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Part I

Newtonian Mechanics

1 Single-particle problems

1.1 Overdamped harmonic oscillator

Using the general solution of the equation of motion for the free harmonic oscillator

ẍ+ 2Γẋ+ ω2
0x = 0, (1)

obtain the explicitly real solution in the overdamped case Γ < ω0.
Solution. The general solution has the form

x(t) = C+e
iΩ+t + C−e

iΩ−t, (2)

where

Ω± = iΓ± ω̃0, ω̃0 ≡
√
ω2

0 − Γ2 = i
√

Γ2 − ω2
0. (3)

Thus the explicitly real solution has the form

x(t) = C+ exp

[(
−Γ−

√
Γ2 − ω2

0

)
t

]
+ C− exp

[(
−Γ +

√
Γ2 − ω2

0

)
t

]
. (4)

1.2 Power absorbed by harmonic oscillator

A harmonic force is applied to a harmonic oscillator at rest at t = 0:

ẍ+ 2Γẋ+ ω2
0x = f(t) = f0 sin (ωt) . (5)

Calculate the average absorbed power using

Pabs =
1

t

tˆ

0

dt′ẋ(t′)f(t′) (6)

at all times that are multiples of the period T = 2π/ω. Consider short-time and long-time limits for a
weakly-damped oscillator, Γ� ω0. Use the solution of the equation of motion from the book keeping only
resonant terms near resonance. Analyze the solution at long times and at Γ = 0.
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Solution. Since at t = 0 the oscillator was at rest, there is no free solution. The forced solution is given
by

x(t) = − f0

4ω0

eiωt − e(−Γ+iω0)t

Γ− iω0 + iω
+ c.c., (7)

where in the case of weak damping we set ω̃0 ⇒ ω0. It is convenient to first integrate the absorbed power
by parts to simplify subsequent integration,

Pabs =
1

t
x(t)f(t)− 1

t

tˆ

0

dt′x(t′)ḟ(t′). (8)

First,

1

t
x(t)f(t) = − f2

0

4ω0t

eiωt − e(−Γ+iω0)t

Γ− iω0 + iω

eiωt − e−iωt

2i
+ c.c.

= i
f2

0

8ω0t

e2iωt − 1− e(−Γ+iω0+iω)t + e(−Γ+iω0−iω)t

Γ− iω0 + iω
+ c.c. (9)

Near resonance ω0 + ω ∼= 2ω, then e2iωt = 1 because t = n2π/ω. Thus one obtains

1

t
x(t)f(t) = i

f2
0

8ω0t

e−Γt
(
−1 + e(iω0−iω)t

)
Γ− iω0 + iω

+ c.c. (10)

and further

1

t
x(t)f(t) = i

f2
0

8ω0t

e−Γt {−1 + cos [(ω − ω0) t] + i sin [(ω − ω0) t]} (Γ− iω0 + iω)

(ω − ω0)2 + Γ2
+ c.c. (11)

and
1

t
x(t)f(t) =

f2
0

4ω0t

{−1 + cos [(ω − ω0) t]} (ω0 − ω)− Γ sin [(ω − ω0) t]

(ω − ω0)2 + Γ2
. (12)

This term vanishes at resonance and thus it can be neglected.
Further, using

ḟ(t) = ωf0 cos (ωt) =
ω

2
f0

(
eiωt + e−iωt

)
, (13)

one calculates

Pabs = −1

t

tˆ

0

dt′x(t′)ḟ(t′)

=
f2

0ω

8ω0

1

t

tˆ

0

dt′

[
eiωt

′ − e(−Γ+iω0)t′

Γ− iω0 + iω

(
eiωt

′
+ e−iωt

′
)

+ c.c.

]

=
f2

0ω

8ω0

1

t

tˆ

0

dt′

[
e2iωt′ + 1− e(−Γ+iω0+iω)t′ − e(−Γ+iω0−iω)t′

Γ− iω0 + iω
+ c.c.

]

=
f2

0ω

8ω0t

1

Γ− iω0 + iω

[
e2iωt − 1

2iω
+ t+

e(−Γ+iω0+iω)t − 1

Γ− iω0 − iω
+
e(−Γ+iω0−iω)t − 1

Γ− iω0 + iω

]
+ c.c. (14)

Here the less-singular term containing ω + ω0 has to be dropped in the resonance approximation. The first
term vanishes since t is a multiple of the period. What remains can be split into two parts,

Pabs = P
(1)
abs + P

(2)
abs, (15)
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where

P
(1)
abs =

f2
0

8

1

Γ− iω0 + iω
+ c.c. =

f2
0

4

Γ

(ω − ω0)2 + Γ2
(16)

and

P
(2)
abs =

f2
0

8t

e(−Γ+iω0−iω)t − 1

(Γ− iω0 + iω)2 + c.c. (17)

and we set ω ⇒ ω0 in the prefactor near resonance. The first term, P
(1)
abs, does not depend of time and is the

stationary absorption at large times t & 1/Γ. It peaks at resonance, ω = ω0. The integral absorption is

∞̂

−∞

dωP
(1)
abs(ω) =

f2
0

4

∞̂

−∞

dω
Γ

(ω − ω0)2 + Γ2
=
f2

0

4
π. (18)

In the limit Γ→ 0 it becomes a δ-function,

P
(1)
abs =

f2
0

4
πδ (ω − ω0) . (19)

Since, by definition of the δ-function,
∞̂

−∞

dωδ (ω − ω0) = 1, (20)

approximating the peak by δ-function preserves integral absorption.

