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Assignment 4, with solutions

1 Microstates and macrostates

3 distinguishable particles can occupy 4 states. Find all macrostates and the numbers of microstates realizing each macrostate.
Put results into the table. Which macrostate has the highest statistical weight? What is the total number of microstates that
can be found immediately? Is the sum of the microstates realizing each mucrostate equal to this expected total number?

Macrostates Numbers of microstates

3 0 0 1

? ? ? ?

Solution: The table is below
Macrostates Numbers of microstates

3 0 0 1

0 3 0 1

0 0 3 1

2 1 0 3

2 0 1 3

1 2 0 3

1 0 2 3

0 2 1 3

0 1 2 3

1 1 1 6

The total number of microstates is 33 = 27.

2 Method of lagrange multipliers

Find the area of the largest rectangle that can be inscribed into the ellipse

x2

a2
+
y2

b2
= 1.

Use the method of Lagrange multipliers: to minimize a function F (x, y) with a constraint φ(x, y = 0, minimize

Φ(x, y) ≡ F (x, y)− λφ(x, y)

with respect to x, y, and λ.
Solution: Using the method of Lagrange multiliers, we minimize

Φ(x, y) = xy − λ
(
x2

a2
+
y2

b2
− 1

)
.

The equations for the extrema are

0 =
∂Φ

∂x
= y − 2λx/a2

0 =
∂Φ

∂y
= x− 2λy/b2

0 =
∂Φ

∂λ
=
x2

a2
+
y2

b2
− 1.

Expressing
y = 2λx/a2

from the �rst equation and inserting the result into the second equation, one obtains

0 = x− 4λ2x/(ab)2,

that is,
λ = ab/2.
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Then one obtains

y = x
b

a
.

Inserting this into the third extrema equation, one obtains

0 =
x2

a2
+
x2

a2
− 1

and
x = a/

√
2, y = b/

√
2.

The maximal area is now

Amax = xy =
ab

2
.

A-posteriori, one can see that with the smart choice of variables

x̃ ≡ x/a, ỹ ≡ y/b

one could achieve a more elegant and probably completely symmetric solution of the equations.

3 Thermodynamics of particles in a rigid box in the quantum limit

Calculate the partition function, the internal energy, and the heat capacity of an ensemble of non-interacting particles in a cubic
box Lx = Ly = Lz = L at low temperatures (quantum limit), assuming Bolzmann statistics. De�ne the crossover temperature
between the quantum and classical limits.

Solution. The quantum energy levels of the particle in a cubic box are given by

ενx,νy,νz =
π2~2

2mL2

(
ν2x + ν2y + ν2z

)
, να = 1, 2, 3, . . . (1)

The energy of the ground state (νx, νy, νz) = (1, 1, 1) is

ε111 =
3π2~2

2mL2
. (2)

The energy of the triple-degenerate �rst excited states (2, 1, 1), (1, 2, 1), (1, 1, 2) is

ε211 = ε121 = ε112 =
6π2~2

2mL2
.

The particion function is given by

Z = exp

(
−β 3π2~2

2mL2

)
+ 3 exp

(
−β 6π2~2

2mL2

)
+ . . .

or

Z = exp

(
−β 3π2~2

2mL2

)[
1 + 3 exp

(
−β 3π2~2

2mL2

)
+ . . .

]
.

The terms denoted by . . . are contributions of the higher levels. In the low-temperature range

kBT � kBT0 ≡ U0 ≡
3π2~2

2mL2
,

the ground state makes the dominant contribution to the partition function while the contributions of the excited states are
exponentially small. To obtain the temperature-dependent part of the thremodynamic quantities, it is su�cient to keep the
contribution of the �rst excited states, because those from higher excited states are much smaller. From the expression above,
one obtains

lnZ = −βU0 + ln [1 + 3 exp (−βU0) + . . .] ∼= −βU0 + 3 exp (−βU0) .

The internal energy is given by

U = −N ∂ lnZ
∂β

= NU0 + 3NU0 exp (−βU0) = NU0 [1 + 3 exp (−βU0)] .

The �rst term is just the ground-state energy. The second term is the exponentially small thermal energy. The heat capacity is
extirely due to the latter:

C =
dU

dT
= 3NU0

[
∂

∂β
exp (−βU0)

]
∂β

∂T
= 3NU0 [−U0 exp (−βU0)]

(
− 1

kBT 2

)
= 3NkB

(
U0

kBT

)2

exp

(
− U0

kBT

)
. (3)

2



or

C = 3NkB

(
T0
T

)2

exp

(
−T0
T

)
� NkB .

The temperature T0 de�ned above is the crossover temperature between the quantum and classical regimes. For T & T0,
many excided levels make a contribution to the partition function, and one has to perform a numerical summation to compute
Z. For T � T0, the highly excited states are dominating, and one can replace summation by integration and calculate the
partition function analytically.

4 Density of states of particles in the rigid box in 1d and 2d

The density of states of quantum particles in a rigid 3d box has been calculated in the lectures. Generalize these results for one
and two dimensions.

Solution: In one dimension, the energy levels are given by

εn =
~2k2ν
2m

, kν =
π

L
ν, ν = 1, 2, 3, . . . . (4)

To calculate the density of states de�ned by
dnε = ρ(ε)dε, (5)

start with
dnν = dν, (6)

as the number of states (energy levels) in the interval dν of the quantum number ν. Using the expression for the quantized wave
vector in Eq. (4), one can rewrite Eq. (6) in terms of k as

dnk =
L

π
dk.

Using now the relation between the wave vector and the energy,

k =

√
2mε

~2
, (7)

one obtains

dnε =
L

π

dk

dε
dε =

L

2π

(
2m

~2

)1/2
dε√
ε
.

thus the density of states is given by

ρ(ε) =
L

2π

(
2m

~2

)1/2
1√
ε

In two dimensions, instead of Eq. (6) we use
dnνxνy = dνxdνy (8)

that in terms of k becomes

dnkxky =
LxLy
π2

dkxdky. (9)

Now we go over to the number of states withing the circular shell k, k+ dk taking into account that both kx and ky are positive
and thus there is only one quarter of the circular shell. One obtains

dnk =
LxLy
π2

2π

4
kdk.

Further with the help of Eq. (7) follows

dnε =
S

2π

√
2mε

~2

(
2m

~2

)1/2
dε√
ε

=
S

2π

2m

~2
dε

and thus

ρ(ε) =
S

2π

2m

~2
,

where S = LxLy is the area of the rigid box. Note that in 2d particle's density of states is a constant.
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5 Density of states of phonons in 1d and 2d

The density of states of phonons in 3d has been calculated in the lectures. Generalize these results for one and two dimensions.
Solution: In 1d, we use the density of states with respect to the wave vector k that is the same for particles and lattice

vibrations,

dnk =
L

π
dk.

Here we change from k to ω using the phonon dispersion law ω = vk to obtain the density of states

ρ(ω) =
L

πv

that is a constant.
In 2d one can start, again, with the DOS in terms of k

dnk =
S

2π
kdk,

as for the particles above. Here S = LxLy is the area of the system. Changing to ω, one obtains the phonon DOS

ρ(ω) =
Sω

2πv2
.
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