover, the symmetric positive-semidefinite operators

R̂11 : ∧2 m→ ∧2m, R̂22 : ∧2 p→ ∧2p, R̂33 : m⊗ p→ m⊗ p

can be explicitly computed from (9.8) as follows:

〈
R̂11(X ∧ Y ), Z ∧W

〉
t

= (1− 3t
4

)Q
(
[X, Y ], [Z,W ]

)
+ 3t

4
Q
(
[X, Y ]h, [Z,W ]h

)
,〈

R̂22(X ∧ Y ), Z ∧W
〉
t

= t
4
Q
(
[X, Y ], [Z,W ]

)
+ 3t

4
Q
(
[X, Y ]h, [Z,W ]h

)
, (9.10)〈

R̂33(X ∧ Y ), Z ∧W
〉
t

= t2

4
Q
(
[X, Y ], [Z,W ]

)
.

We now use the hypotheses on G/K and K/H to relate the their curvature operators,

given by (8.17) and (8.18), with the above. Since [m,m] ⊂ k, we have that αG/K is a

multiple of RG/K and hence b(αG/K) = 0. Analogously, if K/H is locally isometric to a

symmetric space, then [p, p] ⊂ h and hence αK/H is a multiple of RK/H, so b(αK/H) = 0.

Else, dimK/H ≤ 3 and hence b(αK/H) ∈ ∧4p = {0}.

In either case, b(αG/K) = 0 and b(αK/H) = 0. Consequently, we get the following:

〈
R̂11(X ∧ Y ), Z ∧W

〉
t

= (1− 3t
4

)
〈
RG/K(X ∧ Y ), Z ∧W

〉
+ 3t

4
Q
(
[X, Y ]h, [Z,W ]h

)
,〈

R̂22(X ∧ Y ), Z ∧W
〉
t

= t
〈
RK/H(X ∧ Y ), Z ∧W

〉
, (9.11)〈

R̂33(X ∧ Y ), Z ∧W
〉
t

= t2

4

〈
F (X ∧ Y ), Z ∧W

〉
,

where F is related to strong fatness, and given by (9.6).

Let us first analyze the restriction of R̂ to ∧2m⊕∧2p, i.e., the upper 2× 2 block

of (9.9). Since K/H has constant positive curvature, we have that R̂22 = RK/H is

positive-definite. Thus, the kernel of the positive-semidefinite operator

R̂ : ∧2 m⊕ ∧2p→ ∧2m⊕ ∧2p (9.12)
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must be contained in ∧2m. It follows from Theorem 8.20 that, since G/K is a CROSS

different from CaP 2, there exists η ∈ ∧4m such that RG/K + η, and hence R̂11 + η, is

positive-definite. In particular, we have that



∧2m ∧2p m⊗ p

∧2m η 0 0

∧2p 0 0 0

m⊗ p 0 0 0


is positive-definite on the kernel of (9.12). Thus, Lemma 9.6 implies that there exists

an ε1 > 0 such that R̂ + ε1η is positive-definite on ∧2m⊕ ∧2p.

Finally, we analyze the positive-semidefinite operator

(
R̂ + ε1η

)
: ∧2 (m⊕ p)→ ∧2(m⊕ p). (9.13)

Since its restriction to ∧2m⊕∧2p is positive-definite, its kernel must lie in m⊗p. The

restriction of (9.13) to this subspace coincides with R̂33 = t2

4
F . By strong fatness,

there exists τ ∈ ∧2m⊗∧2p such that F +τ is positive-definite on m⊗p. In particular,



∧2m ∧2p m⊗ p

∧2m 0 τ 0

∧2p τ 0 0

m⊗ p 0 0 τ


is positive-definite on the kernel of (9.13). Thus, Lemma 9.6 implies that there exists

an ε2 > 0 such that R̂ + ε1η + ε2τ is positive-definite on ∧2(m⊕ p). In other words,

ω = ε1η + ε2τ ∈ ∧4(m ⊕ p) is such that the modified curvature operator R̂ + ω is

positive-definite, hence (G/H, gt) has strongly positive curvature.
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9.3 Wallach flag manifold W 6

Let the Lie groups H ⊂ K ⊂ G be given by T2 ⊂ U(2) ⊂ SU(3), where:

U(2) =
{

diag
(
A, detA

)
∈ SU(3) : A ∈ U(2)

}
T2 =

{
diag(z1, z2, z1z2) : zj ∈ S1

}
The corresponding homogeneous bundle (9.1) is

CP 1 −→ W 6 −→ CP 2.

The base CP 2 is a CROSS, the fiber CP 1 ∼= S2
(

1
2

)
has constant positive curvature

and dimension ≤ 3, and both (g, k) and (k, h) are symmetric pairs.

The only other condition needed to apply Theorem 9.5 is strong fatness. Up to

rescaling, the bi-invariant metric on g = su(3) is given by

Q(X, Y ) = −1
2

Re tr(XY ). (9.14)

The Q-orthogonal complements defined in (9.2) are m ∼= C2 and p ∼= C, and can

be identified as the subspaces m = span{11, I1,12, I2} and p = span{13, I3} of su(3),

where 1r, Ir, 1 ≤ r ≤ 3, are the Q-orthonormal matrices given by:

11 =

0 0 0
0 0 1
0 −1 0

 12 =

0 0 −1
0 0 0
1 0 0

 13 =

 0 1 0
−1 0 0
0 0 0



I1 =

0 0 0
0 0 i
0 i 0

 I2 =

0 0 i
0 0 0
i 0 0

 I3 =

0 i 0
i 0 0
0 0 0


(9.15)
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The Lie bracket operator L : m⊗ p→ m defined in (9.5) is determined by:

[·, ·] 13 I3

11 12 −I2

I1 −I2 −12

12 −11 I1

I2 I1 11

Thus, by (9.6), kerF = kerL is spanned by the following 4 vectors of m⊗ p:

11 ∧ 13 + I1 ∧ I3, −11 ∧ I3 + I1 ∧ 13, 12 ∧ 13 + I2 ∧ I3, −12 ∧ I3 + I2 ∧ 13.

Consider the symmetric operator induced by the H-invariant 4-form τ ∈ ∧2m⊗∧2p,

τ = −(11 ∧ I1 + 12 ∧ I2)⊗ (13 ∧ I3).

The restriction τ : kerF → kerF is the identity operator,4 hence positive-definite.

From Lemma 9.6, there exists ε > 0 such that (F + ετ) : m⊗ p→ m⊗ p is positive-

definite, proving strong fatness. Therefore, by Theorem 9.5, the homogeneous space

(W 6, gt) has strongly positive curvature for all 0 < t < 1.

4This fact follows from representation theoretic arguments, since τ ∈ ∧2m⊗∧2p being H-invariant
is equivalent to τ : m ⊗ p → m ⊗ p being H-equivariant, see (2.13). This can also be easily verified
using the above list of vectors that span kerF . Note that such vectors are orthogonal, but have
square length 2, e.g., ‖11 ∧ 13 + I1 ∧ I3‖2 = ‖11 ∧ 13‖2 + ‖I1 ∧ I3‖2 = 2. Thus, we have:

〈τ(11 ∧ 13 + I1 ∧ I3),11 ∧ 13 + I1 ∧ I3〉 = 2〈τ,11 ∧ 13 ∧ I1 ∧ I3〉 = 2 = ‖11 ∧ 13 + I1 ∧ I3‖2,
〈τ(11 ∧ 13 + I1 ∧ I3),−11 ∧ I3 + I1 ∧ 13〉 = 〈τ, 0〉 = 0,

〈τ(11 ∧ 13 + I1 ∧ I3),12 ∧ 13 + I2 ∧ I3〉 = 〈τ,11 ∧ 13 ∧ I2 ∧ I3 + I1 ∧ I3 ∧ 12 ∧ 13〉 = 0,

〈τ(11 ∧ 13 + I1 ∧ I3),−12 ∧ I3 + I2 ∧ 13〉 = 〈τ,−11 ∧ 13 ∧ 12 ∧ I3 − I1 ∧ I3 ∧ I2 ∧ 13〉 = 0,

where the last two inner products can be easily seen to vanish since τ is the sum of decomposable
elements with only 2 distinct indices each, while the decomposable elements on the other slot have
3 distinct indices each. Therefore, τ(11 ∧ 13 + I1 ∧ I3) = 11 ∧ 13 + I1 ∧ I3, and analogously for the
other vectors listed above that span kerF .
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9.4 Wallach flag manifold W 12

Let H ⊂ K ⊂ G be given by Sp(1)Sp(1)Sp(1) ⊂ Sp(2)Sp(1) ⊂ Sp(3), where:

Sp(2)Sp(1) =
{

diag(A, q) : A ∈ Sp(2), q ∈ Sp(1)
}

Sp(1)Sp(1)Sp(1) =
{

diag(q1, q2, q3) : qj ∈ Sp(1)
}

The corresponding homogeneous bundle (9.1) is

HP 1 −→ W 12 −→ HP 2.

The base HP 2 is a CROSS, the fiber HP 1 ∼= S4
(

1
2

)
has constant positive curvature,

and both (g, k) and (k, h) are symmetric pairs.

The only other condition needed to apply Theorem 9.5 is strong fatness. Up

to rescaling, the bi-invariant metric on g = sp(3) is given by the same formula as

(9.14). The Q-orthogonal complements defined in (9.2) are m ∼= H2 and p ∼= H,

and can be identified as the subspaces m = span{11, I1, J1,K1,12, I2, J2,K2} and

p = span{13, I3, J3,K3} of sp(3), where the matrices 1r, Ir, 1 ≤ r ≤ 3, are defined in

(9.15) and the remaining matrices Jr,Kr, 1 ≤ r ≤ 3, are defined analogously using

the other imaginary quaternion units j and k, that is:

J1 =

0 0 0
0 0 j
0 j 0

 J2 =

0 0 j
0 0 0
j 0 0

 J3 =

0 j 0
j 0 0
0 0 0



K1 =

0 0 0
0 0 k
0 k 0

 K2 =

0 0 k
0 0 0
k 0 0

 K3 =

0 k 0
k 0 0
0 0 0


(9.16)
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The Lie bracket operator L : m⊗ p→ m defined in (9.5) is determined by:

[·, ·] 13 I3 J3 K3

11 12 −I2 −J2 −K2

I1 −I2 −12 K2 −J2

J1 −J2 −K2 −12 I2

K1 −K2 J2 −I2 −12

12 −11 I1 J1 K1

I2 I1 11 K1 −J1

J2 J1 −K1 11 I1

K2 K1 J1 −I1 11

Thus, by (9.6), kerF = kerL is spanned by the following 24 vectors of m⊗ p:

11 ∧ 13 + K1 ∧K3, −11 ∧ I3 + K1 ∧ J3, 11 ∧ J3 + K1 ∧ I3,

−11 ∧K3 + K1 ∧ 13, 11 ∧ I3 + J1 ∧K3, 11 ∧ 13 + J1 ∧ J3,

−11 ∧K3 + J1 ∧ I3, −11 ∧ J3 + J1 ∧ 13, −11 ∧ J3 + I1 ∧K3,

11 ∧K3 + I1 ∧ J3, 11 ∧ 13 + I1 ∧ I3, −11 ∧ I3 + I1 ∧ 13,

12 ∧ 13 + K2 ∧K3, 12 ∧ I3 + K2 ∧ J3, −12 ∧ J3 + K2 ∧ I3,

−12 ∧K3 + K2 ∧ 13, −12 ∧ I3 + J2 ∧K3, 12 ∧ 13 + J2 ∧ J3,

12 ∧K3 + J2 ∧ I3, −12 ∧ J3 + J2 ∧ 13, 12 ∧ J3 + I2 ∧K3,

−12 ∧K3 + I2 ∧ J3, 12 ∧ 13 + I2 ∧ I3, −12 ∧ I3 + I2 ∧ 13.

Consider the symmetric operator induced by the H-invariant 4-form τ ∈ ∧2m⊗∧2p,

τ = (11 ∧ I1 + J1 ∧K1)⊗ (J3 ∧K3 − 13 ∧ I3)

+ (I1 ∧K1 − 11 ∧ J1)⊗ (13 ∧ J3 + I3 ∧K3)
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+ (11 ∧K1 + I1 ∧ J1)⊗ (I3 ∧ J3 − 13 ∧K3)

− (12 ∧ I2 − J2 ∧K2)⊗ (13 ∧ I3 + J3 ∧K3)

− (12 ∧ J2 + I2 ∧K2)⊗ (13 ∧ J3 − I3 ∧K3)

− (12 ∧K2 − I2 ∧ J2)⊗ (13 ∧K3 + I3 ∧ J3).

The restriction τ : kerF → kerF is the identity operator, hence positive-definite.

From Lemma 9.6, there exists ε > 0 such that (F + ετ) : m⊗ p→ m⊗ p is positive-

definite, proving strong fatness. Therefore, by Theorem 9.5, the homogeneous space

(W 12, gt) has strongly positive curvature for all 0 < t < 1.