It can be shown that P
(2)
abs is important at short times t . 1/Γ. Thus, to simplify the calculation, we set

Γ⇒ 0 to obtain

P
(2)
abs =

f2
0

4t

1− cos [(ω − ω0) t]

(ω − ω0)2 . (21)

One can scale this contribution as

P
(2)
abs =

f2
0

4
t
1− cos [(ω − ω0) t]

[(ω − ω0) t]2
(22)

from which one can see that the peak width is ∆ω ∝ 1/t and the peak height is ∝ t. Thus, this peak is very
broad at the beginning and becomes narrower in the course of time. The integral absorption is given by

∞̂

−∞

dωP
(2)
abs(ω) =

f2
0

4

∞̂

−∞

dx
1− cosx

x2
=
f2

0

4

√
2π (23)

and is time independent.
The general picture is the following. At short times t . 1/Γ there is a time-dependent broadening peak

P
(2)
abs. At long times t & 1/Γ the width of the peak P

(2)
abs falls below that of P

(1)
abs, so that the latter remains.

To prove that there is only one peak at any time rather then two peaks of different widths, one has to use

the complete expression for P
(2)
abs that contains Γ.

1.3 Energy loss by a free weakly-damped harmonic oscillator

Consider a free weakly-damped harmonic oscillator, Γ� ω0. Using the general solution for the free oscillator,
calculate the time dependence of its energy and the relative energy loss during one period. Calculate the
energy loss per period perturbatively using the solution for a free undamped oscillator and the formula for
the time derivative of the total energy due to viscous drag.
Solution. The general solution has the form

x(t) ∼= C1e
−Γt cosω0t+ C2e

−Γt sinω0t, (24)
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where we have set ω̃0 ⇒ ω0 in the weak-damping limit. The total energy of the oscillator is given by

E =
mẋ2

2
+
kx2

2
=
m

2

(
ẋ2 + ω2

0x
2
)
. (25)

In the weak-damping limit

ẋ(t) ∼= −C1e
−Γtω0 sinω0t+ C2e

−Γtω0 cosω0t. (26)

Substituting x and ẋ into the energy, one obtains

E ∼=
mω2

0

2
e−2Γt

[
(C1 cosω0t+ C2 sinω0t)

2 + (−C1 sinω0t+ C2 cosω0t)
2
]

(27)

and, finally,

E ∼=
mω2

0

2
e−2Γt

(
C2

1 + C2
2

)
. (28)

The relative energy loss is defined by

η ≡ ∆E

E
=
e−2Γt − e−2Γ(t+T )

e−2Γt
= 1− e−2ΓT ∼= 2ΓT =

4πΓ

ω0
� 1. (29)

Let us now consider the perturbative solution of the problem. For the undamped motion one has

x(t) = C1 cosω0t+ C2 sinω0t (30)

and
v(t) = ẋ(t) = −C1ω0 sinω0t+ C2ω0 cosω0t. (31)

The time derivative of the total energy is given by

Ė = −αv2 = −2mΓv2 = 2mΓv2ω2
0 (−C1 sinω0t+ C2 cosω0t)

2 . (32)

Integrating this, one obtains

∆E = −
T̂

0

Ėdt = mΓv2ω2
0

(
C2

1 + C2
2

)
T. (33)

Now

η ≡ ∆E

E
=
mΓv2ω2

0

(
C2

1 + C2
2

)
T

mω2
0

2

(
C2

1 + C2
2

) = 2ΓT =
4πΓ

ω0
, (34)

same as above.

1.4 Motion of a charged particle in mutually perpendicular electric and magnetic fields

Integrate equation of motion of a charged particle in mutually perpendicular electric and magnetic fields,

mv̇ = q [v ×B] + qE, (35)

E ⊥ B. For simplicity, consider the case of the velocity perpendicular to B.
Solution. Choose z axis along B and x axis along E, than the particle will be moving in xy plane. The

equation of motion in components has the form

v̇x = ωcvy + a

v̇y = −ωcvx, (36)
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where a ≡ qE/m. In terms of the new variable

ṽy = vy + a/ωc (37)

the system of equations becomes uniform,

v̇x = ωcṽy
˙̃vy = −ωcvx. (38)

Its solution can be found in the main text,

vx(t) = vx0 cosωct+ ṽy0 sinωct

ṽy(t) = ṽy0 cosωct− vx0 sinωct. (39)

Returning to the original variables, one obtains

vx(t) = vx0 cosωct+ (vy0 + a/ωc) sinωct

vy(t) = a/ωc + (vy0 + a/ωc) cosωct− vx0 sinωct. (40)

One can see that electric field creates a drift (average velocity) in the y directions, that is, in the direction
of E×B. The drift velocity in the natural form reads

v̄ =
qE

mωc

B×E

BE
=

B×E

B2
. (41)

Integrating the velocity, one obtains the trajectory having the form of a cycloid.

