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1 Rod on the axis

(10 points) Rod of length l and mass M is mounted on an axis at its center.

a) If the angle θ between the rod and the axis is fixed and the rod rotates with the angular velocity
ωz = ϕ̇ around the axis, what is the (i) kinetic energy of the rod; (ii) breaking torque acting from the rod
on the axis?

b) Set up the Lagrange equations for the rod in the case where both θ and ϕ can freely change. Find
integrals of motion. If you have access to mathematical software, you can try to produce numerical solutions
with particular initial conditions such as θ(0) = θ0, θ̇(0) = 0, ϕ(0) = 0, ϕ̇(0) = ω0.

c) Consider the motion of this system confined to the vicinity of θ = π/2 and try to integrate Lagrange
equations analytically

Solution: a) It is convenient to choose the 3 axis along the rod, the 1 axis perpendicular to the rod and to
ez, and the 2 axis perpendicular to 1 and 3, making the angle π/2− θ with ez. This corresponds to ψ = 0.
The kinetic energy of the rod with θ = const is given by

E =
1
2
Iω2

2. (1)

Using ω2 = ω sin θ and I = Ml2/12, one obtains

E =
1
24

Ml2ω2
z sin2 θ. (2)

The angular momentum is directed along 2 and given by

L2 = Iω2 =
1
12

Ml2ωz sin θ. (3)

In the laboratory frame, the vector L is precessing around the z axis and thus it changes with time.
Consequently there should be a torque K acting from the vertical axis on the rod. The same but opposite
torque acts from the rod on the axis and tends to break it. The torque on the rod can be found from the
Newton’s second law for the rotational motion

L̇ = K. (4)

On the other hand, any vector that rotates with the angular velocity ω changes with time accordng to

L̇ = [L× ω] . (5)

Thus one obtains for the torque
K = [L× ω] (6)

and
K = L2ωz cos θ =

1
12

Ml2ω2
z sin θ cos θ =

1
24

Ml2ω2
z sin (2θ) . (7)

The breaking torque K reaches its maximum at θ = π/4.

(b) If θ can freely change, there are two components of the angular velocity

ω1 = θ̇, ω2 = ϕ̇ sin θ. (8)
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The kinetic energy and thus also the Lagrange function of the rod in terms of the Euler angles θ and ϕ
becomes

L = T = E =
1
2
I

(
ω2

1 + ω2
2

)
=

1
2
I

(
ϕ̇2 sin2 θ + θ̇

2
)

. (9)

The Lagrange equations have the form

d

dt

∂L
∂θ̇

− ∂L
∂θ

= 0,
d

dt

∂L
∂ϕ̇

− ∂L
∂ϕ

= 0. (10)

As ϕ is a cyclic coordinate, ∂L/∂ϕ = 0, one obtains the integral of motion

pϕ =
∂L
∂ϕ̇

= Iϕ̇ sin2 θ = Lz. (11)

This allows to eliminate ϕ̇ as

ϕ̇ =
Lz

I sin2 θ
(12)

and obtain the effective energy in terms of θ

E =
1
2
Iθ̇

2
+ Ueff(θ), Ueff(θ) ≡ L2

z

2I sin2 θ
. (13)

The equation of motion for θ follows from the first of Eqs. (10) of from the effective energy just above. It
can be written in the form

Iθ̈ = −∂Ueff(θ)
∂θ

=
L2

z

I

cos θ

sin3 θ
. (14)

Since the energy is conserved, it follows from Eq. (13) that θ changes within a symmetric region around the
equator θ = π/2 and it cannot reach the poles θ = 0, π. If θ becomes close to θ = 0, π, the rod begins to
rotate very fast according to Eq. (12).

c) Expanding Ueff(θ) near θ = π/2 using the variable

δθ ≡ θ − π/2, (15)

one obtains the effective energy of the form

E =
1
2
I

(
δθ̇

)2
+

1
2

∂2Ueff(θ)
∂θ2

∣∣∣∣
θ=π/2

(δθ)2 . (16)

Practically it is easier to write

Ueff(δθ) ≡ L2
z

2I cos2 (δθ)
∼= L2

z

2I
(
1− (δθ)2 /2

)2
∼= L2

z

2I

(
1 + (δθ)2

)
, (17)

so that
∂2Ueff(θ)