9.5 Wallach flag manifold W 24

Let the Lie groups H ⊂ K ⊂ G be given by Spin(8) ⊂ Spin(9) ⊂ F4. In order to

explain these inclusions, recall that the exceptional Lie group F4 can be realized as

the automorphism group of the exceptional Jordan algebra

h3(Ca) =
{
H ∈ Mat3×3(Ca) : H∗ = H

}
,

of Hermitian 3 × 3 octonionic matrices. As described in Baez [5, §3.4], this algebra

can also be constructed using the scalar, vector and spinor representations of Spin(9),

which is hence a subgroup of F4, see also Harvey [49, Thm. 14.99]. The Lie algebra f4

is the algebra of derivations of h3(Ca); in particular, f4 contains a copy of the algebra

g2 of derivations of Ca, which is a subalgebra of so(7) ∼= so(Im(Ca)), and hence also a

subalgebra of the Lie algebra so(8) ∼= so(Ca) of H. More precisely, there is a splitting

f4 = sa3(Ca)⊕ g2, (9.17)

122



where sa3(Ca) :=
{
A ∈ Mat3×3(Ca) : A∗ = −A, tr(A) = 0

}
. Up to rescaling, the

bi-invariant metric on f4 is given by

Q(X, Y ) = 1
2

Re(tr(X1Y
∗

1 )) + 1
8

tr(X2Y
∗

2 ),

where X1 ∈ sa3(Ca) and X2 ∈ g2 ⊂ so(7) denote the components of X ∈ f4, according

to (9.17). For more details on the above, including formulas for the Lie bracket on

f4, see Baez [5, §4.2].

The homogeneous bundle (9.1) determined by the above Lie groups H ⊂ K ⊂ G is

CaP 1 −→ W 24 −→ CaP 2. (9.18)

The base CaP 2 is a CROSS, the fiber CaP 1 ∼= S8
(

1
2

)
has constant positive curvature,

and (g, k) is a symmetric pair.5 However, since the base is CaP 2, Theorem 9.5 cannot

be applied. In fact, the above projection becomes a Riemannian submersion if W 24

is endowed with a metric of the form gt defined in (9.3). From Theorems 8.16 and

8.22, it follows that (W 24, gt) does not have strongly positive curvature.

Nevertheless, since (9.7) is a Riemannian submersion and
(
G × K, Q ⊕ 1

s
Q|k
)

is

the product of Riemannian manifolds with strongly nonnegative curvature, it follows

that (W 24, gt) has strongly nonnegative curvature for all 0 < t < 1. In what follows,

we prove that arbitrarily small perturbations of gt in the space of F4-invariant metrics

(with normalized volume) have strongly positive curvature. Furthermore, we actually

compute the moduli spaces of F4-invariant metrics on W 24 with strongly positive and

nonnegative curvature in Theorems 9.9 and 9.11, see also Section 10.1.

Let g = h⊕m be a Q-orthogonal splitting. The isotropy representation of Spin(8)

on m has 3 irreducible factors m = m1 ⊕ m2 ⊕ m3, each isomorphic to Ca as a real

5We remark that (k, h) is not a symmetric pair in this case, although K/H ∼= S8
(
1
2

)
.
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vector space. More precisely, m ∼= Ca3 can be identified as the subspace of sa3(Ca)

spanned by the 24 matrices

1r, Ir, Jr, Kr, Lr, Mr, Nr, Or, 1 ≤ r ≤ 3,

where 1r, Ir, Jr, Kr are as in (9.15) and (9.16), and the remaining matrices Lr, Mr, Nr,

Or, 1 ≤ r ≤ 3, are defined analogously, using the other imaginary octonion units l,

m, n, and o. Since mr, 1 ≤ r ≤ 3, are irreducible and nonisomorphic, Schur’s Lemma

implies that G-invariant metrics on G/H are parametrized by 3 positive numbers. We

denote these by ~s = (s1, s2, s3), so that the corresponding metric is given by

g~s := s2
1Q|m1 ⊕ s2

2Q|m2 ⊕ s2
3Q|m3 , at T(eH)G/H = m1 ⊕m2 ⊕m3.

Remark 9.7. The Lie algebra of the intermediate subgroup K is given by k = h⊕m3.

As g~s is Ad(K)-invariant if and only s1 = s2, the projection (9.18) is a Riemannian

submersion if and only if6 s1 = s2. Note that the metrics defined in (9.3) are given

by g~s with ~s = (1, 1, t), hence clearly satisfy the latter.

A modified curvature operator of (W 24, g~s) is an H-equivariant operator on ∧2m.

Thus, by Schur’s Lemma, it decomposes as a block diagonal operator, whose blocks

correspond to the isotypic components7 of ∧2m. Let ⊕nV be one such isotypic compo-

nent, where V is an irreducible H-representation of dimension d that appears n times

in the decomposition of ∧2m into irreducible factors. In a suitable basis, the block of

a modified curvature operator corresponding to ⊕nV is of the form A⊗ Id, where A

6More generally, for each 1 ≤ r ≤ 3, there exists a copy of K in G whose Lie algebra is h ⊕ mr.
Each such choice for K determines a bundle map (9.18) which is a Riemannian submersion onto the
corresponding Cayley plane if and only if sr+1 = sr+2, where indices are taken modulo 3.

7Recall that an H-representation can be decomposed as the sum of irreducible factors, and some of
these factors may be isomorphic (i.e., appear with multiplicity larger than 1). An isotypic component
of such a representation is the sum of all copies of an irreducible factor. For irreducible factors that
have multiplicity 1, the isotypic component is just the irreducible factor itself.
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is an n× n symmetric matrix and Id is the d× d identity matrix. In particular, such

a block is positive-definite if and only if A is positive-definite, and analogously for

positive-semidefiniteness. In order to compute each of the symmetric matrices A, we

choose a representative vector v1 6= 0 in one copy of V , and then produce additional

representatives v2, v3, . . . in the remaining copies of V by taking images of v1 under

isomorphisms of representations. Proceeding in this way through all isotypic compo-

nents, we obtain a complete list of representatives {vi}, such that the restriction of

R+ω to the space of representatives span{vi} is positive-definite if and only if R+ω

is positive-definite, and analogously for positive-semidefiniteness.

A computation with weights shows that the representation of Spin(8) on ∧2m

decomposes as the sum of 3 copies of an irreducible representation of dimension

28, 3 distinct irreducible representations of dimension 56, and 3 distinct irreducible

representations of dimension 8. The following 9 representative vectors form a complete

list, as described above (in what follows, subindices r are always taken modulo 3):

1√
2

(
Jr ∧ Lr + Kr ∧Mr

)
, 1 ≤ r ≤ 3,

1
2
√

2

(
1r+1 ∧ 1r+2 − Ir+1 ∧ Ir+2 − Jr+1 ∧ Jr+2 −Kr+1 ∧Kr+2

− Lr+1 ∧ Lr+2 −Mr+1 ∧Mr+2 − Nr+1 ∧ Nr+2 −Or+1 ∧Or+2

)
, 1 ≤ r ≤ 3,

1√
2

(
1r+1 ∧ 1r+2 + Or+1 ∧Or+2

)
, 1 ≤ r ≤ 3.

Furthermore, the following determine a basis of the H-invariant elements of ∧4m:

ωr := (1r+1 ∧ Ir+1 − Jr+1 ∧Kr+1) ∧ (1r+2 ∧ Ir+2 + Jr+2 ∧Kr+2)

+(1r+1 ∧ Jr+1 + Ir+1 ∧Kr+1) ∧ (1r+2 ∧ Jr+2 − Ir+2 ∧Kr+2)

+(1r+1 ∧Kr+1 − Ir+1 ∧ Jr+1) ∧ (1r+2 ∧Kr+2 + Ir+2 ∧ Jr+2)

+(1r+1 ∧ Lr+1 + Ir+1 ∧Mr+1) ∧ (1r+2 ∧ Lr+2 − Ir+2 ∧Mr+2)

+(1r+1 ∧Mr+1 − Ir+1 ∧ Lr+1) ∧ (1r+2 ∧Mr+2 + Ir+2 ∧ Lr+2)
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+(1r+1 ∧ Nr+1 − Ir+1 ∧Or+1) ∧ (1r+2 ∧ Nr+2 + Ir+2 ∧Or+2)

+(1r+1 ∧Or+1 + Ir+1 ∧ Nr+1) ∧ (1r+2 ∧Or+2 − Ir+2 ∧ Nr+2)

+(1r+1 ∧ Ir+1 + Jr+1 ∧Kr+1) ∧ (Lr+2 ∧Mr+2 − Nr+2 ∧Or+2)

+(1r+1 ∧ Jr+1 − Ir+1 ∧Kr+1) ∧ (Lr+2 ∧ Nr+2 + Mr+2 ∧Or+2)

+(1r+1 ∧Kr+1 + Ir+1 ∧ Jr+1) ∧ (Lr+2 ∧Or+2 −Mr+2 ∧ Nr+2)

−(1r+1 ∧ Lr+1 − Ir+1 ∧Mr+1) ∧ (Jr+2 ∧ Nr+2 + Kr+2 ∧Or+2)

−(1r+1 ∧Mr+1 + Ir+1 ∧ Lr+1) ∧ (Jr+2 ∧Or+2 −Kr+2 ∧ Nr+2)

+(1r+1 ∧ Nr+1 + Ir+1 ∧Or+1) ∧ (Jr+2 ∧ Lr+2 −Kr+2 ∧Mr+2)

+(1r+1 ∧Or+1 − Ir+1 ∧ Nr+1) ∧ (Jr+2 ∧Mr+2 + Kr+2 ∧ Lr+2)

−(Jr+1 ∧ Lr+1 −Kr+1 ∧Mr+1) ∧ (1r+2 ∧ Nr+2 − Ir+2 ∧Or+2)

−(Jr+1 ∧Mr+1 + Kr+1 ∧ Lr+1) ∧ (1r+2 ∧Or+2 + Ir+2 ∧ Nr+2)

+(Jr+1 ∧ Nr+1 + Kr+1 ∧Or+1) ∧ (1r+2 ∧ Lr+2 + Ir+2 ∧Mr+2)

+(Jr+1 ∧Or+1 −Kr+1 ∧ Nr+1) ∧ (1r+2 ∧Mr+2 − Ir+2 ∧ Lr+2)

−(Lr+1 ∧Mr+1 − Nr+1 ∧Or+1) ∧ (1r+2 ∧ Ir+2 − Jr+2 ∧Kr+2)

−(Lr+1 ∧ Nr+1 + Mr+1 ∧Or+1) ∧ (1r+2 ∧ Jr+2 + Ir+2 ∧Kr+2)

−(Lr+1 ∧Or+1 −Mr+1 ∧ Nr+1) ∧ (1r+2 ∧Kr+2 − Ir+2 ∧ Jr+2)

−(Jr+1 ∧ Lr+1 + Kr+1 ∧Mr+1) ∧ (Jr+2 ∧ Lr+2 + Kr+2 ∧Mr+2)

−(Jr+1 ∧Mr+1 −Kr+1 ∧ Lr+1) ∧ (Jr+2 ∧Mr+2 −Kr+2 ∧ Lr+2)

−(Jr+1 ∧ Nr+1 −Kr+1 ∧Or+1) ∧ (Jr+2 ∧ Nr+2 −Kr+2 ∧Or+2)

−(Jr+1 ∧Or+1 + Kr+1 ∧ Nr+1) ∧ (Jr+2 ∧Or+2 + Kr+2 ∧ Nr+2)

−(Lr+1 ∧Mr+1 + Nr+1 ∧Or+1) ∧ (Lr+2 ∧Mr+2 + Nr+2 ∧Or+2)

−(Lr+1 ∧ Nr+1 −Mr+1 ∧Or+1) ∧ (Lr+2 ∧ Nr+2 −Mr+2 ∧Or+2)

−(Lr+1 ∧Or+1 + Mr+1 ∧ Nr+1) ∧ (Lr+2 ∧Or+2 + Mr+2 ∧ Nr+2), 1 ≤ r ≤ 3.
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Thus, a general invariant 4-form ω ∈ ∧4m has coordinates ~a = (a1, a2, a3), such that

ω = a1 ω1 + a2 ω2 + a3 ω3. (9.19)

The restriction R̂(~s,~a) of a modified curvature operator (R + ω) : ∧2 m → ∧2m

to the subspace spanned by the above representative vectors can be computed using

formula (8.20). The result is the block diagonal matrix R̂ = diag
(
R̂1, R̂2, R̂3

)
, where

the blocks, listed in the same order as the representatives, are given by:

R̂1(~s,~a) :=

 4s1
s
s3
− 2a3

s
s2
− 2a2

s
s3
− 2a3 4s2

s
s1
− 2a1

s
s2
− 2a2

s
s1
− 2a1 4s3

, (9.20)

R̂2(~s,~a) := diag
(
sr+1 + sr+2 − sr + 3s

2sr
+ 7ar, 1 ≤ r ≤ 3

)
, (9.21)

R̂3(~s,~a) := diag
(

(sr+1−sr+2)2−s2r
2sr

− ar, 1 ≤ r ≤ 3
)
, (9.22)

where

s := 2(s1s2 + s1s3 + s2s3)− (s2
1 + s2

2 + s2
3). (9.23)

Therefore, (W 24, g~s) has strongly positive curvature if and only if there exists ~a

such that the above block diagonal matrix R̂(~s,~a) is positive-definite. Our strategy

to prove that for certain ~s there exists ~a such that R̂(~s,~a) is positive-definite has

two steps, employing the usual first-order argument (Lemma 9.6). First, we find a

very special ~a0 = ~a0(~s) such that R̂
(
~s,~a0

)
is positive-semidefinite;8 second, we prove

that (in some cases) there exists ~a1 = ~a1(~s) such that the corresponding ω′ given by

(9.19) has positive-definite restriction to the kernel of R̂
(
~s,~a0

)
. In this way, R̂(~s,~a) is

positive-definite by setting ~a = ~a0 + ε~a1 for ε > 0 sufficiently small. As a byproduct

8~a0 is very special in the sense that if ~s is such that there exists ~a for which R̂(~s,~a) is positive-

semidefinite, then R̂(~s,~a0) is positive-semidefinite (see Theorem 9.9).
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of this method, we determine both the moduli spaces of F4-invariant metrics g~s with

strongly nonnegative and positive curvature. The corresponding moduli spaces of

metrics g~s with sec ≥ 0 and sec > 0 can be written in terms of the polynomials

pr(~s) := (sr+1 − sr+2)2 + 2sr(sr+1 + sr+2)− 3s2
r, (9.24)

which satisfy p1(~s)+p2(~s)+p3(~s) = s, see (9.23). More precisely, the following result

was proved by Valiev [98, Thm. 2], see also Püttmann [78, Thm. 3.1].