2 Motion in one dimension

2.1 Period of the perturbed harmonic oscillator

Find the dependence of the frequency of an anharmonic oscillator with

U(x) =
kx2

2
+ αx4 (42)

on the energy E considering the quartic term as perturbation. What is the applicability condition of the
perturbative method?
Solution. Use the formula for the period

T (E) = 2
√

2m

xmˆ

0

dx√
E − U(x)

, (43)

where the turning point xm satisfies the equation

kx2

2
+ αx4 = E. (44)

It is convenient to scale x with xm to do the perturbation theory in the integrand only. Choosing the new
variable y ≡ x/xm, one rewrites the period as

T = 4

√
m

k

1ˆ

0

dy√
1 + 2α

k x
2
m − y2 − 2α

k x
2
my

4
. (45)
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With
√
k/m = ω0 and

2α

k
x2
m ≡ β (46)

the period can be rewritten as

T =
4

ω0

1ˆ

0

dy√
1− y2 + β(1− y4)

. (47)

Expanding the integrand up to the first order in β � 1, one obtains

T =
4

ω0

 1ˆ

0

dy√
1− y2

− β

2

1ˆ

0

dy
1 + y2√
1− y2

 =
4

ω0

(
π

2
− β

2

3π

4

)
(48)

and then

T (E) = T0

(
1− 3

4
β

)
= T0

(
1− 3α

2k
x2
m

)
. (49)

As the correction term already contains α, it is sufficient to use the lowest-order result x2
m obtained by

neglecting α in Eq. (44), x2
m = 2E/k. The final result for the period reads

T (E) = T0

(
1− 3

4
β

)
= T0

(
1− 3α

k2
E

)
. (50)

It is recommended to write down the result for the frequency

ω0(E) = ω0

(
1 +

3α

k2
E

)
, (51)

because its qualitative dependence is easier to memorize: Supersquare U(x) — α > 0 — frequency increases
with energy.

2.2 Runaway in the tilted washboard potential with damping

Consider a particle of massm and viscous damping αmoving in the washboard potential U(x) = U0 [1− cos(ax)].
(a) In the limit of small α, considering damping as a perturbation, find the total energy loss for the particle
sliding from one top of the potential to the neighboring one (e.g., from ax = −π to ax = π). (b) Find the
critical value of the applied force F at which unbound motion sets in.
Solution. (a) The energy change per unit of time due to the viscous damping is given by Ė = −αv2. In

the limit of small α one can integrate this over the time of the motion considering the motion as unaffected
by damping. In this lowest-order approximation the total energy loss reads

∆E = α

tmaxˆ

0

v2dt = α

xmˆ

−xm

vdx. (52)

The unperturbed total energy is given by

E = U0 [1− cos(axm)] =
mv2

2
+ U0 [1− cos(ax)] . (53)

From here one obtains

v =

√
2U0

m
[cos(ax)− cos(axm)]. (54)
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Substituting this into the formula above yields

∆E = 2α

√
2U0

m

xmˆ

0

√
cos(ax)− cos(axm)dx. (55)

Working out this integral is similar to the calculation of the period of motion in the washboard potential.
First, one writes

∆E = 4α

√
U0

m

xmˆ

0

√
sin2 (axm/2)− sin2 (ax/2)dx. (56)

Then, substitution

sin (ax/2) = sin (axm/2) sin ξ

(a/2) cos (ax/2) dx = sin (axm/2) cos ξdξ (57)

yields

∆E = 4α

√
U0

m

π/2ˆ

0

sin (axm/2)

√
1− sin2 ξ

sin (axm/2) cos ξ

(a/2) cos (ax/2)
dξ (58)

and then

∆E =
8α

a

√
U0

m
sin2

(axm
2

) π/2ˆ

0

cos2 ξ√
1− sin2 (axm/2) sin2 ξ

dξ. (59)

Fortunately, we have sin (axm/2) = 1 and the integral simplifies to

∆E =
8α

a

√
U0

m

π/2ˆ

0

cos ξdξ =
8α

a

√
U0

m
. (60)

(b) In the absence of the applied force, the particle sliding from the top of the barrier will not overcome
another barrier and turn back, gradually losing energy and ending up at the energy minimum. This is the
bound regime. The unbound or runaway regime sets in if the energy gained by sliding in the direction of
the applied force exceeds the energy lost due to the dissipation, that is,

F
2π

a
> ∆E. (61)

With ∆E above, this yields the criterion for the runaway regime

F >
4α

π

√
U0

m
. (62)