∂θ2

∣∣∣∣
θ=π/2

=
∂2Ueff(δθ)

∂ (δθ)2

∣∣∣∣
δθ=0

=
L2

z

I
= Iω2

z. (18)

Now the effective energy can be written as

E =
1
2
I

[(
δθ̇

)2
+ ω2

z (δθ)2
]

. (19)

This is the energy of a harmonic oscillator with the frequency

ω0 = ωz. (20)

d) Here are the results of the numerical solution of Eq. (14) for I = 1, Lz = 1, θ̇(0) = 0 and θ(0) = 3◦.
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The anharmonicity of the θ oscillations is very strong, and the period is much smaller than 2π/ω0. Appar-
ently the time dependence θ(t) is piecewise linear, and it would be interesting to search for the analytical
mechanism of this numerical finding. Below is shown the time dependence ϕ̇(t):

0.1 0.2 0.3 0.4 0.5

50

100

150

200

250

300

350

t

ϕ&

2 Symmetric top with gravity

(10 points) Consider a symmetric top with moments of inertia I1 = I2 6= I3 that can freely rotate around a
point that is at the distance a from its center of mass. Take into account the gravity force.

a) Set up the Lagrange equations for this top, find integrals of motion;

b) Eliminate ψ and ϕ to obtain an effective energy for θ; Is the motion of the top with θ = const
possible and what is the condition for this?

c) Consider the case of a top that very fast rotates around its 3-axis and obtain the Larmor equation
for the presession of the angular momentum L̇ = [L×Ω] from the above formalism using the Euler angles.
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Solution: a) The kinetic energy of a symmetric top is given by (see, e.g., Landau & Lifshitz, vol.1)

T =
1
2
I ′1

(
ϕ̇2 sin2 θ + θ̇

2
)

+
1
2
I3

(
ϕ̇ cos θ + ψ̇

)2
, (21)

where
I ′1 = I ′2 = I1 + ma2 = I2 + ma2. (22)

With the potential energy
U = mga cos θ (23)

the Lagrange function becomes

L = T − U =
1
2
I ′1

(
ϕ̇2 sin2 θ + θ̇

2
)

+
1
2
I3

(
ϕ̇ cos θ + ψ̇

)2
−mga cos θ. (24)

There are two cyclic variables, ϕ and ψ, that results in two integrals of motion:

∂L
∂ψ̇

= pψ = I3

(
ϕ̇ cos θ + ψ̇

)
= L3 (25)

and
∂L
∂ϕ̇

= pϕ = I ′1ϕ̇ sin2 θ + I3

(
ϕ̇ cos θ + ψ̇

)
cos θ = Lz. (26)

(b) These integrals of motion can be use to eliminate ϕ̇ and ψ̇. Multiplying Eq. (25) by cos θ and subtracting
it from Eq. (26) one obtains

I ′1ϕ̇ sin2 θ = Lz − L3 cos θ (27)

and
ϕ̇ =

Lz − L3 cos θ

I ′1 sin2 θ
, ψ̇ =

L3

I3
− ϕ̇ cos θ =

L3

I3
− Lz − L3 cos θ

I ′1 sin2 θ
cos θ. (28)

The Lagrange equation for θ has the form

d

dt

∂L
∂θ̇

− ∂L
∂θ

= 0 (29)

or
I ′1θ̈ = I ′1ϕ̇

2 sin θ cos θ − I3

(
ϕ̇ cos θ + ψ̇

)
sin θ − ∂U

∂θ
. (30)

Plugging here ϕ̇ and ψ̇ from Eq. (28) one obtains an isolated equation of motion for θ.

