
3 – Standing waves, overtone series 

Superposition (sum) of two plane waves with the same frequency, wave length, and amplitude but 

propagating in different directions forms a so-called standing wave: 
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Standing wave does not travel anywhere. There are oscillations in time and space, independently. 

For some values of x the wave quantity W (pressure, media displacement, etc.) turns to zero at all 

times because of the cos-factor. Such points are called nodal points. The points where cos reaches 

±1 correspond to strongest oscillations in time. Such points are called anti-nodal points. 
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Standing wave 

If the frequences or amplitudes of the two 

travelling waves differ a little, their sum is a 

slowly moving but fast oscillating wave. 

Definition of standing waves 
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Role of the boundary conditions in formation of standing waves 

Superposition of two waves propagating in different directions and having the same amplitude is 

a practically important case. In many cases, for instance, in music instruments, waves are 

confined within a closed space and subject to boundary conditions. Boundaries can be fixation 

points of strings in piano or guitar, close or open ends of organ pipes, etc. Physical conditions at 

the boundaries allow existence of standing waves with particular wave lengths n, n1,2,…, that 

satisfy these boundary conditions. 

Guitar or piano string fixed at x0 and xL: 

This is the fundamental mode of standing waves in 

the string with the fundamental wave length 
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Case 1: Nodes at both ends (node-node) 
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The wave length of the fundamental mode is 

maximal of all allowed modes (see below). The 

corresponding fundamental frequency 

L

vv
f

21

1 


is the minimal frequency of all allowed modes. 
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First (fundamental), second, and third modes in the node-node case: 

The wave lengths of all allowed modes are 
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Correspondingly, all allowed frequencies are 

multiples of the fundamental frequency f1: 
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Yet another realization of the node-node case is a pipe with 

both end open. In this case the physical quantity that makes the 

wave motion is the pressure of the air P. Inside the pipe there 

are standing sound waves. The pressure due to these sound waves should (approximately!) 

coincide with the constant athmospheric pressure outside the pipe. That is, the excessive pressure 

due to the sound wave should turn to zero at the ends of the pipe. This is completely similar to the 

case of a string with both ends fixed, only the physical quantities describing waves are different in 

the two cases. Thus for a pipe with both ends open, the allowed wave lengths and frequencies are 

the same as for a string with both ends fixed.   

Similar is realized in a metal rod with both ends 

clamped. Modes with n2,,.. are called overtones or 

harmonics. 
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Case 2: Anti-nodes at both ends (antinode-antinode) 
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For a string such a case would be unrealistic 

but it is realized in a metal rod with both free 

(unclamped) ends and in an organ pipe with 

both ends closed. In the latter case, the media 

displacement (the displacement of the air 

particles) should have nodes at the ends of the 

pipe. Then from the relation between the media 

displacement and the pressure in a longitudinal 

wave follows that the pressure should have 

antinodes at the boundaries (see book). In the 

antinode-antinode case, the allowed wave 

lengths and frequencies have exactly the same 

form as in the node-node case: 
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Case 3: Node at one end and antinode at the other end (node-antinode) 

A practically important case is that of node 

at one end (say, left end) and antinode at 

the other end (say, right end). One example 

is a metallic rod clamped at its left end and 

free at its right end (such as one side of a 

tuning fork). Another example is an organ 

pipe with the left side open and the right 

side closed. In the node-antinode case, the 

fundamental wave length is two times larger 

and the fundamental frequency is two times 

smaller than that in the both previous cases:  
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In the node-antinode case only the odd overtones with n,,7,… are allowed, whereas the even 

overtones with n2,,6,… do not occur. Thus, several lowest allowed overtones are 

etc.,7,5,3 171513 ffffff 
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Air tubes 

Open end:  

Node for pressure (approximate),  

antinode for air displacement 

Closed end:  

Antinode for pressure (exact),  

Node for air displacement 

Closed-closed ends (flute):              𝑓1 =
𝑣

2𝐿
, even and odd overtones 

Open-closed ends (clarinet etc.):     𝑓1 =
𝑣

4𝐿
, only odd overtones 
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Phase relations between the incident and reflected waves 

After analyzing the role of boundary conditions in the formation of standing waves, we can 

recall that any standing wave is a superposition of a travelling wave incident on a boundary 

and the travelling wave reflected from the boundary. If there is a node at the boundary, this 

means that the incident and reflected waves, just at the boundary, have phases differing by 

180° (the reflected wave is antiphase to the incident wave). On the contrary, if there is an 

antinode at the boundary, this means that the incident and reflected waves are in phase 

just at the boundary or that the wave reflects without a phase change.   
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Mersenne’s law for a string 

Considerations show (see book) that in a string attached at both ends there is a special 

kind of transverse waves with the speed   

,
W
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where F is the tension force in the string, measured in Newton, and W is the mass per unit 

length, in kg/m. (One can check that the unit of the speed above is just m/s, as it should be.) It 

should be stressed that these waves have nothing to do with transverse elastic waves in solids 

whose speed is much higher. The result above is independent of the elastic properties of the 

material. That is, this is not the elastic force that plays the role of the restoring force here. Here 

the restoring force arises from the tension of the string F. Now, according to the general result 

above, the fundamental frequency of the string is given by 
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This the so-called Mersenne‘s law in ist general form. Its particular consequences, also 

referred to as Mersenne‘s laws, are   
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