2.3 Two connected masses on perpendicular rods

Two masses, m1 amd m2 can slide without friction along two perpendicular rods and are connected by a
light rod of length l. There is no gravity. Find the period of the motion of the system, assuming the initial
state θ2 = 0 and v1 = v0<0.
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Solution. Let us consider θ2 as the dynamic variable, then

x1 = l sin θ2, x2 = l cos θ2. (63)

For v1(0) < 0 and θ2(0) = 0 the angle θ2 will increase with time. The kinetic energy has the form

Ek =
m1ẋ

2
1

2
+
m2ẋ

2
2

2
=

1

2

(
m1 cos2 θ2 +m2 sin2 θ2

)
θ̇2

2. (64)

Since Ek is conserved, Ek = E = const, one can find the first integral of the equations of motion as

θ̇2 =

√
2E

m1 cos2 θ2 +m2 sin2 θ2
=

√
2E

m1

1√
1 + m2−m1

m1
sin2 θ2

. (65)

Integrating this equation, one obtains

θ2ˆ

0

dθ

√
1 +

m2 −m1

m1
sin2 θ =

√
2E

m1
t. (66)

Changing of θ2 from 0 to π/4 corresponds to one quarter of the period, thus the period is equal to

T = 4

√
m1

2E

π/2ˆ

0

dθ

√
1− m1 −m2

m1
sin2 θ = 4

√
m1

2E
E

(
m1 −m2

m1

)
, (67)

where E(m) is elliptic integral of the second kind. The result above is valid for m1 > m2. In the opposite
case on has to interchange m1 and m2. For m1 = m2 = m the result simplifies to

T = π

√
2m

E
=

2π

v0
. (68)

3 Systems with constraints and special coordinates

3.1 Mass on a conical surface

Write down dynamical variables (energy, angular momentum) and equation of motion for a mass moving on
the surface of a cone with angle θ. Add gravity force in the direction of cone’s apex.
Solution. Placing the origin of the coordinate system at the cone’s apex, one can use spherical coordinates

with θ = const and r changing together with ϕ. Here, to take into account the constraint, one has to project
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all vectors on the direction of motion er, eϕ, ignoring acceleration and forces in the direction eθ. Writing
r = rer and using formulas in the main text, one obtains the velocity

v = ṙ = ṙer + r
∂er
∂ϕ

ϕ̇ = erṙ + eϕr sin θϕ̇. (69)

Now kinetic energy has the form

Ek =
mv2

2
=
m

2

(
ṙ2 + r2 sin2 θϕ̇2

)
. (70)

Angular momentum has the form

l = r×mv = mrer × (erṙ + eϕr sin θϕ̇) = −mr2 sin θϕ̇eθ. (71)

Its projection onto the symmetry axis z reads

lz = l · ez = mr2 sin2 θϕ̇. (72)

Acceleration has the form

v̇ = err̈ +
∂er
∂ϕ

ϕ̇ṙ + eϕṙ sin θϕ̇+ eϕr sin θϕ̈+
∂eϕ
∂ϕ

ϕ̇r sin θϕ̇

= err̈ + eϕr sin θϕ̈+ eϕ2 sin θϕ̇ṙ − err sin2 θϕ̇2 (73)

or, finally,
v̇ = er

(
r̈ − r sin2 θϕ̇2

)
+ eϕ (r sin θϕ̈+ 2 sin θϕ̇ṙ) . (74)

Thus, the equation of motion of body confined to the cone is

r̈ − r sin2 θϕ̇2 =
1

ma
Fr (75)

r sin θϕ̈+ 2 sin θϕ̇ṙ =
1

ma
Fϕ. (76)

The lhs of the second equation is proportional to l̇z. In the case Fϕ = 0 one has lz = const and the first
equation becomes autonomous,

r̈ =
l2z

m2r3 sin2 θ
+

1

ma
Fr. (77)

In the case of gravity force directed toward the apex of the cone,

F = −mgez, (78)

potential energy has the form
U = mgz = mgr cos θ. (79)

Thus, ignoring θ-component, one obtains

F = −∂U
∂r

= −er
∂U

∂r
− eϕ

1

r sin θ

∂U

∂ϕ
= −ermg cos θ, (80)

that is,
Fr = −mg cos θ, Fϕ = 0. (81)
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3.2 Bead on an elliptic trajectory

A bead considered as a point mass m is moving along an elliptic ring in the absence of external forces and
friction. Using the equation of the ellipse

x2

a2
+
y2

b2
= 1, (82)

find the period and frequency of the motion as function of the energy. Consider limiting cases.
Solution. The period can be defined as

T = 4

aˆ

0

dt

dx
dx = 4

aˆ

0

dx

ẋ
, (83)

while ẋ can be found from the energy

E =
mv2

2
=
m

2

(
ẋ2 + ẏ2

)
(84)

and the ellipse equation. Differentiating the latter, one obtains

xẋ

a2
+
yẏ

b2
= 0. (85)

Eliminating ẏ, one obtains

E =
m

2
ẋ2

[
1 +

(
b

a

)4 x2

y2

]
. (86)