Theorem 9.8. The homogeneous space (W 24, g~s) has sec ≥ 0 if and only if pr(~s) ≥ 0,

r = 1, 2, 3; and has sec > 0 if and only if pr(~s) > 0, r = 1, 2, 3, and sr are not all

equal.

We use this to prove the following result, which establishes the above first step.

Theorem 9.9. The following are equivalent for the homogeneous space (W 24, g~s):

(i) g~s has strongly nonnegative curvature,

(ii) secg~s ≥ 0,

(iii) pr(~s) ≥ 0, for r = 1, 2, 3,

(iv) R + ω0 is positive-semidefinite, where ω0 ∈ ∧4m is given by (9.19) setting

ar :=
(sr+1 − sr+2)2 − s2

r

2sr
, 1 ≤ r ≤ 3. (9.25)

Proof. The implications (i) ⇒ (ii) and (iv) ⇒ (i) are trivial (see Section 8.1), and

the equivalence (ii) ⇔ (iii) follows from Theorem 9.8.

We now prove the crucial implication (iii) ⇒ (iv). It is a direct verification that

R̂3(~s,~a0) = 0, cf. (9.22) and (9.25). Furthermore, a simple calculation shows

R̂2(~s,~a0) = diag
(

2
sr

pr(~s), 1 ≤ r ≤ 3
)
, (9.26)
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which is hence positive-semidefinite by condition (iii), see (9.21) and (9.24). If all sr

are equal, direct inspection shows that the first block R̂1(~s,~a0) is positive-semidefinite.

Otherwise, it follows from (9.20) and (9.25) that the 2×2 principal minors of R̂1(~s,~a0)

are equal to 4s(sr+1−sr+2)2, 1 ≤ r ≤ 3, hence nonnegative. Moreover, R̂1(~s,~a0)v = 0

where

v :=

(
s2 − s3

s1

,
s3 − s1

s2

,
s1 − s2

s3

)t

. (9.27)

Since its diagonal entries are positive, Sylvester’s criterion implies that R̂1(~s,~a0) is

positive-semidefinite. Thus, since all its blocks are positive-semidefinite, the block

diagonal matrix R̂(~s,~a0) is positive-semidefinite. As noted above, this is equivalent to

the entire modified curvature operator R+ω0 being positive-semidefinite, concluding

the proof that (iv) holds.

Remark 9.10. Note that the positive-semidefiniteness of the second block R̂2(~s,~a0) is

equivalent to the conditions pr(~s) ≥ 0 for the homogeneous metric g~s to have sec ≥ 0.

This can be easily verified through computations analogous to (9.26). In fact, (9.25)

was originally discovered through the observation that positive-semidefiniteness of

the second and third blocks R̂2(~s,~a) and R̂3(~s,~a) is equivalent to ar ∈ Ir,~s, for certain

intervals Ir,~s that are nonempty if and only if pr(~s) ≥ 0. The choice (9.25) corre-

sponds to setting ar equal to the left endpoint of Ir,~s, which conveniently implies that

R̂3(~s,~a0) = 0. Finally, note that this observation yields a proof that (i)⇒ (iii) which

is independent of Theorem 9.8.

We are now ready to establish the second step in the strategy discussed above:

Theorem 9.11. The homogeneous space (W 24, g~s) has strongly positive curvature if

and only if sr are pairwise distinct and pr(~s) > 0, r = 1, 2, 3.

Proof. Suppose (W 24, g~s) has strongly positive curvature, hence also secg~s > 0. From

Theorem 9.8, it follows9 that sr are not all equal and pr(~s) > 0, r = 1, 2, 3. Further-

9Alternatively, positive-definiteness of the second and third blocks R̂2(~s,~a) and R̂3(~s,~a) directly
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more, if any two sr coincided, then (9.18) would be a Riemannian submersion, (see

Remark 9.7), contradicting Theorems 8.16 and 8.22.

Conversely, assume that sr are pairwise distinct and pr(~s) > 0, r = 1, 2, 3. Recall

that the third block R̂3(~s,~a0) vanishes identically, and the second block R̂2(~s,~a0)

is positive-definite by (9.26). The first block R̂1(~s,~a0) is positive-semidefinite, with

kernel spanned by the vector v in (9.27). The restriction of ω′ = a′1 ω1 +a′2 ω2 +a′3 ω3,

see (9.19), to the corresponding subspace of representatives reduces to multiplication

by the scalar

vt

 0 −2a′3 −2a′2
−2a′3 0 −2a′1
−2a′2 −2a′1 0

 v =
4

s1s2s3

3∑
r=1

(
sr(sr − sr+1)(sr − sr+2)

)
a′r.

If sr are pairwise different, the product of the coefficients of a′r in the above sum is

3∏
r=1

(
sr(sr − sr+1)(sr − sr+2)

)
= −s1s2s3(s1 − s2)2(s1 − s3)2(s2 − s3)2 < 0,

hence at least one coefficient is negative. Setting the corresponding a′r to be suffi-

ciently negative and a′r+1, a
′
r+2 < 0 small, the 4-form ω′ becomes positive-definite on

the subspace of representatives associated to ker R̂(~s,~a0). Thus, the first-order per-

turbation R̂(~s,~a0 + ε~a1), where ~a1 = (a′1, a
′
2, a
′
3), is positive-definite for sufficiently

small ε > 0. Therefore, (W 24, g~s) has strongly positive curvature.

The above result not only proves that W 24 admits F4-invariant (homogeneous)

metrics with strongly positive curvature, but also characterizes the moduli space of

such metrics, as claimed. The intersection of the subset {~s ∈ R3 : pr(~s) ≥ 0} with the

affine plane {~s ∈ R3 : s1 + s2 + s3 = 1}, that corresponds to a volume normalization,

implies that pr(~s) > 0, r = 1, 2, 3, cf. Remark 9.10; and simultaneous positive-definiteness of the

first block R̂1(~s,~a) is impossible if the sr are all equal, since its determinant is negative.
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is the following shaded region:

where dotted segments indicate where sr = 0 (i.e., the boundary of the positive

octant), and continuous segments indicate where two of the sr are equal.10 Taking

into account the permutations of the entries of ~s, the above shaded region consists of

6 isometric copies of this moduli space.

Notice that an F4-invariant metric has strongly positive curvature if and only if

it has sec > 0 and (9.18) is not a Riemannian submersion (see Remark 9.7). In other

words, the only F4-invariant metrics with sec > 0 that fail to have strongly positive

curvature are the metrics of the form (9.3) considered in Wallach’s Theorem, which

10The continuous segments intersect at the point ~s =
(
1
3 ,

1
3 ,

1
3

)
, which corresponds to the normal

homogeneous metric 1
3Q|m on W 24.
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correspond to the 3 continuous segments in the above picture.

9.6 Aloff-Wallach spaces W 7
k,`

Let the Lie groups H ⊂ K ⊂ G be given by S1
k,` ⊂ U(2) ⊂ SU(3), where:

U(2) =
{

diag
(
A, detA

)
∈ SU(3) : A ∈ U(2)

}
S1
k,` =

{
diag(zk, z`, zk+`) : z ∈ S1

}
For convenience of notation, set r ∈ (0, 1] and s ∈ (1, 3] to be the numbers

r := k/` and s := 1 + r + r2.

Up to the appropriate equivalences, the nontrivial cases are given by 0 < k ≤ ` and

gcd(k, `) = 1. The corresponding homogeneous bundle (9.1) is

S3/Zk+` −→ W 7
k,` −→ CP 2.

The base CP 2 is a CROSS, the fiber S3/Zk+` has constant positive curvature and

dimension ≤ 3, and (g, k) is a symmetric pair.11

The only other condition needed to apply Theorem 9.5 is strong fatness. Up to

rescaling, the bi-invariant metric on g = su(3) is given by (9.14). The Q-orthogonal

complements defined in (9.2) are m ∼= C2 and p ∼= R ⊕ C, and can be identified as

the subspaces m = span{11, I1,12, I2} and p = span{Vr,13, I3} of su(3), where in

addition to the matrices (9.15), we define:

Vr := diag
(

(2+r)i√
3s
,− (2r+1)i√

3s
, (r−1)i√

3s

)
11We remark that (k, h) is not a symmetric pair in this case.
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The Lie bracket operator L : m⊗ p→ m defined in (9.5) is determined by:

[·, ·] Vr 13 I3

11 r
√

3
s

I1 12 −I2

I1 −r
√

3
s
11 −I2 −12

12

√
3
s

I2 −11 I1

I2 −
√

3
s
12 I1 11

Thus, by (9.6), kerF = kerL is spanned by the following 8 vectors of m⊗ p:

−
√

s
3

I2 ∧ Vr + I1 ∧ I3,
√

s
3
12 ∧ Vr + I1 ∧ 13, −r

√
3
s
12 ∧ 13 + I1 ∧ Vr,√

s
3
12 ∧ Vr + 11 ∧ I3

√
s
3

I2 ∧ Vr + 11 ∧ 13, −r
√

3
s
12 ∧ I3 + 11 ∧ Vr,

12 ∧ 13 + I2 ∧ I3, −12 ∧ I3 + I2 ∧ 13.

Consider the symmetric operator induced by the H-invariant 4-form τa,b ∈ ∧2m⊗∧2p,

τa,b = (a11 ∧ I1 + b12 ∧ I2)⊗ (13 ∧ I3)

+
√

3 (I1 ∧ 12 + 11 ∧ I2)⊗ (Vr ∧ 13)

+
√

3 (11 ∧ 12 − I1 ∧ I2)⊗ (Vr ∧ I3),

where a, b ∈ R are parameters. The restriction τa,b : kerF → kerF is block diagonal

with 2 identical 4× 4 blocks given by

diag

((
2
√
s −a− 2

√
s

−a− 2
√
s 2

√
s

)
,

(
6r√
s

√
3br√
s√

3br√
s
−2b

))
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In particular, it follows that τa,b : kerF → kerF is positive-definite if and only if

−4
√
s < a < 0 and − 4

√
s

r
< b < 0.

Since r > 0 and s > 0, there exist a, b ∈ R that satisfy the above, so that

τa,b : kerF → kerF is positive-definite. From Lemma 9.6, there exists ε > 0 such

that (F +ετa,b) : m⊗p→ m⊗p is positive-definite, proving strong fatness. Therefore,

by Theorem 9.5, all the homogeneous spaces (W 7
k,`, gt), k`(k + `) 6= 0, have strongly

positive curvature for all 0 < t < 1.

