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Assignment 2, with solutions

1 Entropy change in the isobaric-isochoric cycle of an ideal gas

Show that the entropy change in the cyclic process of an ideal gas, that is represented by a rectangle in the (P, V ) diagram, is
zero.

Figure 1: Isobar-isochore cycle.

Solution: In the isobatic process of an ideal gas, the in�nitesimal amount of heat is given by

δQ = dU + PdV = CV dT + PdV.

From the equation of state of the ideal gas
PV = νRT

follows

T =
PV

νR
, dT =

PdV

νR
Substituting this into

dS =
δQ

T
,

one obtains

dS =
CV PdV/(νR) + PdV

PV/(νR)
= (CV + νR)

dV

V
= CP

dV

V
.

In the isochoric process of the ideal gas, δQ is given by

δQ = CV dT = CV
V dP

νR
,

thus

dS =
δQ

T
= CV

V dP

PV
= CV

dP

P
.

In our cyclic process,

∆SAB =

ˆ P2

P1

CV
dP

P
= CV ln

P2

P1
> 0

∆SCD = CV ln
P1

P2
= −∆SAB

∆SBC =

ˆ V2

V1

CP
dV

V
= CP ln

V2

V1
> 0

∆SDA = CP ln
V1

V2
= −∆SBC .

The total entropy change
∆S = ∆SAB +∆SBC +∆SCD +∆SDA = 0,

as it should be.
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2 Entropy change in the isobaric-isochoric-isothermic cycle of an ideal gas

Show that the entropy change in the cyclic process of an ideal gas that include an isobar, an isochor, and an isotherm is zero.

Figure 2: Isobar-isochor-isotherm cycle.

Solution: Using the results of the solution of the previous problem, one �nds

∆SBC = CP ln
V2

V1
> 0, ∆SCD = CV ln

P1

P2
< 0.

In the isothermal process of an ideal gas dU = 0 thus δQ = PdV and

dS =
δQ

T
=

PdV

T
= νR

dV

V
.

This yields

∆SDB = νR ln
V1

V2
< 0.

Using the equation of state of the ideal gas, on the ends of the isotherm one has

P1

P2
=

V1

V2
⇒ ∆SCD = CV ln

V1

V2
.

The total entropy change over the cycle is

∆S = ∆SBC +∆SCD +∆SDB = (CP − CV − νR) ln
V2

V1
= 0,

as it should be.

3 Entropy of a perfect gas

Calculate the entropy of a perfect gas as a function of (V, T ) by integration using S =
´
δQ/T .

Solution: De�ne S(V0, T0) = S0 as a reference point and calculate the entropy S(V, T ) via the integral of δQ/T over a path
(V0, T0) ⇒ (V, T ), that is,

S(V, T ) = S0 +

(V,T )ˆ

(V0,T0)

δQ

T
.

As the the entropy is a state function, its value does not depend on the path. Thus one can choose the most convenient path,
for instance, (V0, T0) ⇒ (V0, T ) ⇒ (V, T ). At the �rst stage only the temperature is changing while the work is zero, thus

δQ = dU =

(
∂U

∂T

)
V

dT = CV dT.

Integration for the perfect gas (CV = const) proceeds as follows:

S(V0, T ) = S0 +

T̂

T0

CV dT

T
= S0 + CV ln

T

T0
.
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At the second stage T = const. As for the ideal gas U = U(T ), it does not change and δQ is only due to work,

δQ = PdV.

Using the equation of state of the ideal gas PV = νRT this can be rewritten as

δQ = νRT
dV

V
.

Now integration with T = const proceeds as follows:

S(V, T ) = S(V0, T ) + νR

V̂

V0

dV

V
= S0 + CV ln

T

T0
+ νR ln

V

V0
.

Here the terms with T0 and V0 can be absorbed in the constant:

S(V, T ) = CV lnT + νR lnV + const.

Using CP − CV = νR (Meyer's relation) and γ = CP /CV , one can rewrite this formula as

S(V, T ) = CV (lnT + (γ − 1) lnV ) + const = CV lnTV γ−1 + const.

The argument of the logarithm is constant in the adiabatic process, S = const, thus the result has an expected behavior and
passes an error check.

4 Internal energy of a perfect gas in natural variables

Express the energy of a perfect gas in the natural variables, U = U(S, V ), and check relations

T =

(
∂U

∂S

)
V

, −P =

(
∂U

∂V

)
S

,

(
∂T

∂V

)
S

= −
(
∂P

∂S

)
V

.

Solution: In the V, T variables the energy of a perfect gas has the form

U = CV T,

where a constant has been dropped for simplicity. The entropy of the perfect gas is given by

S = CV lnTV γ−1, (1)

where again a constant has been dropped. From here one can express T as a function of S

T =
1

V γ−1
exp

(
S

CV

)
. (2)

Thus the energy in its natural variables becomes

U(S, V ) =
CV

V γ−1
exp

(
S

CV

)
. (3)

Note that U depends on the volume!
Now, using

dU = TdS − PdV

one can identify

T =

(
∂U

∂S

)
V

, −P =

(
∂U

∂V

)
S

.