Here y can be eliminated using the ellipse equation that yields

E =
m

2
ẋ2

[
1 +

(
b

a

)4 x2

b2 (1− x2/a2)

]
=
m

2
ẋ2

[
1 +

(
b

a

)2 x2/a2

(1− x2/a2)

]
=
m

2
ẋ2 1− u2ε2

1− u2
, (87)

where
u ≡ x/a, ε ≡

√
1− b2/a2. (88)

Resolving for ẋ, one obtains

T = 4a

1ˆ

0

du

ẋ
=

4a

v

1ˆ

0

du

√
1− u2ε2

1− u2
, (89)

where

v =

√
2E

m
(90)

is the constant speed of the bead. Note that this solution works for b < a. With the substitution

u = sin ξ,
du√

1− u2
= dξ (91)

the integral reduces to the complete second-kind elliptic integral

E(m) ≡
π/2ˆ

0

dξ

√
1−m sin2 ξ (92)

having particular cases

E(0) =
π

2
, E(1) = 1. (93)
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Thus

T =
4a

v
E

(
1− b2

a2

)
, b ≤ a. (94)

In the other case the result has the form

T =
4b

v
E

(
1− a2

b2

)
, a ≤ b. (95)

The limiting cases are the circle, a = b, where T = 2πa/v, and a piece of a straight line, b = 0, where
T = 4a/v.

4 Motion in a central field

4.1 Non-closed orbits

Orbits are closed only in the cases U(r) ∝ r2 (spatial harmonic oscillator) and U(r) ∝ 1/r (gravity, Coulomb
interaction). Consider the case of gravity with an additional small potential energy δU(r) = −β/rn. Treating
δU as a perturbation, calculate the additional angle δϕ by which the body is rotating during one unperturbed
cycle.
Solution: The rotation angle corresponding to the period of motion is given by

∆ϕ = 2π + δϕ = 2

r2ˆ

r1

dr
l/r2√

2m
[
E − l2

2mr2
+ α

r − δU(r)
] . (96)

Here δU = 0 corresponds to δϕ = 0. To find δϕ, one can try to expand the integral in powers of δU . However,
differentiation of the integrand with respect to δU yields a diverging integral. In fact, this divergence is
fictitious, since one also has to expand turning points r1 and r2 in powers of δU , and if everything is
properly taken into account, divergencies should cancel. This procedure is, of course, pretty cumbersome.
Fortunately, one can use a trick to avoid these complications and make the calculation elegant, writing the
formula above in the form

∆ϕ = 2π + δϕ = − ∂
∂l

2

r2ˆ

r1

dr

√
2m

[
E − l2

2mr2
+
α

r
− δU(r)

]
. (97)

Now expansion up to the linear term in δU does not lead to divergence and there is no contribution from
differentiation of the turning points. Moreover, the resulting expression

δϕ =
∂

∂l

r2ˆ

r1

dr
2mδU(r)√

2m
[
E − l2

2mr2
+ α

r

] (98)

is similar to the initial unperturbed formula for ∆ϕ. Here one can change from integration over r to
integration over ϕ using the unperturbed trajectory r(ϕ). With the help of

dϕ

dr
=

l

r2

1√
2m
[
E − l2

2mr2
+ α

r

] (99)

one obtains

δϕ =
∂

∂l

2m

l

π̂

0

dϕr2(ϕ)δU(r(ϕ))

 . (100)
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For our particular form of δU this expression becomes

δϕ =
∂

∂l

2mβ

l

π̂

0

dϕ

rn−2(ϕ)

 =
∂

∂l

 2mβ

lrn−2
0

π̂

0

dϕ (1 + ε cosϕ)n−2

 , (101)

where r0 = l2/(αm) and

ε ≡

√
1 +

E

|Emin|
(102)

is independent of l. Thus the result has the form

δϕ =
∂

∂l

2mβ (αm)n−2

l2n−3

π̂

0

dϕ (1 + ε cosϕ)n−2

 (103)

and, finally,

δϕ = −(2n− 3) 2mβ (αm)n−2

l2n−2

π̂

0

dϕ (1 + ε cosϕ)n−2 . (104)

In particular, one obtains

δϕ = −2πmβ

l2
, n = 2 (105)

and

δϕ = −6πm2αβ

l4
, n = 3. (106)

4.2 Small-angle scattering

Find scattering angle χ for the central potential U(r) = β/(a2 + r2) in the limit of fast-moving particle.
What is the maximal value of χ? Plot differential scattering cross-section.
Solution. The fast-moving particle will be scattered at small angles χ for any target distance ρ, because

the potential energy is not diverging at r → 0. One can use the small-scattering angle formula

χ = − 1

mv2
∞

∞̂

−∞

dx
∂U(x, y)

∂y

∣∣∣∣
y=ρ

(107)

that becomes

χ =
2βρ

mv2
∞

∞̂

−∞

dx

(a2 + ρ2 + x2)2 =
πβ

mv2
∞

ρ

(a2 + ρ2)3/2
. (108)