9.7 Berger space B7

Differently from the previous examples, the Berger space B7 = SO(5)/SO(3)

does not admit a homogeneous fibration. The inclusion SO(3) ⊂ SO(5) comes from

the conjugation action of SO(3) on the space of symmetric traceless 3 × 3 matrices,

which is identified with R5. Alternatively, we can use the double covering maps

Sp(2) → SO(5) and SU(2) → SO(3) to write B7 = Sp(2)/SU(2). The inclusion

SU(2) ⊂ Sp(2) is such that the corresponding Lie subalgebra h = su(2) of g = sp(2)

is spanned by the following three vectors:

I4 =

(
i 0
0 3i

)
J4 =

(
2j −

√
3√

3 0

)
K4 =

(
2k

√
3i√

3i 0

)

Up to rescaling, the bi-invariant metric on g = sp(3) is given by

Q(X, Y ) = − 1
10

Re tr(XY )

Consider the Q-orthogonal splitting sp(2) = su(2)⊕m. The complement m ∼= R⊕C3

can be identified as the subspace m = span{V,11, I1,12, I2,13, I3}, where we set:
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V = diag
(
3i,−i

)
11 =

√
2

(√
3j 1
−1 0

)
12 =

√
5

(
0 j
j 0

)
13 =

√
10

(
0 0
0 j

)

I1 =
√

2

(√
3k −i
−i 0

)
I2 =

√
5

(
0 k
k 0

)
I3 =

√
10

(
0 0
0 k

) (9.28)

The isotropy representation of SU(2) on m is irreducible, hence there is a unique

Sp(2)-invariant metric, up to homotheties, which is known to have sec > 0. We

denote by g this normal homogeneous metric corresponding to Q|m.

A computation with weights shows that the representation of SU(2) on ∧2m de-

composes as the sum of 3 irreducible representations with dimensions 3, 7, and 11.

The following is a complete list12 of representative vectors from each of the 3 irre-

ducible factors:

1√
14

(
11 ∧ I1 + 212 ∧ I2 + 313 ∧ I3

)
,

1√
3

(
11 ∧ I1 + 12 ∧ I2 − 13 ∧ I3

)
,

1√
42

(
− 511 ∧ I1 + 412 ∧ I2 − 13 ∧ I3

)
.

Furthermore, up to rescaling, the following is the unique invariant element of ∧4m:

ω = −11 ∧ I1 ∧ 12 ∧ I2 + 11 ∧ I1 ∧ 13 ∧ I3 + 12 ∧ I2 ∧ 13 ∧ I3

+ V ∧ 11 ∧ 12 ∧ I3 − V ∧ 11 ∧ I2 ∧ 13 − V ∧ I1 ∧ 12 ∧ 13 − V ∧ I1 ∧ I2 ∧ I3.

Let R ∈ S2(∧2m) be the curvature operator of the normal homogeneous space (B7, g),

and α ∈ S2(∧2m) the operator defined in (8.17). From (8.18), it follows that R +

12See the discussion in page 125, Section 9.5.
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3b(α) is a positive-semidefinite operator. The restriction R̂ of the modified curvature

operator R+3b(α)+aω to the subspace of ∧2m spanned by the above representative

vectors can be computed using formulas (8.18), (2.13), and the table of Lie brackets:

1
2
[·, ·] V 11 I1 12 I2 13

11 −I1 −
√

6K4

I1 11 +
√

6J4 −V − I4

12 −I2 13 −
√

10
2

J4 I3 +
√

10
2

K4

I2 12 I3 −
√

10
2

K4 −13 −
√

10
2

J4 −V − 2I4

13 I3 −12 I2 11 −
√

6
2

J4 −I1 +
√

6
2

K4

I3 −13 −I2 −12 I1 −
√

6
2

K4 11 −
√

6
2

J4 V − 3I4

The result of this computation is the following, where the blocks are listed in the

same order as the representatives:

R̂ = diag
(
56 + a, 3− 2a, a

)
, (9.29)

so the modified curvature operator R + 3b(α) + aω is positive-definite if 0 < a < 3
2
.

Therefore, the homogeneous space (B7, g) has strongly positive curvature.

9.8 Berger space B13

Let the Lie groups H ⊂ K ⊂ G be given by Sp(2) · S1 ⊂ U(4) ⊂ SU(5), where:13

U(4) =
{

diag(A, detA) ∈ SU(5) : A ∈ U(4)
}

Sp(2) · S1 =
{

diag
(
z A, z4

)
: A ∈ Sp(2) ⊂ SU(4), z ∈ S1

}
13Note that the Lie group H = Sp(2) ·S1 is isomorphic to (Sp(2)×S1)/Z2, where Z2

∼= {(± Id, 1)}.
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The corresponding homogeneous bundle (9.1) is

RP 5 −→ B13 −→ CP 4.

The base CP 4 is a CROSS, the fiber RP 5 has constant positive curvature, and both

(g, k) and (k, h) are symmetric pairs.

The only other condition needed to apply Theorem 9.5 is strong fatness. Up

to rescaling, the bi-invariant metric on g = su(5) is given by the same formula as

(9.14). The Q-orthogonal complements defined in (9.2) are m ∼= C4 and p ∼= R⊕C2,

and can be identified as the subspaces m = span{11, I1,12, I2,13, I3,14, I4} and p =

span{V,15, I5,16, I6} of su(5), where we set:

11 =


0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
−1 0 0 0 0

 I1 =


0 0 0 0 i
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
i 0 0 0 0



12 =


0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 −1 0 0 0

 I2 =


0 0 0 0 0
0 0 0 0 i
0 0 0 0 0
0 0 0 0 0
0 i 0 0 0



13 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 −1 0 0

 I3 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 i
0 0 0 0 0
0 0 i 0 0



14 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 −1 0

 I4 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 i
0 0 0 i 0


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15 =
1√
2


0 0 1 0 0
0 0 0 −1 0
−1 0 0 0 0
0 1 0 0 0
0 0 0 0 0

 I5 =
1√
2


0 0 i 0 0
0 0 0 i 0
i 0 0 0 0
0 i 0 0 0
0 0 0 0 0



16 =
1√
2


0 0 0 1 0
0 0 1 0 0
0 −1 0 0 0
−1 0 0 0 0
0 0 0 0 0

 I6 =
1√
2


0 0 0 i 0
0 0 −i 0 0
0 −i 0 0 0
i 0 0 0 0
0 0 0 0 0



V =
1√
2


i 0 0 0 0
0 i 0 0 0
0 0 −i 0 0
0 0 0 −i 0
0 0 0 0 0



The Lie bracket operator L : m⊗ p→ m defined in (9.5) is determined by:

√
2 [·, ·] V 15 I5 16 I6

11 −I1 13 −I3 14 −I4

I1 11 I3 13 I4 14

12 −I2 −14 −I4 13 I3

I2 12 −I4 14 I3 −13

13 I3 −11 −I1 −12 I2

I3 −13 −I1 11 −I2 −12

14 I4 12 −I2 −11 −I1

I4 −14 I2 12 −I1 11

Thus, by (9.6), kerF = kerL is spanned by the following 32 vectors of m⊗ p:

−I1 ∧ V + I4 ∧ I6, −11 ∧ V + I4 ∧ 16, −I2 ∧ V + I4 ∧ I5, 12 ∧ V + I4 ∧ 15,
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11 ∧ 16 + I4 ∧ V, −11 ∧ V + 14 ∧ I6, I1 ∧ V + 14 ∧ 16, −12 ∧ V + 14 ∧ I5,

−I2 ∧ V + 14 ∧ 15, 11 ∧ I6 + 14 ∧ V, I2 ∧ V + I3 ∧ I6, −12 ∧ V + I3 ∧ 16,

−I1 ∧ V + I3 ∧ I5, −11 ∧ V + I3 ∧ 15, 11 ∧ 15 + I3 ∧ V, 12 ∧ V + 13 ∧ I6,

I2 ∧ V + 13 ∧ 16, −11 ∧ V + 13 ∧ I5, I1 ∧ V + 13 ∧ 15, 11 ∧ I5 + 13 ∧ V,

11 ∧ 15 + I2 ∧ I6, 11 ∧ I5 + I2 ∧ 16, −11 ∧ 16 + I2 ∧ I5, −11 ∧ I6 + I2 ∧ 15,

11 ∧ I5 + 12 ∧ I6, −11 ∧ 15 + 12 ∧ 16, −11 ∧ I6 + 12 ∧ I5, 11 ∧ 16 +12 ∧ 15,

−11 ∧ 16 + I1 ∧ I6, 11 ∧ I6 + I1 ∧ 16, −11 ∧ 15 + I1 ∧ I5, 11 ∧ I5 + I1 ∧ 15.

Consider the symmetric operator induced by the H-invariant 4-form τ ∈ ∧2m⊗∧2p,

τ = −(12 ∧ I2 − 11 ∧ I1)⊗ (15 ∧ I5 + 16 ∧ I6)

+ (11 ∧ 12 + I1 ∧ I2)⊗ (15 ∧ 16 − I5 ∧ I6)

− (11 ∧ I2 − I1 ∧ 12)⊗ (15 ∧ I6 + I5 ∧ 16)

− (13 ∧ I3 − 14 ∧ I4)⊗ (15 ∧ I5 − 16 ∧ I6)

+ (13 ∧ 14 + I3 ∧ I4)⊗ (15 ∧ 16 + I5 ∧ I6)

− (13 ∧ I4 − I3 ∧ 14)⊗ (15 ∧ I6 − I5 ∧ 16)

+ (11 ∧ I3 − I1 ∧ 13 − 12 ∧ I4 + I2 ∧ 14)⊗ (V ∧ 15)

+ (11 ∧ 13 + I1 ∧ I3 + 12 ∧ 14 + I2 ∧ I4)⊗ (V ∧ I5)

+ (11 ∧ I4 − I1 ∧ 14 + 12 ∧ I3 − I2 ∧ 13)⊗ (V ∧ 16)

+ (11 ∧ 14 + I1 ∧ I4 − 12 ∧ 13 − I2 ∧ I3)⊗ (V ∧ I6).

The restriction τ : kerF → kerF is the identity operator, hence positive-definite.

From Lemma 9.6, there exists ε > 0 such that (F + ετ) : m⊗ p→ m⊗ p is positive-

definite, proving strong fatness. Therefore, by Theorem 9.5, the homogeneous space

(B13, gt) has strongly positive curvature for all 0 < t < 1.
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Remark 9.12. The normal homogeneous metric (corresponding to t = 1) on the

Berger space B13 is known to have sec > 0, by the work of Berger [8]. A direct

computation of its modified curvature operator shows that this metric does not have

strongly positive curvature.

This concludes the proof of Theorem 9.1, since all simply-connected homogeneous

spaces that admit an invariant metric with sec > 0 were verified to also admit an

invariant metric with strongly positive curvature, except for the Cayley plane CaP 2.

9.9 Comments and perspectives beyond homogeneous spaces

We conclude this chapter with a few comments regarding the above classification

of homogeneous spaces with strongly positive curvature, and a brief account on future

perspectives to understand more general manifolds with strongly positive curvature.

Remark 9.13. Many homogeneous spaces occurring in Theorem 9.1, apart from the

CROSS, are related via Riemannian submersions or totally geodesic immersions,

which allows for alternative proofs that these spaces have strongly positive curvature.

For instance, there is an embedding W 6 → W 12 whose image is the fixed point

set of an isometry, hence totally geodesic, see (10.3) for details. In particular, it

follows from Proposition 8.15 that W 6 has strongly positive curvature, since W 12

does. Analogously, by the Taimanov embedding W 7
1,1 → B13, the Aloff-Wallach space

W 7
1,1 has strongly positive curvature since B13 does. Finally, there are Riemannian

submersions W 7
k,` → W 6, so Theorem 8.16 provides yet another proof that W 6 has

strongly positive curvature.

Remark 9.14. In Wallach’s Theorem 9.2, under the extra hypothesis that (k, h) is a

symmetric pair, i.e., [p, p] ⊂ h, the conclusion is that (G/H, gt) has sec > 0 for all

0 < t < 1 or 1 < t < 4
3
, see Wallach [102, p. 291]. However, even under this extra

hypothesis, the second and third terms in (9.8) are negative-semidefinite if 1 < t < 4
3
,
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which prevents the proof of Theorem 9.5 from extending to 1 < t < 4
3
. In fact, there

are examples of homogeneous spaces (G/H, gt) that satisfy all of the above hypotheses

(and hence have sec > 0 for all 1 < t < 4
3
) but do not have strongly positive curvature

(or even strongly nonnegative curvature) for all 1 < t < 4
3
, see Remark 10.15.

After concluding the classification of simply-connected homogeneous spaces that

admit an invariant metric with strongly positive curvature, a natural question is to

determine the moduli spaces of all such invariant metrics. This was done in Section 9.5

for W 24, and is done for the other Wallach flag manifolds in Section 10.1, following

Bettiol and Mendes [14]. Furthermore, in the remainder of Chapter 10, the moduli

spaces of Berger spheres with strongly positive curvature are studied.

Apart from homogeneous spaces, other examples of closed manifolds with sec > 0

are given by biquotients. A biquotient G//H is the orbit space of a free isometric action

of a Lie group H ⊂ G× G on a compact Lie group G, given by (h1, h2) · g = h1gh
−1
2 .

The quotient map G→ G//H is a Riemannian submersion, and hence formula (8.16)

can be applied to compute the modified curvature operator of biquotients. In par-

ticular, it follows from (2.16) and (8.16) that biquotients have strongly nonnegative

curvature, cf. Section 8.4. Furthermore, there are infinite families of biquotients with

sec > 0, namely the Eschenburg spaces E6 and E7
k,`, and the Bazăıkin spaces B13

q ,

which are respectively generalizations of W 6, W 7
k,` and B13, see Ziller [112] for de-

tails. An infinite subfamily of Eschenburg spaces E7
k,` can be shown to have strongly

positive curvature, with a limiting argument analogous to the original argument of

Eschenburg [36]. In particular, since there are Riemannian submersions E7
k,` → E6,

this implies that also E6 has strongly positive curvature. However, a complete verifi-

cation that all known examples of biquotients with sec > 0 also have strongly positive

curvature is still under way.