Let us check these relations. With the help of Eq. (2) one obtains.(
∂U

∂S

)
V

=
1

V γ−1
exp

(
S

CV

)
= T,

as it should be. Further, using γ = CP /CV and CP − CV = νR one obtains(
∂U

∂V

)
S

= − (γ − 1)CV

V γ
exp

(
S

CV

)
= −νR

V γ
exp

(
S

CV

)
.

3



Using Eq. (2) (
∂U

∂V

)
S

= −νRT

V
= −PV

V
= −P,

as it should be. Thus we have obtained

P =
νR

V γ
exp

(
S

CV

)
(4)

in the V, S variables. This formula also could be obtained from Eq. (1) and the equation of state, similarly to Eq. (2). Now, to
check the Maxwell identity, Using Eq. (2) one calculates(

∂T

∂V

)
S

= − νR

CV V γ
exp

(
S

CV

)
.

On the other hand, from Eq. (4) one obtains

−
(
∂P

∂S

)
V

= − νR

CV V γ
exp

(
S

CV

)
=

(
∂T

∂V

)
S

,

as expected.

5 Thermodynamic potentials F and G of the perfect gas

Express thermodynamic potentials F and G of the perfect gas in terms of their natural variables and check relations similar to
those in the preceding problem.

Solution: Using the de�nition of F and the formulas for U and S of a perfect gas, one obtains

F = U − TS = CV T − TCV lnTV γ−1 = −CV T ln
(
TV γ−1/e

)
. (5)

Since
dF = −SdT − PdV,

one can identify

−S =

(
∂F

∂T

)
V

, −P =

(
∂F

∂V

)
T

.

The entropy follows from Eq. (5) as

S = −
(
∂F

∂T

)
V

= −CV + CV + CV lnTV γ−1 = CV lnTV γ−1

that is a known result. The pressure is

P = −
(
∂F

∂V

)
T

=

(
∂
(
CV T lnV γ−1

)
∂V

)
T

= CV T (γ − 1)

(
∂ (lnV )

∂V

)
T

=
CV T (γ − 1)

V
=

νRT

V
,

also a known result.
The Maxwell relation (

∂S

∂V

)
T

=

(
∂P

∂T

)
V

is now checked as follows (
∂S

∂V

)
T

=
∂

∂V
CV lnTV γ−1 = CV (γ − 1)

∂ lnV

∂V
=

νR

V
.

On the other hand, (
∂P

∂T

)
V

=
νR

V
=

(
∂S

∂V

)
T

,

as expected.
For the Gibbs thermodynamic potential G all calculations are parallel to those for F , only one has to express all the formulas

via P instead of V , using the equation of state of the ideal gas.
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6 Thermodynamics from F

The Helmholtz free energy of a certain gas has the form

F = −ν2a

V
− νRT ln (V − νb) + J(T ).

Find the equation of state of this gas, as well as its internal energy, entropy, heat capacities CP and CV and, in particular, their
di�erence CP − CV .

Solution: To �nd the eqiation of state, one has to �nd P that will ve a function of the native variables V, T :

P = −
(
∂F

∂V

)
T

= −ν2a

V 2
+

νRT

V − νb
. (6)

Rearranging this formula, one obtains (
P +

ν2a

V 2

)
(V − νb) = νRT, (7)

the van der Waals equation of a non-ideal gas.
Next, the entropy is given by

S = −
(
∂F

∂T

)
V

= νR ln (V − νb)− J ′(T ).

Now the internal energy becomes

U = F + TS = −ν2a

V
+ J(T )− TJ ′(T ).

The heat capacity CV can be found as

CV =

(
∂U

∂T

)
V

= −TJ”(T )

or as

CV = T

(
∂S

∂T

)
V

= −TJ”(T ).

Finding

CP = T

(
∂S

∂T

)
P

requires more work. An explicit way to do this is to express V in the form V = V (P, T ) everywhere with the help of Eq. (7).
However, this V is a solution of a cubic equation that is better to avoid. Also this method is inconvenient to study CP − CV

because both heat capacities have to be functions of the same variables. Thus it is better to use the implicit method considering
S = S(V, T ) but with V = V (P, T ). Then one obtains

CP = T

(
∂S

∂T

)
V

+ T

(
∂S

∂V

)
T

(
∂V

∂T

)
P

= CV + T

(
∂S

∂V

)
T

/

(
∂T

∂V

)
P

.

In this formula (
∂S

∂V

)
T

=
νR

V − νb
,

whereas (
∂T

∂V

)
P

=
1

νR

∂

∂V

(
P +

ν2a

V 2

)
(V − νb) =

1

νR

[
−2ν2a

V 3
(V − νb) +

(
P +

ν2a

V 2

)]
.

Here one can eliminate P using Eq. (6) that yields(
∂T

∂V

)
P

=
1

νR

[
−2ν2a

V 3
(V − νb) +

νRT

V − νb

]
.

Gathering the terms, one obtains

CP − CV =
(νR)

2
T

V − νb
/

[
−2ν2a

V 3
(V − νb) +

νRT

V − νb

]
,

further

CP − CV = νR
νRT

νRT − (2ν2a/V 3) (V − νb)
2

and, �nally,

CP − CV =
νR

1− 2ν2a(V−νb)2

νRTV 3

> νR.

One can see that at high temperatures and large volumes the additional term in the denominator becomes small and the Meyer's
relation for the ideal gas arises.
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