The latter can be obtained in an alternative way using Newtonean mechanics. One writes the energy of the
top with ϕ̇ and ψ̇ eliminated with the help of Eq. (28)

E = T + U =
1
2
I ′1θ̇

2
+ Ueff(θ) (31)

where the effective potential energy is defined by

Ueff(θ) =
1
2
I ′1ϕ̇

2 sin2 θ +
1
2
I3

(
ϕ̇ cos θ + ψ̇

)2
+ U(θ)

=
1
2
I ′1

(
Lz − L3 cos θ

I ′1 sin2 θ

)2

sin2 θ +
1
2
I3

(
L3

I3

)2

+ U(θ)

=
1

2I ′1

(Lz − L3 cos θ)2

sin2 θ
+ U(θ) + const. (32)

The equation of motion for θ corresponding to the energy given by Eq. (31) has the form

I ′1θ̈ = −∂Ueff

∂θ
, (33)
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and it can be checked that this equation coincides with Eq. (30). The energy of the top is conserved, so
there is another integral of motion

E =
1
2
I ′1θ̇

2
+ Ueff(θ) = const. (34)

This equation can be resolved to give

θ̇ = ±
√

2 [E − Ueff(θ)]
I ′1

. (35)

Motion with θ = const = θ0 can be realized if, as the initial condition, the top is set into the state with
θ̇ = 0 and θ0 corresponding to the minimum of Ueff , so that it follows from Eq. (33) that θ̈ = 0 and this
state is stable. The stationary states correspond to

0 =
dUeff(θ)

dθ
=

1
I ′1

(Lz − L3 cos θ) L3

sin θ
− 1

I ′1

(Lz − L3 cos θ)2

sin3 θ
cos θ −mga sin θ. (36)

One of the stationary states is θ = 0, so that one has to set Lz = L3. We are not going to analyze this state
here. Stationary states with θ 6= 0 satisfy the equation

0 = (Lz − L3 cos θ) L3 sin2 θ − (Lz − L3 cos θ)2 cos θ −mgaI ′1 sin4 θ. (37)

If we require θ = const, this equation defines the relation between L3 and Lz. It is more convenient to use
ϕ̇ and ψ̇ instead of L3 and Lz. Using Eqs. (27) and (25), one can rewrite Eq. (37) as

0 = I3ϕ̇
(
ψ̇ + ϕ̇ cos θ

)
− I ′1 ϕ̇2 cos θ −mga. (38)

This sets the relation between ϕ̇ and ψ̇. It is mostly convenient to require that ϕ̇ has a given value and find
the corresponding value of ψ̇. The latter is given by

ψ̇ = −ϕ̇ cos θ +
I ′1ϕ̇

2 cos θ + mga

I3ϕ̇
=

(
I ′1
I3
− 1

)
ϕ̇ cos θ +

mga

I3ϕ̇
. (39)

In the absence of gravity, g = 0, one obtains the relation

ψ̇ =
(

I ′1
I3
− 1

)
ϕ̇ cos θ (40)

that is similar to the well-known relation

ψ̇ =
(

I1

I3
− 1

)
ϕ̇ cos θ (41)

for a free top that rotates around its center of mass. If the precession frequency ϕ̇ is required to be very
small, the second term dominates the rhs of Eq. (39), so that one obtains the relation

ψ̇ ∼= mga

I3ϕ̇
(42)

that yields large values of ψ̇ that are independent of θ. On the other hand, if one requires that ψ̇ corresponding
to a given θ = const is very large, one obtains a small precession frequency of the top that is given by

ϕ̇ ∼= mga

I3ψ̇
, (43)

also independent of θ.

(c) Eq. (43) yields a solution for a top that is fast rotating around its 3-axis that corresponds to θ = const.
One can see that the top is slowly precessing around the z axis in this case,

ė3
∼= [Ω× e3] , Ω =

mga

I3ψ̇
ez. (44)
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In this case, ϕ̇ ¿ ψ̇, the angular momentum of the top is mainly due to ψ̇ and thus it is directed nearly
along the 3-axis. Thus the vector L obeys the same equation as e3:

L̇ = [Ω× L] = − [L× Ω] =
[
L× mga

L

]
= K, (45)

where the torque due to the gravity force is given by

K = [r× F] =
[
a
L
L
×mg

]
= [ae3×mg] . (46)

One can obtain the same results for a top fast rotating around the 3-axis without requiring that θ = const.
The result θ ∼= const follows from the equations of motion in this case. The key observation is that here, in
the effective potential energy Ueff(θ), the difference Lz −L3 cos θ ∝ ϕ̇ is much smaller than both Lz and L3.
One can choose the initial condition

θ(0) = θ0, θ̇(0) = 0, ϕ̇(0) = 0 (47)

and see how the top will behave with time. As both Lz and L3 are constants, one can eliminate Lz using
the initial condition, Lz = L3 cos θ0. Substituting this into Eq. (32), one obtains