Homogeneous spaces and biquotients aside, the only other known examples of

closed manifolds with sec > 0 are cohomogeneity one manifolds, as well as a pro-
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posed positively curved exotic sphere [76]. Grove, Wilking and Ziller [46] performed

a systematic study of simply-connected closed cohomogeneity one manifolds with

sec > 0, which lead to a classification result with an infinite family of candidate

manifolds. More precisely, they found two infinite families P 7
k , Q7

k, k ≥ 2, and an

exceptional case R7, of 7-dimensional manifolds which are the only manifolds dif-

ferent from homogeneous spaces and biquotients that could carry a cohomogeneity

one metric with sec > 0. Shortly after, Grove, Verdiani and Ziller [44] constructed

an invariant metric with strongly positive curvature on the candidate P 7
2 , which was

also identified as an exotic T1S
4. Dearricott [28] has independently found a metric

with sec > 0 on this manifold, using modified curvature operators in an indirect way.

Recently, Verdiani and Ziller [100] showed that the manifold R7 does not admit an

invariant metric with sec > 0. A better understanding of cohomogeneity one man-

ifolds with strongly positive curvature would certainly contribute to advancing this

theory.

The search for topological obstructions for closed manifolds to admit strongly

positive curvature is another major component in advancing this theory, and com-

plements the search for non-homogeneous examples. An important tool to find topo-

logical obstructions to curvature conditions is Hamilton’s Ricci flow. In particular,

the Ricci flow was used by Böhm and Wilking [17] in the classification of manifolds

with positive-definite curvature operator, proving that this condition is preserved

under the flow. In earlier work, Böhm and Wilking [16] provided the first example

of a closed manifold with sec > 0 that develops mixed Ricci curvature under the

Ricci flow. This example is the Wallach flag manifold (W 12, g~s) with a homogeneous

metric g~s that can be chosen arbitrarily close to a metric of the form gt discussed

in Section 9.4, see Section 10.1 for details. In particular, g~s can be chosen to have

strongly positive curvature, since this is an open condition. Therefore, similarly to

sec > 0, strongly positive curvature is not preserved under the Ricci flow.

142



Another natural attempt to find topological obstructions to strongly positive cur-

vature is related to the Gauss-Bonnet integrand of a curvature operator, and the

so-called algebraic Hopf conjecture, related to the Hopf Problem II. Given an op-

erator R ∈ S(∧2V ), where dimV = 2n, its Gauss-Bonnet integrand χ(R) is given

by:

χ(R) =
∑

σ,τ∈S2n

sgn(σ) sgn(τ)
2n−1∏
i=1

〈
R(eσ(i) ∧ eσ(i+1)), eτ(i) ∧ eτ(i+1)

〉
,

where S2n is the group of permutations of 2n symbols, sgn(σ) denotes the sign of the

permutation σ and {ei} is an orthonormal basis of V . It has been long known that if

R is positive-definite, then χ(R) > 0, see Kulkarni [61, p. 191]. By the Chern-Gauss-

Bonnet Theorem, the integral over a closed manifold (M2n, g) of the Gauss-Bonnet

integrand χ(R) of its curvature operator is equal to the Euler characteristic χ(M),

multiplied by a (positive) dimensional constant.

While the Hopf Problem II remains open in general, its algebraic variant, that

asks if an algebraic curvature operator R in even dimensions with secR > 0 (recall

(8.2)) has χ(R) > 0, is completely settled. Milnor proved in unpublished work that

the algebraic Hopf conjecture holds in dimensions ≤ 4, see Chern [24]. In partic-

ular, in light of Proposition 8.9, this shows that curvature operators in dimensions

≤ 4 that have strongly positive curvature also have χ(R) > 0. Geroch [39], and

later Klembeck [60], provided counter-examples to the algebraic Hopf conjecture in

dimensions ≥ 6, which are algebraic curvature operators in even dimensions ≥ 6 that

have secR > 0 but χ(R) ≤ 0. It is not hard to verify that these examples have

strongly positive curvature, hence are also counter-examples to the strong version of

the algebraic Hopf conjecture. Nevertheless, it is not known whether closed manifolds

with strongly positive curvature and even dimension ≥ 6 have χ(M) > 0.
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CHAPTER 10

MODULI SPACES

In this chapter, we analyze the moduli spaces of homogeneous metrics with

strongly positive curvature and strongly nonnegative curvature on Wallach flag mani-

folds (following Bettiol and Mendes [14]) and on Berger spheres. These results provide

concrete applications of several techniques developed in Chapters 8 and 9.

The Wallach flag manifolds W 6, W 12, and W 24 are total spaces of sphere bundles

S2
(

1
2

)
→ W 6 → CP 2, S4

(
1
2

)
→ W 12 → HP 2, S8

(
1
2

)
→ W 24 → CaP 2, (10.1)

and were studied in Sections 9.3, 9.4, and 9.5, where they were proved to have strongly

positive curvature. The latter contains a complete description of the above mentioned

moduli spaces for W 24, see Theorems 9.9 and 9.11. In Section 10.1, we apply similar

techniques to determine these moduli spaces also for W 6 and W 12, following [14].

The Berger spheres are odd-dimensional spheres obtained by rescaling the round

metric by λ in the vertical direction of one of the Hopf bundles

S1 → S2n+1 → CP n, S3 → S4n+3 → HP n, S7 → S15 → S8
(

1
2

)
. (10.2)

More precisely, a Berger metric on the total space of one of the above bundles is of the

form λ gV⊕gH, where gV⊕gH is the round metric, and gV and gH respectively denote

its vertical and horizontal parts. These metrics are homogeneous and have sec > 0 if

and only if 0 < λ < 4
3
, see Verdiani and Ziller [99]. In Sections 10.2, 10.3 and 10.4,

we prove that the above Hopf bundles are strongly fat (recall Definition 9.4), and use
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Theorem 9.5 to conclude that certain Berger metrics have strongly positive curvature,

analogously to what was previously done for other homogeneous spaces in Chapter 9.

However, the range of Berger metrics for which this method works is somewhat

unsatisfactory, since it does not include the round metric, λ = 1. This is due to

the fact that the normal homogeneous metric on these spheres is a Berger metric

with shrunk Hopf fibers, see (10.10), (10.14) and (10.21). For the first two bundles

in (10.2), an argument with Cheeger deformations using Proposition 8.18 gives a

more satisfactory range (see Propositions 10.7 and 10.11). For the third bundle in

(10.2), a direct computation provides a complete description of the moduli spaces

(see Proposition 10.14). In particular, this yields examples of homogeneous spaces

with sec > 0 that do not have strongly nonnegative curvature, see Remark 10.15.

10.1 Wallach flag manifolds

The Wallach flag manifolds W 6, W 12, and W 24 have appeared in Sections 9.3,

9.4, and 9.5 respectively. These are the manifolds of complete flags in K3, where K is

one of the real normed division algebras: C, H, and Ca, respectively. An analogous

construction can be carried out with K = R, giving rise to the real flag manifold

W 3, which can also be considered here (but on which the notion of strongly positive

curvature coincides with sec > 0 by dimensional reasons, see Corollary 8.10).

Recall that a complete flag F in K3 is a sequence of linear subspaces

F =
{
{0} ⊂ F 1 ⊂ F 2 ⊂ K3

}
,

where dimK F
i = i. The natural projection map

π : W 3 dimK → KP 2, π(F) = F 1,
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is a submersion, whose fiber π−1(F 1) over a K-line F 1 consists of all K-planes F 2

that contain F 1. Such K-planes are in one-to-one correspondence with the K-lines

in the orthogonal complement (F 1)⊥, hence π−1(F 1) can be identified with KP 1.

This makes W 3 dimK the total space of a sphere bundle over KP 2, see (10.1). The

isometry group G of each projective plane KP 2 above acts transitively on W 3 dimK.

Furthermore, the induced subaction of the isotropy subgroup K of a K-line F 1 is

transitive on the corresponding fiber π−1(F 1). Altogether, each sphere bundle (10.1)

is a homogeneous bundle of the form (9.1), with Lie groups H ⊂ K ⊂ G given by:

G/H K H K G

W 3 R Z2 ⊕ Z2 O(2) SO(3)

W 6 C T2 U(2) SU(3)

W 12 H Sp(1)Sp(1)Sp(1) Sp(2)Sp(1) Sp(3)

W 24 Ca Spin(8) Spin(9) F4

Let Q be the bi-invariant metric on G described in Sections 9.3, 9.4, and 9.5 in each

of the above cases, and let m be the subspace such that g = h⊕m is a Q-orthogonal

direct sum, as in Section 8.4. In all cases above, the Ad(H)-representation m has 3

irreducible factors m = m1 ⊕ m2 ⊕ m3, each isomorphic to K as a real vector space.

These irreducible factors can be parametrized by the skew-Hermitian matrices with

zero diagonal entries

K⊕K⊕K 3 (x1, x2, x3) 7−→

 0 x3 −x2

−x3 0 x1

x2 −x1 0

 ∈ m1 ⊕m2 ⊕m3.

The standard bases of K3 correspond to Q-orthonormal bases of m via the above.
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We denote the elements of such bases by

1r, Ir, Jr,Kr,Lr,Mr,Nr,Or, 1 ≤ r ≤ 3.

Explicit formulas for the first half of the above matrices are given in (9.15) and (9.16).

Since mr, 1 ≤ r ≤ 3, are irreducible and nonisomorphic, Schur’s Lemma implies that

G-invariant metrics on G/H are parametrized by 3 positive numbers. We denote these

by ~s = (s1, s2, s3), so that the corresponding G-invariant metric is given by

g~s := s2
1Q|m1 ⊕ s2

2Q|m2 ⊕ s2
3Q|m3 , at T(eH)G/H = m1 ⊕m2 ⊕m3,

which is the same notation used in Section 9.5 for the case K = Ca.

For any fixed ~s, there are natural inclusions

(W 3, g~s) ↪−→ (W 6, g~s) ↪−→ (W 12, g~s) ↪−→ (W 24, g~s) (10.3)

whose images are the fixed point set of an isometry, and hence totally geodesic.

Thus, by Proposition 8.15 and Theorem 9.9, all the above homogeneous spaces have

strongly nonnegative curvature if1 pr(~s) ≥ 0, for r = 1, 2, 3, since (W 24, g~s) does.

Furthermore, by Proposition 8.15 and Theorem 9.11, these homogeneous spaces have

strongly positive curvature if sr are pairwise distinct and pr(~s) > 0, for r = 1, 2, 3.

However, this does not account for all homogeneous metrics with strongly positive

curvature on W 3, W 6 and W 12; e.g., the metrics g~s on W 6 and W 12 have strongly

positive curvature if ~s = (1, 1, t) and 0 < t < 1, see Sections 9.3 and 9.4.

Using methods similar to those in the proof of Theorems 9.9 and 9.11 we now

provide a complete description of these other moduli spaces. The case of the real

flag manifold (W 3, g~s) is omitted, since it is locally isometric to S3 with the Berger

1Recall that pr(~s) are the polynomials defined in (9.24), see also the figure in page 131.
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metric λ1 gV1 ⊕ λ2 gV2 ⊕ λ3 gV3 , for which the moduli space of homogeneous metrics

with sec > 0 (and hence strongly positive curvature) is well-known,2 see e.g. [99].

Theorem 10.1. The following are equivalent for (W 6, g~s), (W 12, g~s) and (W 24, g~s):

(i) g~s has strongly nonnegative curvature,

(ii) secg~s ≥ 0,

(iii) pr(~s) ≥ 0, for r = 1, 2, 3.

Proof. The fact that (ii) and (iii) are equivalent was proved by Valiev [98, Thm.

2], see also Püttmann [78, Thm. 3.1] and Theorem 9.8. The equivalence of (i) and

(iii) was proved in Theorem 9.9 for the case of W 24. The cases of W 6 and W 12 also

follow from Theorem 9.9, since their modified curvature operator is a restriction to

the corresponding subspace of the modified curvature operator of W 24, due to the

totally geodesic embeddings (10.3), see Proposition 8.15.

Remark 10.2. The fact that the above moduli spaces for W 6, W 12 and W 24 coincide

can be explained using a generalization of the embeddings (10.3), by showing that

planes with extremal sectional curvature can be moved via isometries to become

tangent to certain totally geodesic submanifolds, see Wilking [106].

Restrictions of a positive-semidefinite modified curvature operator of W 24 to sub-

spaces corresponding to W 6 or W 12 are clearly positive-semidefinite, but may also be

positive-definite in these subspaces. This is what happens if two of the sr coincide:

Theorem 10.3. The following are equivalent for (W 6, g~s) and (W 12, g~s):

(i) g~s has strongly positive curvature,

(ii) secg~s > 0,

(iii) sr are not all equal, and pr(~s) > 0, for r = 1, 2, 3.