One can see that

χ ∝

{
ρ, ρ� a

1/ρ2, ρ� a.
(109)

The maximum of χ is defined by
∂χ

∂ρ
=

πβ

mv2
∞

a2 − 2ρ2

(a2 + ρ2)5/2
= 0 (110)

that yields maximal scattering at ρ = a/
√

2,

χmax =
πβ

mv2
∞

2

33/2a2
. (111)
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Differential scattering cross-section is defined by

dσ = 2πρ(χ)

∣∣∣∣dρ(χ)

dχ

∣∣∣∣ dχ. (112)

Thus one has to plot the function dσ/dχ vs χ. This can be conveniently done in the parametric form using
ρ as a parameter,

dσ

dχ
= 2πρ

(
∂χ

∂ρ

)−1

=
2mv2

∞
β

ρ
(
a2 + ρ2

)5/2
|a2 − 2ρ2|

χ =
πβ

mv2
∞

ρ

(a2 + ρ2)3/2
. (113)

For plotting it is convenient to use χ̃ defined by

χ̃ ≡
(

πβ

mv2
∞

)2

χ =
ρ

(a2 + ρ2)3/2
. (114)

In terms of χ̃ parametric representation of differential scattering cross-section becomes

dσ

dχ̃
=

2πρ
(
a2 + ρ2

)5/2
|a2 − 2ρ2|

χ̃ =
ρ

(a2 + ρ2)3/2
. (115)

Part II

Lagrangian mechanics

5 Lagrange function and Lagrange equations

5.1 Bead on a rotating ring

A ring of radius R is rotating in its plane with the constant angular velocity Ω around a point O. A bead
of mass m is sliding along the ring without friction. Describing the position of the bead on the ring with

13



the angle θ: a) Construct Lagrange function and obtain equations of motion. b) Identify effective kinetic,
potential, and total energies.
Solution. a) In this problem the potential energy is absent, thus the Lagrange function has the form

L =
mv2

2
, (116)

where v is the bead’s velocity that consists of two contribution, sliding of the bead and rotating of the ring,
respectively,

v = u + v′. (117)

Thus
L =

m

2

(
u2 + 2u · v′ + v′2

)
. (118)

Here
v′ = Rθ̇ (119)

and, from the triangles,

u = aΩ = 2R cosϕΩ = 2R cos
θ

2
Ω. (120)

The angle between v′ and u is ϕ = θ/2, so that the Lagrange function becomes

L =
m

2

(
u2 + 2uv′ cos

θ

2
+ v′2

)
=

mR2

2

(
4 cos2 θ

2
Ω2 + 4 cos2 θ

2
Ωθ̇ + θ̇2

)
= mR2

[
Ω2 (1 + cos θ) + Ωθ̇ (1 + cos θ) +

1

2
θ̇2

]
= mR2

[
Ω2 (1 + cos θ) +

1

2
θ̇2

]
. (121)

The cross-term term in the above expression has been dropped since it is a full time derivative:

θ̇ (1 + cos θ) =
d

dt
(θ + sin θ) . (122)

that does not make a contribution into the Lagrange equation that can be checked directly. The Lagrange
equation

d

dt

∂L
∂θ̇
− ∂L
∂θ

= 0 (123)

has the form
θ̈ + Ω2 sin θ = 0, (124)

the equation of motion for the pendulum.
b) Already from the final expression for the Lagrangian, it is clear that the problem is equivalent to that

of a pendulum and the effective kinetic and potential energies are given by

Ek,eff =
1

2
mR2θ̇2, Ueff = −mR2Ω2 (1 + cos θ) . (125)

The total effective energy

Eeff =
1

2
mR2θ̇2 −mR2Ω2 (1 + cos θ) (126)

is conserved. Note that the true total energy is just L and it is not conserved.

14



5.2 Two masses on circles with a spring

Mass m1 can slide without friction on a ring of radius R1 in the plane z = 0 with its center at (x, y) = (0, 0).
Another mass m2 is restricted to the circle of radius R2 with its center at (x, y) = (0, a). The two masses
are connected by a spring so that their interaction energy is U = 1

2kd
2, where d is the distance between the

particles. Write down the Lagrangian and equations of motion. What integral of motion arises in the case
a = 0? For m1 = m2 = m, R1 = R2 = R, and a ≤ 2R find the frequencies of small oscillations.
Solution. Use polar coordinates for each mass,

x1 = R1 cosϕ1, y1 = R1 sinϕ1 (127)

and
x2 = R2 cosϕ2, y2 = a+R2 sinϕ2. (128)

The distance d between the particles is given by

d2 = (x1 − x2)2 + (y1 − y2)2 = (R1 cosϕ1 −R2 cosϕ2)2 + (R1 sinϕ1 − a−R2 sinϕ2)2 (129)

and simplifies to

d2 = R2
1 +R2

2 − 2R1R2 cos (ϕ1 − ϕ2) + a2 − 2a (R1 sinϕ1 −R2 sinϕ2) . (130)