Ueff(θ) =
1

2I ′1

L2
3 (cos θ0 − cos θ)2

sin2 θ
+ U(θ). (48)

Since L3
∼= I3ψ̇ is very large, it follows from the conservation of the energy that θ remains in a close vicinity

of θ0 for all times as θ fast oscillates around the minimum of Ueff(θ). One can expand Ueff(θ) in small
deviations

δθ ≡ θ − θ0 ¿ 1 (49)

as follows:

Ueff(δθ) ∼= 1
2I ′1

L2
3 [cos θ0 − cos (θ0 + δθ)]2

sin2 θ0
+ mga cos (θ0 + δθ)

∼= L2
3

2I ′1
(δθ)2 −mga sin θ0 δθ. (50)

One can see that Ueff(δθ) is a parabolic potential well and the minimum of Ueff(δθ) follows from

0 =
dUeff(δθ)

dδθ
=

L2
3

I ′1
δθ −mga sin θ0. (51)

One obtains

δθmin =
mgaI ′1 sin θ0

L2
3

. (52)

Then Ueff(δθ) above can be rewritten in the form

Ueff(δθ) ∼= L2
3

2I ′1
(δθ − δθmin)

2 + const =
L2

3

2I ′1
(θ − θmin)

2 + const, (53)

so that the total energy E of Eq. (34) takes the form

E =
1
2
I ′1θ̇

2
+

L2
3

2I ′1
(θ − θmin)

2 =
1
2
I ′1

[
θ̇
2
+ ω2

nut (θ − θmin)
2
]
, (54)

where
ωnut =

L3

I ′1
∼= I3

I ′1
ψ̇ (55)

is the frequency of nutations that is large.

Let us now find the average of ϕ̇ over the period of nutations. From Eq. (27) follows

ϕ̇ =
Lz − L3 cos θ

I ′1 sin2 θ
=

L3 [cos θ0 − cos (θ0 + δθ)]
I ′1 sin2 θ

∼= L3 sin θ0 δθ

I ′1 sin2 θ0
=

L3 δθ

I ′1 sin θ0
. (56)

The average of ϕ̇ is obtained by replacing δθ ⇒ δθmin of Eq. (52):

〈ϕ̇〉nut =
L3 δθmin

I ′1 sin θ0
=

L3

I ′1 sin θ0

mgaI ′1 sin θ0

L2
3

=
mga

L3
=

mga

I3ψ̇
(57)

This result coincides with that of Eq. (43) and it describes a slow precession of e3 and thus of L, see Eqs.
(44) – (46).
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3 Asymmetric top with the θ = 0 holder

ψ

ϕ
3

12 z

(10 points) Consider an asymmetric top with moments of inertia I1 < I2 supported by a holder that allows
the top to freely rotate changing its Euler angles ϕ and ψ while preserving θ = π/2, see Fig. The axes of
the holder cross at the center of mass of the top.

a) Set up the Lagrange equations for this top, find integrals of motion;

b) Eliminate ϕ to obtain an effective energy for ψ. What kinds of motion for ψ are possible? Analyze
the behavior of ψ near the minimum of the effective potential energy.

c) If you have access to mathematical software, you can try to produce numerical solutions with par-
ticular initial conditions.

Solution: The potential energy of the top is zero, so that the Lagrange function is just its kinetic energy:

L = T = E =
1
2
I1ω

2
1 +

1
2
I2ω

2
2 +

1
2
I3ω

2
3 (58)

The projections of ω on the principal axes 1, 2, and 3 should be expressed via the Euler angles. In our
particular case θ = π/2 one has

ω1 = ϕ̇ sinψ, ω2 = ϕ̇ cosψ, ω3 = ψ̇, (59)

so that
L = T = E =

1
2

(
I1 sin2 ψ + I2 cos2 ψ

)
ϕ̇2 +

1
2
I3ψ̇

2
. (60)

Here ϕ is a cyclic coordinate, so that the ϕ-Lagrange equation yields the integral of motion that is the
projection of the angular momentum Lz:

∂L
∂ϕ̇

=
∂T

∂ϕ̇
= Lϕ ≡ Lz =

(
I1 sin2 ψ + I2 cos2 ψ

)
ϕ̇ = const. (61)

The ψ-Lagrange equation
d

dt

∂L
∂ψ̇

− ∂L
∂ψ

= 0 (62)

has the form

I3ψ̈ = (I1 − I2) sinψ cosψ ϕ̇2 =
(I1 − I2) L2

z sinψ cosψ(
I1 sin2 ψ + I2 cos2 ψ

)2 , (63)

where we have used Eq. (61). This is an autonomous equation for ψ.