2These are left-invariant metrics on SU(2) ∼= S3 and have sec > 0 if and only if pr
(
~λ
)
> 0, where

~λ = (λ1, λ2, λ3).
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Proof. The implication (i) ⇒ (ii) is trivial, and the fact that (ii) and (iii) are equiv-

alent was proved by Valiev [98, Thm. 2], see also Püttmann [78, Thm. 3.1] and

Theorem 9.8. In what follows, we prove the crucial implication (iii) ⇒ (i). The case

of W 6 follows from that of W 12, since modified curvature operators on the former are

restrictions of modified curvature operators on the latter.

The H-representation ∧2m on W 12 decomposes into a total of 9 isotypic compo-

nents. More precisely, there are 2 copies each of 3 irreducible nonisomorphic repre-

sentations of dimension 3, 3 distinct irreducible representations of dimension 12, and

3 distinct irreducible representations of dimension 4. The following 12 representative

vectors form a complete list (defined in page 125), where indices are taken modulo 3:

1√
2

(
1r+1 ∧ Ir+1 − Jr+1 ∧ Jr+1

)
, 1√

2

(
1r+2 ∧ Ir+2 + Jr+2 ∧ Jr+2

)
, 1 ≤ r ≤ 3,

1
2

(
1r+1 ∧ 1r+2 − Ir+1 ∧ Ir+2 − Jr+1 ∧ Jr+2 − Jr+1 ∧ Jr+2

)
, 1 ≤ r ≤ 3,

1√
2

(
1r+1 ∧ 1r+2 + Jr+1 ∧ Jr+2

)
, 1 ≤ r ≤ 3.

Furthermore, the following determine a basis of the H-invariant elements of ∧4m:

φr := (1r+1 ∧ Ir+1 − Jr+1 ∧ Jr+1) ∧ (1r+2 ∧ Ir+2 + Jr+2 ∧ Jr+2)

+(1r+1 ∧ Jr+1 + Ir+1 ∧ Jr+1) ∧ (1r+2 ∧ Jr+2 − Ir+2 ∧ Jr+2)

+(1r+1 ∧ Jr+1 − Ir+1 ∧ Jr+1) ∧ (1r+2 ∧ Jr+2 + Ir+2 ∧ Jr+2), 1 ≤ r ≤ 3,

ψr := 1r ∧ Ir ∧ Jr ∧ Jr, 1 ≤ r ≤ 3.

Thus, an invariant 4-form ω ∈ ∧4m has coordinates
(
~a,~b
)

= (a1, a2, a3, b1, b2, b3),

such that:

ω = a1 φ1 + a2 φ2 + a3 φ3 + b1 ψ1 + b2 ψ2 + b3 ψ3. (10.4)

The restriction R̂
(
~s,~a,~b

)
of a modified curvature operator (R+ω) : ∧2 m→ ∧2m
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to the subspace spanned by the above representative vectors can be computed using

formula (8.20). The result is the block diagonal matrix R̂ = diag
(
R̂1, R̂2, R̂3

)
, where

the blocks, listed in the same order as the representatives, are given by:

R̂1

(
~s,~a,~b

)
:= diag

((
4sr+1 − br+1 − s

sr
+ 2ar

− s
sr

+ 2ar 4sr+2 + br+2

)
, 1 ≤ r ≤ 3

)
, (10.5)

R̂2

(
~s,~a,~b

)
:= diag

(
sr+1 + sr+2 − sr + s

2sr
+ 3ar, 1 ≤ r ≤ 3

)
, (10.6)

R̂3

(
~s,~a,~b

)
:= diag

(
(sr+1−sr+2)2−s2r

2sr
− ar, 1 ≤ r ≤ 3

)
, (10.7)

where s = 2(s1s2 + s1s3 + s2s3)− (s2
1 + s2

2 + s2
3), cf. (9.20), (9.21), (9.22) and (9.23).

Therefore, (W 12, g~s) has strongly positive curvature if and only if there exist ~a

and ~b such that the above block diagonal matrix R̂
(
~s,~a,~b

)
is positive-definite. Since

we are assuming that pr(~s) > 0, for r = 1, 2, 3, we know from Theorem 10.1 that

there exist ~a0 and ~b0 such that R̂
(
~s,~a0,~b0

)
is positive-semidefinite. In fact, it follows

from the totally geodesic immersions (10.3) and Theorem 9.9 that this holds if we set

~b0 = (0, 0, 0) and ~a0 to be as in (9.25), i.e., such that R̂3

(
~s,~a0,~b0

)
vanishes identically.

Direct inspection shows that the second block R̂2

(
~s,~a0,~b0

)
is positive-definite. As to

the first block R̂1(~s,~a0,~b0

)
, note that

det

(
4sr+1 − s

sr
+ 2ar

− s
sr

+ 2ar 4sr+2

)
=

4s

s2
r

(sr+1 − sr+2)2. (10.8)

If, on the one hand, sr are pairwise different, then R̂1(~s,~a0,~b0

)
is positive-definite.

In this case, for any a′r < 0, the 4-form ω′ = a′1φ1 + a′2φ2 + a′3φ3 becomes positive-

definite on the subspace of representatives corresponding to ker R̂(~s,~a0,~b0

)
. Thus, the

first-order perturbation R̂(~s,~a0 + ε~a′,~b0

)
, where ~a′ = (a′1, a

′
2, a
′
3), is positive-definite
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for sufficiently small ε > 0, by Lemma 9.6. If, on the other hand, sr 6= sr+1 = sr+2,

then the 2× 2 matrix in (10.8) has kernel spanned by w := (1, 1)t. The restriction of

ω′ = a′1 φ1 + a′2 φ2 + a′3 φ3 + b′1 ψ1 + b′2 ψ2 + b′3 ψ3

to the corresponding subspace of representatives reduces to multiplication by

wt

(
−b′r+1 2a′r

2a′r b′r+2

)
w = 4a′r − b′r+1 + b′r+2.

Setting a′r < 0, b′r = b′r+1 = 0 and b′r+2 > −4a′r, the above ω′ becomes positive-

definite on the subspace of representatives corresponding to ker R̂(~s,~a0,~b0

)
. Similarly

to the previous case, the first-order perturbation R̂(~s,~a0 + ε~a′,~b0 + ε~b′
)

is positive-

definite for sufficiently small ε > 0, by Lemma 9.6.

Thus, we conclude that (W 12, g~s) has strongly positive curvature, so (i) holds.

Remark 10.4. Even though (10.3) are totally geodesic isometric embeddings between

the Wallach flag manifolds, note that the block diagonal matrix R̂ for W 12 with blocks

(10.5), (10.6), and (10.7) is not a submatrix of the block diagonal matrix R̂ for W 24

with blocks (9.20), (9.21), and (9.22). This is due to the lists of representative vectors

for W 12 not3 being a sublist of the one for W 24. We also remark that the invariant

4-forms (10.4) with ~b = (0, 0, 0) coincide with the projection of the invariant 4-forms

(9.19) to ∧4 of the subspace tangent to W 12.

Remark 10.5. The upshot of Theorems 9.11 and 10.3 is that a homogenous metric

on W 6 or W 12 has strongly positive curvature if and only if it has sec > 0, while

a homogenous metric on W 24 has strongly positive curvature if and only if it has

sec > 0 and does not submerge onto CaP 2.

3In fact, such a choice is not possible due to the differences in the corresponding representations.
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Note that some of the metrics with strongly positive curvature on W 6 and W 12

that cannot be obtained by combining Proposition 8.15 and Theorem 9.11, namely

those corresponding to ~s = (1, 1, t), 0 < t < 1, had been found using Theorem 9.5.

The only extra information given by Theorem 10.3 is that those corresponding to

~s = (1, 1, t), 1 < t < 4
3

also have strongly positive curvature, cf. Remark 9.14. We

remark that t ∈ (0, 1) ∪
(
1, 4

3

)
parametrizes the entire line segments in the figure of

page 131, excluding the central point where they intersect (which corresponds to the

normal homogeneous metric).

10.2 Berger spheres S2n+1

The Hopf bundle S1 → S2n+1 → CP n is a homogeneous bundle as in (9.1), where

the Lie groups H ⊂ K ⊂ G are given by

SU(n) ⊂ S(U(n)U(1)) ⊂ SU(n+ 1), (10.9)

and the inclusions are the usual ones as block matrices. The base CP n is a CROSS,

and (g, k) is a symmetric pair. The fiber S1 has dimension 1, and can be considered

to have constant positive curvature for the purposes of applying Theorem 9.5, since

it trivially verifies the appropriate conditions due to ∧2R = {0}.

Up to rescaling, the bi-invariant metric Q on g = su(n + 1) is given by formula

(9.14). The homogeneous metric gt defined in (9.3) is the Berger metric

gt = t(n+1)
2n

gV ⊕ gH, (10.10)

see, e.g., Grove and Ziller [47, Table 2.4]. In particular, notice that the normal

homogeneous metric g1 is never the round metric, except on SU(2) ∼= S3. Further-

more, up to rescaling, the Berger metrics λ gV ⊕ gH, λ > 0, parametrize the space of
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SU(n+ 1)-invariant metrics on S2n+1 = SU(n+ 1)/SU(n).

The Q-orthogonal complements defined in (9.2) are m ∼= Cn and p ∼= R, and can

be identified as the following subspaces of su(n+ 1).

m =




0 . . . 0 z1
...

...
...

0 . . . 0 zn
−z1 . . . −zn 0

 : zj ∈ C

 , (10.11)

p = span
{

diag
(
− i, . . . ,−i, n i

)}
. (10.12)

Note that m ⊗ p ∼= Cn ⊗ R ∼= ⊕n(C ⊗ R), and there is a corresponding decom-

position of the Lie bracket operator Ln : m ⊗ p → m defined in (9.5) as Ln = ⊕nL,

where L = L1. Thus, the operator Fn : m⊗p→ m⊗p defined in (9.6) decomposes as

Fn = ⊕nF , where F = F1. Set n = 1, and let 1 and I be the matrices obtained by set-

ting z1 equal to 1 and i on (10.11), respectively. Furthermore, let Ip = 1√
2

diag(−i, i),

see (10.12). The Lie bracket operator L : m⊗ p→ m is determined by:

1√
2
[·, ·] Ip

1 I

I −1

Thus, by (9.6), kerF = kerL = {0}, hence F is positive-definite. Therefore, also

Fn = ⊕nF is positive-definite, hence the homogenous bundles S1 → S2n+1 → CP n

are strongly fat.4

Instead of applying Theorem 9.5 directly, notice that since ∧2p = {0}, the modi-

fied curvature operator R̂ in (9.9) is block diagonal, R̂ = diag
(
R̂11, R̂22

)
. From (9.10)

4Notice that ∧2p = {0}, so the only way in which the operator (F + τ), with τ ∈ ∧2m ⊗ ∧2p,
can be positive-definite is if F is positive-definite, since τ = 0.
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and (9.11), the first block R̂11 can be made positive-definite for all 0 < t < 4
3
, us-

ing that the base CP n has strongly positive curvature; and the second block R̂22 is a

multiple of Fn, hence positive-definite. Thus, by (10.10), we conclude that the Berger

spheres
(
S2n+1, λ gV ⊕ gH

)
have strongly positive curvature for all 0 < λ < 2(n+1)

3n
.

Remark 10.6. The above is not the maximal range of λ for which
(
S2n+1, λ gV ⊕ gH

)
has strongly positive curvature, unless n = 1. Notice that, e.g., since the round

metric λ = 1 has positive-definite curvature operator (which is an open condition),

the metrics λ gV⊕gH have strongly positive curvature for λ in an open interval around

λ = 1, for all n ≥ 1. This is not detected by the methods of Theorem 9.5 because

the normal homogeneous metric g1 on S2n+1 = SU(n + 1)/SU(n) is a Berger metric

that was already shrunk in the vertical directions of the Hopf bundle, see (10.10).

Although the above application of Theorem 9.5 is conceptually interesting, since it

uses strong fatness of the Hopf bundle, a stronger result follows from Proposition 8.18.

Proposition 10.7. The Berger spheres
(
S2n+1, λ gV ⊕ gH

)
have strongly positive

curvature for all 0 < λ ≤ 1.

Proof. It suffices to prove that the Berger metrics λ gV ⊕ gH, 0 < λ ≤ 1, are Cheeger

deformations of the round metric, and apply Proposition 8.18 and Theorem 8.20.

Since H = SU(n) is a normal subgroup of K = S(U(n)U(1)) in (10.9), there is an

isometric K-action on G/H = S2n+1 given by k · gH := gk−1H. The orbits5 of this

action are the fibers of π : G/H → G/K, i.e., the Hopf fibers. The corresponding

Cheeger deformation has the effect of shrinking the round metric in the vertical

directions of the Hopf bundle. More precisely, the Cheeger deformation of the round

metric after time s > 0 is the Berger metric 1
1+s

gV + gH, see (4.8).