Kinetic energy of the system is given by

Ek =
1

2
m1R

2
1ϕ̇

2
1 +

1

2
m2R

2
2ϕ̇

2
2, (131)

so that the Lagrangian reads

L = Ek − U =
1

2
m1R

2
1ϕ̇

2
1 +

1

2
m2R

2
2ϕ̇

2
2 + k [R1R2 cos (ϕ1 − ϕ2) + a (R1 sinϕ1 −R2 sinϕ2)] . (132)

In the case a = 0 one can change to the sum and difference angles as dynamic variables,

ϕ+ = ϕ1 + ϕ2, ϕ− = ϕ1 − ϕ2. (133)

The Lagrangian depends only on ϕ−, thus ϕ+ is a cyclic variable and the corresponding generalized mo-
mentum is conserved. To find the latter, rewrite the kinetic energy using

ϕ1 =
1

2
(ϕ+ + ϕ−) , ϕ2 =

1

2
(ϕ+ − ϕ−) . (134)

One obtains

L =
1

8
m1R

2
1 (ϕ̇+ + ϕ̇−)2 +

1

8
m2R

2
2 (ϕ̇+ − ϕ̇−)2 + kR1R2 cosϕ−

=
1

8

(
m1R

2
1 +m2R

2
2

) (
ϕ̇2

+ + ϕ̇2
−
)

+
1

4

(
m1R

2
1 −m2R

2
2

)
ϕ̇+ϕ̇− + kR1R2 cosϕ−. (135)

The integral of motion is

p+ =
∂L
∂ϕ̇+

=
1

4

(
m1R

2
1 +m2R

2
2

)
ϕ̇+ +

1

4

(
m1R

2
1 −m2R

2
2

)
ϕ̇−

=
1

4

(
m1R

2
1 +m2R

2
2

)
(ϕ̇1 + ϕ̇2) +

1

4

(
m1R

2
1 −m2R

2
2

)
(ϕ̇1 − ϕ̇2)

=
1

2
m1R

2
1ϕ̇1 +

1

2
m2R

2
2ϕ̇2. (136)
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This is nothing else then half the angular momentum of the system. This is an expected result, because
the external torque with respect to the common center acting on this system is zero. For a 6= 0 there is no
common center and the angular momentum is not conserved.

The Lagrange equations have the form

0 =
d

dt

∂L
∂ϕ̇1

− ∂L
∂ϕ1

= m1R
2
1ϕ̈1 + kR1R2 sin (ϕ1 − ϕ2)− aR1 cosϕ1

0 =
d

dt

∂L
∂ϕ̇2

− ∂L
∂ϕ2

= m2R
2
2ϕ̈2 + kR1R2 sin (ϕ2 − ϕ1)− aR2 cosϕ2. (137)

Now consider small oscillations around the point of the minimal potential energy, that is, the distance
between the masses. In the case R1 = R2 = R, and a ≤ 2R the minimum of the distance corresponds to the
intersection of the two circles at

ϕ1 = ϕ0 = arcsin
a

2R
, ϕ1 = −ϕ0, (138)

as well as at ϕ1 = π − ϕ0 and ϕ1 = π + ϕ0. We will consider the former case using

ϕ1 = ϕ0 + δϕ1, ϕ2 = −ϕ0 + δϕ2 (139)

and expand the Lagrangian

L =
1

2
mR2

(
ϕ̇2

1 + ϕ̇2
2

)
+ kR [R cos (ϕ1 − ϕ2) + a (sinϕ1 − sinϕ2)] (140)

that is,

L =
1

2
mR2

(
δϕ̇2

1 + δϕ̇2
2

)
+ kR [R cos (2ϕ0 + δϕ1 − δϕ2) + a (sin (ϕ0 + δϕ1)− sin (−ϕ0 + δϕ2))] (141)

in small δϕ1 and δϕ2 up to second order. First, the constant in the potential energy has to be discarded.
Second, one has to check that at first order the result disappears, as it should be at the energy minimum.
One has

R cos (2ϕ0 + δϕ1 − δϕ2) + a (sin (ϕ0 + δϕ1) + sin (ϕ0 − δϕ2))

⇒ −R sin (2ϕ0) (δϕ1 − δϕ2) + a cos (ϕ0) (δϕ1 − δϕ2)

= cos (ϕ0) (δϕ1 − δϕ2) (−2R sinϕ0 + a) = 0, (142)

OK. Now calculate quadratic terms:

R cos (2ϕ0 + δϕ1 − δϕ2) + a (sin (ϕ0 + δϕ1) + sin (ϕ0 − δϕ2))

⇒ −1

2
R cos (2ϕ0) (δϕ1 − δϕ2)2 − 1

2
a sin (ϕ0)

(
δϕ2

1 + δϕ2
2

)
= −1

2
R
(
1− 2 sin2 (ϕ0)

)
(δϕ1 − δϕ2)2 − 1

2
a sin (ϕ0)

(
δϕ2

1 + δϕ2
2

)
= −1

2
R

(
1− 2

( a

2R

)2
)