Eliminating ϕ̇2 in Eq. (60) using

ϕ̇ =
Lz

I1 sin2 ψ + I2 cos2 ψ
(64)

that follows from Eq. (61), one obtains

E =
1
2
I3ψ̇

2
+

1
2

L2
z

I1 sin2 ψ + I2 cos2 ψ
=

1
2
I3ψ̇

2
+ Ueff(ψ), (65)
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where we have introduced the effective potential energy for ψ

Ueff(ψ) =
1
2

L2
z

I1 sin2 ψ + I2 cos2 ψ
. (66)

One can see that Eq. (63) can be written in the Newtonean form

I3ψ̈ = −dUeff(ψ)
dψ

. (67)

Since I1 < I2, the minimum of Ueff(ψ) corresponds to sinψ = 0 (e2 collinear with ez) and the maximum
corresponds to cosψ = 0 (e1 collinear with ez)

Ueff,min =
1
2

L2
z

I2
, Ueff,max =

1
2

L2
z

I1
. (68)

Evidently E ≥ Ueff,min. In the range Ueff,min < E < Ueff,max the angle ψ will be oscillating, whereas for
Ueff,max < E the angle ψ will monotonically increase. The motion of ψ resembles that of the pendulum,
both in the bounded and unbounded regimes.

To the contrast, the angle ϕ changes monotonically, according to Eq. (64). Near the maximum of Ueff(ψ)
one has Lz = I1ϕ̇ thus ϕ̇ = Lz/I1. This is the maximum of ϕ̇. Near the minimum Ueff(ψ) one has Lz = I2ϕ̇
thus ϕ̇ = Lz/I2 that is smaller than that near the maximum of Ueff(ψ).

Near the minimum of Ueff(ψ) the angle ψ performs small harmonic oscillations. To see this, we expand
Ueff(ψ) near ψ = 0 using

sinψ ∼= ψ, cosψ ∼= 1− 1
2
ψ2, (69)

so that

Ueff(ψ) ∼= 1
2

L2
z

I1ψ
2 + I2

(
1− ψ2

) =
1
2

L2
z

I2 − (I2 − I1) ψ2

= Ueff,min
1

1− (1− I1/I2) ψ2
∼= Ueff,min + Ueff,min

(
1− I1

I2

)
ψ2. (70)

Now Eq. (67) can be written as
ψ̈ + ω2

0ψ = 0, (71)

where ω0 is the frequency of the ψ oscillations given by

ω0 =

√
1

I3ψ

dUeff(ψ)
dψ

=

√
1
I3

Ueff,min

(
1− I1

I2

)
. (72)

Note that is the case of small oscillations of ψ around zero one obtains ϕ̇ = ωz that is nearly constant:

ωz
∼= Lz

I2
= const (73)

that yields
Lz
∼= ωzI2. (74)

To simplify Eq. (72), one can plug it into Eq. (68) and simplify Eq. (72) to

ω0 =

√
1
I3

I2ω2
z

2

(
1− I1

I2

)
= ωz

√
I2 − I1

I3
. (75)

The general solution of Eq. (67) can be expressed through elliptic integrals. For numerical solution, the
most interesting region is that of E close to Ueff,max so that the motion of ψ is strongly nonlinear, as ψ
spends much time in the vicinity of ±π/2 that correspond to Ueff,max. The numerical solution for ψ(t) for
E slightly below Ueff,max is shown below:

8



5 10 15 20 25 30

-1.5

-1

-0.5

0.5

1

1.5

t

ψ

1)0(,0)0(,3,2,1 321 ===== ψψ &III

3.00125     3.00063,   1.50063, that  so   45.2 maxeff,mineff, ==== UEULz

Here is the corresponding time dependence of ϕ̇:
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As was said above, ϕ̇ reaches its maximum when Ueff(ψ) is close to its maximal value.

9