Remark 10.8. We stress that this approach cannot be used in any of the examples

5The ineffective kernel of this action is H, so it descends to an isometric K/H-action on S2n+1,
which is simply the usual circle action with orbit space CPn.
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studied in Sections 9.3, 9.4, 9.6 and 9.8 using Theorem 9.5, since H is not a normal

subgroup of K in those cases.

Remark 10.9. Although the above is not a complete description of the moduli space

of Berger spheres S2n+1 with strongly positive curvature, direct computations of

modified curvature operators are feasible in low dimensions. The case n = 1 is

trivial, since strongly positive curvature is equivalent to sec > 0 in dimensions ≤ 4,

see Corollary 8.10. The next case is n = 2, in which we have the Hopf bundle

S1 −→ S5 −→ CP 2

A direct computation shows that the Berger metric λ gV ⊕ gH on S5 has positive-

definite curvature operator if and only if 0 < λ < 6
5

= 1.2, and strongly positive

curvature6 if and only if 0 < λ < 4
3
. Recall that λ gV ⊕ gH are known to have sec > 0

if and only if 0 < λ < 4
3
.

10.3 Berger spheres S4n+3

The Hopf bundle S3 → S4n+3 → HP n is a homogeneous bundle as in (9.1), where

the Lie groups H ⊂ K ⊂ G are given by

Sp(n) ⊂ Sp(n)Sp(1) ⊂ Sp(n+ 1), (10.13)

and the inclusions are the usual ones as block matrices. The base HP n is a CROSS,

and (g, k) is a symmetric pair. The fiber S3 has constant positive curvature and

dimension ≤ 3.

Up to rescaling, the bi-invariant metric Q on g = sp(n + 1) is given by formula

6The only SU(3)-invariant 4-forms on S5 = SU(3)/SU(2) are multiples of the (pull-back of) the
volume form of the base CP 2; recall Proposition 8.14.
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(9.14). The homogeneous metric gt defined in (9.3) is the Berger metric

gt = t
2
gV ⊕ gH, (10.14)

see, e.g., Grove and Ziller [47, Table 2.4]. Furthermore, up to rescaling, there is a

3-parameter family of Sp(n+1)-invariant metrics on S4n+3 = Sp(n+1)/Sp(n), which

includes the Berger metrics λ gV ⊕ gH, λ > 0. The remaining Sp(n + 1)-invariant

metrics are of the form λ1 gV1 ⊕ λ2 gV2 ⊕ λ3 gV3 ⊕ gH, λi > 0, where V = V1⊕V2⊕V3

is a Q-orthonormal decomposition of the vertical direction V ∼= sp(1) ∼= R3. In what

follows, we only consider the case λ = λ1 = λ2 = λ3 corresponding to the Berger

metric λ gV ⊕ gH, since it has the largest isometry group after the round metric.7

The Q-orthogonal complements defined in (9.2) are m ∼= Hn and p ∼= sp(1) ∼= R3,

and can be identified as the following subspaces of sp(n+ 1).

m =




0 . . . 0 z1
...

...
...

0 . . . 0 zn
−z1 . . . −zn 0

 : zj ∈ H

 , (10.15)

p =
{

diag
(
0, . . . , 0, w

)
: w ∈ ImH

}
. (10.16)

The problem of verifying strong fatness can be reduced to the case n = 1. Indeed,

m⊗ p ∼= Hn ⊗ ImH ∼= ⊕n(H⊗ ImH) and the Lie bracket operator Ln : m⊗ p → m

defined in (9.5) clearly decomposes as Ln = ⊕nL, where L = L1. Thus, the operator

Fn : m ⊗ p → m ⊗ p defined in (9.6) decomposes as Fn = ⊕nF , where F = F1.

7This ansatz considerably simplifies certain computations, through the use of Proposition 8.14.
Recall that the identity component of the full isometry group of the above Sp(n+ 1)-homogeneous
metrics is either Sp(n+1), Sp(n+1)U(1), Sp(n+1)Sp(1) or SO(4n+4), according respectively to the
cases in which λi are pairwise distinct, two of the λi coincide, λ1 = λ2 = λ3, and λ1 = λ2 = λ3 = 1.
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According to Definition 9.4, the homogeneous bundle (10.9) is strongly fat if there

exists τn ∈ ∧2m ⊗ ∧2p such that (Fn + τn) : m ⊗ p → m ⊗ p is positive-definite. If

there exists τ such that F + τ is positive definite, then τn = ⊕nτ is such that Fn + τn

is positive-definite, verifying the above claim.

Assume that n = 1, and let 1, I, J, and K be the matrices obtained by setting z1

equal to 1, i, j, and k on (10.15), respectively. Furthermore, let Ip, Jp, and Kp be the

matrices obtained by setting w equal to
√

2i,
√

2j, and
√

2k on (10.16), respectively.

The Lie bracket operator L : m⊗ p→ m defined in (9.5) is determined by:

1√
2
[·, ·] Ip Jp Kp

1 I J K

I −1 K −J

J −K −1 I

K J −I −1

Thus, by (9.6), kerF = kerL is spanned by the following 8 vectors of m⊗ p:

I ∧ Ip − J ∧ Jp, 1 ∧ Ip + K ∧ Jp, 1 ∧ Jp + I ∧Kp, 1 ∧Kp − I ∧ Jp,

I ∧ Ip −K ∧Kp, 1 ∧ Ip − J ∧Kp, 1 ∧ Jp −K ∧ Ip, 1 ∧Kp + J ∧ Ip.

Consider the operator induced by the Sp(1)-invariant8 4-form τ ∈ ∧2m⊗ ∧2p,

τ = (J ∧K− 1 ∧ I)⊗ (Jp ∧Kp)

+ (1 ∧ J + I ∧K)⊗ (Ip ∧Kp) (10.17)

+ (I ∧ J− 1 ∧K)⊗ (Ip ∧ Jp).

8The corresponding 4-form τ ∈ Ω4(S7) is invariant under the full isometry group Sp(2)Sp(1) of
the Berger metrics λ gV ⊕ gH, λ > 0.
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The restriction τ : kerF → kerF is the identity operator, hence positive-definite.

From Lemma 9.6, there exists ε > 0 such that (F + ετ) : m⊗ p→ m⊗ p is positive-

definite. Thus, the homogeneous bundle S3 → S7 → HP 1 is strongly fat, and hence

so are all homogenous bundles S3 → S4n+3 → HP n.

Therefore, by (10.14) and Theorem 9.5, we conclude that the Berger spheres(
S4n+3, λ gV ⊕ gH

)
have strongly positive curvature for all 0 < λ < 1

2
.

Remark 10.10. Analogously to Remark 10.6, we observe that the above is not the

maximal range of λ for which
(
S4n+3, λ gV ⊕ gH

)
has strongly positive curvature,

since, e.g., the round metric λ = 1 has positive-definite curvature operator and hence

strongly positive curvature.

Although the above application of Theorem 9.5 is conceptually interesting, since it

uses strong fatness of the Hopf bundle, a stronger result follows from Proposition 8.18.

Proposition 10.11. The Berger spheres
(
S4n+3, λ gV ⊕ gH

)
have strongly positive

curvature for all 0 < λ ≤ 1.

Proof. The proof is completely analogous to that of Proposition 10.7, using that

H = Sp(n) is a normal subgroup of K = Sp(n)Sp(1) in (10.13).

Remark 10.12. Analogously to Remark 10.9, direct computations of modified curva-

ture operators are feasible in low dimensions to yield complete descriptions of the

appropriate moduli spaces of Berger metrics. Let us consider the case n = 1,

S3 −→ S7 −→ HP 1.

A direct computation shows that the Berger metric λ gV ⊕ gH has positive-definite

curvature operator if and only if 1
2
< λ < λ1

∼= 1.202, and strongly positive curvature9

9The only Sp(2)Sp(1)-invariant 4-forms on S7 = Sp(2)/Sp(1) are a τ+b vol, a, b ∈ R, where vol is
the (pull-back of the) volume form of the baseHP 1, and τ is given by (10.17); recall Proposition 8.14.
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if and only if 0 < λ < λ2
∼= 1.304, where λ1 and λ2 are the real roots of the

polynomials p1(λ) = 8λ3 − 16λ2 + 11λ − 4 and p2(λ) = 25λ3 − 60λ2 + 48λ − 16,

respectively. Recall that these metrics have sec > 0 if and only if 0 < λ < 4
3
∼= 1.333.

Notice that the proper inclusions (1
2
, λ1) ( (0, λ2) ( (0, 4

3
) correspond to proper

inclusions of the classes of Berger metrics with, respectively, positive-definite curva-

ture operator, strongly positive curvature, and sec > 0. It is also straightforward

to verify that the closures of these intervals, namely
[

1
2
, λ1

]
(
[
0, λ2

]
(
[
0, 4

3

]
corre-

spond to proper inclusions of the classes of Berger metrics with, respectively, positive-

semidefinite curvature operator, strongly nonnegative curvature, and sec ≥ 0.

Finally, recall that S7 admits a totally geodesic embedding into S4n+3 for all n ≥ 1,

where both are equipped with the Berger metric λ gV⊕gH. Thus, by Proposition 8.15,

the Berger spheres
(
S4n+3, λ gV ⊕ gH

)
with n ≥ 1 and λ2 < λ < 4

3
, are examples

of homogeneous spaces with sec > 0 that do not have strongly positive curvature,

similarly to CaP 2, B13, and W 24, see Theorem 8.22, Remark 9.12 and Theorems 9.8

and 9.11. However, we stress that, differently from the previous examples, the Berger

spheres
(
S4n+3, λ gV ⊕ gH

)
, λ2 < λ < 4

3
, do not have strongly nonnegative curvature.

We conclude this section mentioning a few important consequences of the above

discussion for the bundle

CP 1 → CP 2n+1 → HP n. (10.18)

This is also a homogeneous bundle as in (9.1), where the Lie groups H ⊂ K ⊂ G are

respectively given by

Sp(n)U(1) ⊂ Sp(n)Sp(1) ⊂ Sp(n+ 1), (10.19)

There are 10 linearly independent 4-forms on S7 invariant under the smaller group Sp(2), including
τ and vol. This makes the problem of determining the moduli space of strongly positive curvature
homogeneous metrics with 3 different parameters {λ1, λ2, λ3} much more complicated.
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and the inclusions are the usual ones as block matrices. Note that the smaller group

H′ = Sp(n) for the Hopf bundle is a subgroup of the above H = Sp(n)U(1), see

(10.13). Since H/H′ ∼= S1, fiber and total space of the Hopf bundle are circle bundles

over the corresponding fiber and total space of (10.18), that is, the diagram

S3 −−−→ S4n+3 −−−→ HP ny y ∥∥∥
S2 −−−→ CP 2n+1 −−−→ HP n

is commutative, where the horizontal lines are the homogeneous bundles correspond-

ing to (10.13) and (10.19), and the vertical arrows are projections of circle bundles.

In particular, the complements p′ and p such that k = h′ ⊕ p′ = h⊕ p satisfy p ⊂ p′.

Thus, it follows that the fatness map F : m ⊗ p → m ⊗ p for the bundle (10.18) is

the restriction to m⊗ p of the fatness map F ′ : m⊗ p′ → m⊗ p′ for the Hopf bundle.

Since there exists τ ′ such that F ′ + τ ′ is positive-definite, it follows that F + τ is

also positive-definite, where τ is the restriction of τ ′ to m ⊗ p. Therefore, (10.18) is

a strongly fat bundle for all n ≥ 1.

The other hypotheses of Theorem 9.5 are also easily verified for (10.18). Thus,

we conclude that the Berger-type metrics λ gV ⊕ gH on CP 2n+1 satisfy the following

result, where gV ⊕ gH is the standard metric, and gV and gH respectively denote its

vertical and horizontal parts with respect to (10.18).

Proposition 10.13. The Berger-type metrics λ gV ⊕ gH on CP 2n+1 have strongly

positive curvature for all 0 < λ ≤ 1.

The case λ = 1 does not follow from Theorem 9.5, but has been addressed in

Theorem 8.20. Notice that Proposition 10.13 does not follow from Proposition 10.11.

Indeed, equipping S4n+3 with any Berger metric, the projection S4n+3 → CP 2n+1

is a Riemannian submersion, where CP 2n+1 is equipped with its standard metric.

Moreover, notice that the method used in the proof of Propositons 10.7 and 10.11
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does not apply to the above bundle (10.18), since H = Sp(n)U(1) is not normal in

K = Sp(n)Sp(1), see (10.19).

10.4 Berger sphere S15

The Hopf bundle S7 → S15 → S8
(

1
2

)
is a homogeneous bundle as in (9.1), where

the Lie groups H ⊂ K ⊂ G are given by

Spin(7) ⊂ Spin(8) ⊂ Spin(9). (10.20)

The above inclusions are described in Section 9.5, and further details can be found

in Grove and Ziller [47, p. 633-634] and Verdiani and Ziller [99, p. 476]. The base

S8
(

1
2

)
is a CROSS, the fiber S7 has constant positive curvature, and both (g, k) and

(k, h) are symmetric pairs.

Up to rescaling, the bi-invariant metric Q on g = so(9) is given by formula (9.14),

where Re can be omitted. The homogeneous metric gt defined in (9.3) is the Berger

metric

gt = t
4
gV ⊕ gH, (10.21)

see, e.g., Grove and Ziller [47, Table 2.4]. Furthermore, up to rescaling, the Berger

metrics λ gV ⊕ gH, λ > 0, parametrize the space of Spin(9)-invariant metrics on

S15 = Spin(9)/Spin(7).

The Q-orthogonal complements defined in (9.2) are m ∼= R8 and p ∼= R7, and can

be identified as the following subspaces of so(9),

m = span
{
E19, E29, E39, E49, E59, E69, E79, E89

}
,

p = span
{
V1 := 1

2
(E15 + E26 + E37 + E48), V2 := 1

2
(E17 + E28 − E35 − E46),

V3 := 1
2
(E13 − E24 − E57 + E68), V4 := 1

2
(E16 − E25 − E38 + E47),
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V5 := 1
2
(E18 − E27 + E36 − E45), V6 := 1

2
(E12 + E34 − E56 − E78),

V7 := 1
2
(E14 + E23 − E58 − E67)

}
,

where Eij ∈ so(9) denotes the matrix with 1 in the (i, j)th entry and −1 in the (j, i)th

entry. The Lie bracket operator L : m⊗ p→ m defined in (9.5) is determined by:

2[·, ·] V1 V2 V3 V4 V5 V6 V7

E19 E59 E79 E39 E69 E89 E29 E49

E29 E69 E89 −E49 −E59 −E79 −E19 E39

E39 E79 −E59 −E19 −E89 E69 E49 −E29

E49 E89 −E69 E29 E79 −E59 −E39 −E19

E59 −E19 E39 −E79 E29 E49 −E69 −E89

E69 −E29 E49 E89 −E19 −E39 E59 −E79

E79 −E39 −E19 E59 −E49 E29 −E89 E69

E89 −E49 −E29 −E69 E39 −E19 E79 E59

Thus, by (9.6), kerF = kerL is spanned by the following 48 vectors of m⊗ p:

−E19 ∧ V1 + E89 ∧ V7, −E19 ∧ V2 + E89 ∧ V6, −E29 ∧ V6 + E89 ∧ V5,

−E19 ∧ V3 + E89 ∧ V4, E19 ∧ V4 + E89 ∧ V3, E19 ∧ V6 + E89 ∧ V2,

E19 ∧ V7 + E89 ∧ V1, −E19 ∧ V4 + E79 ∧ V7, E19 ∧ V5 + E79 ∧ V6,

−E19 ∧ V6 + E79 ∧ V5, E19 ∧ V7 + E79 ∧ V4, −E19 ∧ V1 + E79 ∧ V3,

−E29 ∧ V6 + E79 ∧ V2, E19 ∧ V3 + E79 ∧ V1, E19 ∧ V2 + E69 ∧ V7,

−E19 ∧ V1 + E69 ∧ V6, E19 ∧ V3 + E69 ∧ V5, −E29 ∧ V6 + E69 ∧ V4,

−E19 ∧ V5 + E69 ∧ V3, −E19 ∧ V7 + E69 ∧ V2, E19 ∧ V6 + E69 ∧ V1,

E19 ∧ V5 + E59 ∧ V7, E19 ∧ V4 + E59 ∧ V6, −E19 ∧ V7 + E59 ∧ V5,

−E19 ∧ V6 + E59 ∧ V4, E19 ∧ V2 + E59 ∧ V3, −E19 ∧ V3 + E59 ∧ V2,
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−E29 ∧ V6 + E59 ∧ V1, −E29 ∧ V6 + E49 ∧ V7, E19 ∧ V3 + E49 ∧ V6,

E19 ∧ V1 + E49 ∧ V5, −E19 ∧ V2 + E49 ∧ V4, −E19 ∧ V6 + E49 ∧ V3,

E19 ∧ V4 + E49 ∧ V2, −E19 ∧ V5 + E49 ∧ V1, E19 ∧ V6 + E39 ∧ V7,

−E19 ∧ V7 + E39 ∧ V6, −E19 ∧ V4 + E39 ∧ V5, E19 ∧ V5 + E39 ∧ V4,

−E29 ∧ V6 + E39 ∧ V3, E19 ∧ V1 + E39 ∧ V2, −E19 ∧ V2 + E39 ∧ V1,

−E19 ∧ V3 + E29 ∧ V7, E19 ∧ V2 + E29 ∧ V5, E19 ∧ V1 + E29 ∧ V4,

E19 ∧ V7 + E29 ∧ V3, −E19 ∧ V5 + E29 ∧ V2, −E19 ∧ V4 + E29 ∧ V1.

Consider the operator induced by the Spin(7)-invariant 4-form τ ∈ ∧2m⊗ ∧2p,

τ =− (E19 ∧ E59 − E29 ∧ E69 + E39 ∧ E79 − E49 ∧ E89)⊗ (V2 ∧ V3)

− (E19 ∧ E59 + E29 ∧ E69 − E39 ∧ E79 − E49 ∧ E89)⊗ (V4 ∧ V6)

− (E19 ∧ E59 − E29 ∧ E69 − E39 ∧ E79 + E49 ∧ E89)⊗ (V5 ∧ V7)

+ (E19 ∧ E79 − E29 ∧ E89 − E39 ∧ E59 + E49 ∧ E69)⊗ (V1 ∧ V3)

+ (E19 ∧ E79 − E29 ∧ E89 + E39 ∧ E59 − E49 ∧ E69)⊗ (V4 ∧ V7)

− (E19 ∧ E79 + E29 ∧ E89 + E39 ∧ E59 + E49 ∧ E69)⊗ (V5 ∧ V6)

− (E19 ∧ E39 + E29 ∧ E49 − E59 ∧ E79 − E69 ∧ E89)⊗ (V1 ∧ V2)

+ (E19 ∧ E39 + E29 ∧ E49 + E59 ∧ E79 + E69 ∧ E89)⊗ (V4 ∧ V5)

− (E19 ∧ E39 − E29 ∧ E49 + E59 ∧ E79 − E69 ∧ E89)⊗ (V6 ∧ V7)

+ (E19 ∧ E69 − E29 ∧ E59 + E39 ∧ E89 − E49 ∧ E79)⊗ (V1 ∧ V6)

− (E19 ∧ E69 + E29 ∧ E59 + E39 ∧ E89 + E49 ∧ E79)⊗ (V2 ∧ V7) (10.22)

− (E19 ∧ E69 + E29 ∧ E59 − E39 ∧ E89 − E49 ∧ E79)⊗ (V3 ∧ V5)

+ (E19 ∧ E89 + E29 ∧ E79 − E39 ∧ E69 − E49 ∧ E59)⊗ (V1 ∧ V7)
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+ (E19 ∧ E89 − E29 ∧ E79 − E39 ∧ E69 + E49 ∧ E59)⊗ (V2 ∧ V6)

+ (E19 ∧ E89 + E29 ∧ E79 + E39 ∧ E69 + E49 ∧ E59)⊗ (V3 ∧ V4)

− (E19 ∧ E29 − E39 ∧ E49 − E59 ∧ E69 + E79 ∧ E89)⊗ (V1 ∧ V4)

− (E19 ∧ E29 − E39 ∧ E49 + E59 ∧ E69 − E79 ∧ E89)⊗ (V2 ∧ V5)

+ (E19 ∧ E29 + E39 ∧ E49 + E59 ∧ E69 + E79 ∧ E89)⊗ (V3 ∧ V7)

− (E19 ∧ E49 − E29 ∧ E39 − E59 ∧ E89 + E69 ∧ E79)⊗ (V1 ∧ V5)

+ (E19 ∧ E49 − E29 ∧ E39 + E59 ∧ E89 − E69 ∧ E79)⊗ (V2 ∧ V4)

− (E19 ∧ E49 + E29 ∧ E39 + E59 ∧ E89 + E69 ∧ E79)⊗ (V3 ∧ V6).

The restriction τ : kerF → kerF is the identity operator, hence positive-definite.

From Lemma 9.6, there exists ε > 0 such that (F + ετ) : m⊗ p→ m⊗ p is positive-

definite. Thus, the homogeneous bundle S7 → S15 → S8
(

1
2

)
is strongly fat.

Therefore, by (10.21) and Theorem 9.5, we conclude that the Berger sphere(
S15, λ gV ⊕ gH

)
has strongly positive curvature for all 0 < λ < 1

4
. Once more,

this is not the maximal range of λ on which there is strongly positive curvature.

Proposition 10.14. The Berger sphere
(
S15, λ gV ⊕ gH

)
has positive-definite cur-

vature operator if and only if 1
2
< λ < λ3

∼= 1.165, and strongly positive curva-

ture if and only if 0 < λ < λ4
∼= 1.184, where λ3 is the only real root of p3(λ) =

16λ3−32λ2+19λ−4 and λ4 is the largest real root of p4(λ) = 289λ3−612λ2+360λ−48.

Proof. Follows from a direct computation analogous to those in Remarks 10.9 and

10.12, that uses Proposition 8.14 and the fact that the only Spin(9)-invariant 4-forms

on S15 = Spin(9)/Spin(7) are a τ + b ω, a, b ∈ R, where τ is given by (10.22), and

ω ∈ ∧4m is given by

ω =E19 ∧ E29 ∧ E39 ∧ E49 − E59 ∧ E69 ∧ E79 ∧ E89
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− (E19 ∧ E29 + E39 ∧ E49) ∧ (E59 ∧ E69 + E79 ∧ E89)

− (E19 ∧ E39 − E29 ∧ E49) ∧ (E59 ∧ E79 − E69 ∧ E89)

− (E19 ∧ E49 + E29 ∧ E39) ∧ (E59 ∧ E89 + E69 ∧ E79).

Remark 10.15. Analogously to Remark 10.12, we observe that the proper inclusions

(1
2
, λ3) ( (0, λ4) ( (0, 4

3
) correspond to proper inclusions of the classes of Berger

metrics with, respectively, positive-definite curvature operator, strongly positive cur-

vature, and sec > 0. It is also straightforward to verify that the closures of these

intervals,
[

1
2
, λ3

]
(
[
0, λ4

]
(
[
0, 4

3

]
correspond to proper inclusions of the classes of

Berger metrics with, respectively, positive-semidefinite curvature operator, strongly

nonnegative curvature, and sec ≥ 0. Thus,
(
S15, λ gV ⊕ gH

)
, λ4 < λ < 4

3
, is a further

example of homogeneous space with sec > 0 without strongly nonnegative curvature.

Remark 10.16. Since the Hopf bundle S7 → S15 → S8
(

1
2

)
is such that both (g, k) and

(k, h) are symmetric pairs, see (10.20), Remark 10.15 implies that the strong version

of Wallach’s theorem (Theorem 9.5) does not extend to 1 < t < 4
3
, see Remark 9.14.
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17. C. Böhm and B. Wilking, Manifolds with positive curvature operators are
space forms, Ann. of Math. (2), 167 (2008), 1079–1097.

18. J.-P. Bourguignon, A. Deschamps, and P. Sentenac, Conjecture de H.
Hopf sur les produits de variétés, Ann. Sci. École Norm. Sup. (4), 5 (1972),
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(1973), 1–16.

20. S. Brendle and R. Schoen, Manifolds with 1/4-pinched curvature are space
forms, J. Amer. Math. Soc., 22 (2009), 287–307.

21. W. Browder, Higher torsion in H-spaces, Trans. Amer. Math. Soc., 108
(1963), 353–375.

22. F. Catanese and C. LeBrun, On the scalar curvature of Einstein manifolds,
Math. Res. Lett., 4 (1997), 843–854.

23. J. Cheeger, Some examples of manifolds of nonnegative curvature, J. Differ-
ential Geometry, 8 (1973), 623–628.

24. S.-s. Chern, On curvature and characteristic classes of a Riemann manifold,
Abh. Math. Sem. Univ. Hamburg, 20 (1955), 117–126.

25. E. Costa, A modified Yamabe invariant and a Hopf conjecture, preprint.
arXiv:1207.7107.
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78. T. Püttmann, Injectivity radius and diameter of the manifolds of flags in the
projective planes, Math. Z., 246 (2004), 795–809.

79. V. A. Rohlin, New results in the theory of four-dimensional manifolds, Dok-
lady Akad. Nauk SSSR (N.S.), 84 (1952), 221–224.

80. J. Rosenberg, Manifolds of positive scalar curvature: a progress report, in
Surveys in differential geometry. Vol. XI, vol. 11 of Surv. Differ. Geom., Int.
Press, Somerville, MA, 2007, 259–294.

81. R. Schoen and S. T. Yau, On the structure of manifolds with positive scalar
curvature, Manuscripta Math., 28 (1979), 159–183.
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