(δϕ1 − δϕ2)2 − 1

2
a
a

2R

(
δϕ2

1 + δϕ2
2

)
= −1

2
R (δϕ1 − δϕ2)2 +

a2

4R

[
(δϕ1 − δϕ2)2 − δϕ2

1 − δϕ2
2

]
= −1

2
R (δϕ1 − δϕ2)2 − a2

2R
δϕ1δϕ2

= −1

2
R
(
δϕ2

1 + δϕ2
2

)
+

(
R− a2

2R

)
δϕ1δϕ2. (143)
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Now, to second order in small deviations, one has

L =
1

2
mR2

(
δϕ̇2

1 + δϕ̇2
2

)
+ kR

[
−1

2
R
(
δϕ2

1 + δϕ2
2

)
+

(
R− a2

2R

)
δϕ1δϕ2

]
. (144)

In matrix form this reads

L =
1

2

(
δϕ̇T ·M · δϕ̇− δϕT ·K · δϕ

)
, (145)

where

M = mR2

(
1 0
0 1

)
, K = kR2

(
1 −1 + a2

2R2

−1 + a2

2R2 1

)
. (146)

The eigenvalue equation has the form ∣∣−ω2M + K
∣∣ = 0, (147)

that is, ∣∣∣∣∣∣ −ω2 + ω2
0

(
−1 + a2

2R2

)
ω2

0(
−1 + a2

2R2

)
ω2

0 −ω2 + ω2
0

∣∣∣∣∣∣ = 0, (148)

where ω2
0 = k/m. Further one obtains

0 =
(
ω2 − ω2

0

)2 − (1− a2

2R2

)2

ω4
0 =

[
ω2 − ω2

0 +

(
1− a2

2R2

)
ω2

0

] [
ω2 − ω2

0 −
(

1− a2

2R2

)
ω2

0

]
=

(
ω2 − a2

2R2
ω2

0

)(
ω2 −

(
2− a2

2R2

)
ω2

0

)
. (149)

Thus the two oscillation modes are

ω1 =
a√
2R

ω0, ω2 =
√

2

√
1−

( a

2R

)2
ω0 (150)

In the limit a → 0 the first mode softens that is related to the emergence of the integral of motion, the
angular momentum. It is obvious that the first mode is the in-phase mode. The second mode softens in the
limit a→ 2R where the intersection of the two circles disappears. In the region a > 2R one has to perform
a separate calculation that is simpler than above since ϕ0 = π/2. There are also two oscillation modes, one
of which softens when a approaches 2R from above.

5.3 Mass on a plane connected to another mass hanging through the hole

A particle of mass m1 sits on a smooth horizontal table and is connected by a light rope of length a to
another particle of mass m2 through a hole through which the rope is threaded. The second particle hangs
straight beneath the hole. Write down the Lagrangian, identify cyclic variables and conserved quantities,
set up equations of motion.
Solution. Use polar coordinate system for the first particle and denote its distance from the hole as r.

The kinetic energy of the system is

Ek =
m1

2

(
ṙ2 + r2ϕ̇2

)
+
m2

2
ṙ2 (151)

while the potential energy is given by
U = m2gr + const. (152)

The rope length a is irrelevant. The Lagrangian has the form

L = Ek − U =
m1

2

(
ṙ2 + r2ϕ̇2

)
+
m2

2
ṙ2 −m2gr. (153)
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The cyclic variable is ϕ. The corresponding generalized momentum is angular momentum,

pϕ =
∂L
∂ϕ̇

= m1r
2ϕ̇ = l = const. (154)

The Lagrange equation for r has the form

0 =
d

dt

∂L
∂ṙ
− ∂L
∂r

= (m1 +m2) r̈ −m1rϕ̇
2 +m2g. (155)

Eliminating ϕ̇, one obtains a closed differential equation for r

(m1 +m2) r̈ − l2

m1r3
+m2g = 0. (156)

This equation can be integrated by multiplying by the integrating factor ṙ and obtaining the energy integral
of motion:

(m1 +m2) r̈ṙ − l2

m1r3
ṙ +m2gṙ =

d

dt

(
m1 +m2

2
ṙ2 +

l2

2m1r2
+m2gr

)
= 0 (157)

thus
m1 +m2

2
ṙ2 +

l2

2m1r2
+m2gr = E = const. (158)

For m1 this is a motion in a central field with U ∝ r. The orbits are non-closed. As usual, non-zero angular
momentum prevents m1 from falling onto the hole.

5.4 Pendulum on a wheel

The pivot of a simple pendulum is attached to a disc of radius R, which rotates in the plane of the pendulum
with angular velocity ω. (See the diagram below). Write down the Lagrangian and derive the equations of
motion for dynamical variable θ.

Solution. In terms of θ, the coordinates of the mass m read

x = l sin θ +R sin (ωt)

y = − l cos θ +R cos (ωt) (159)

(at t = 0 the pendulum support is at the top of the circle). Differentiating this one obtains

ẋ = l cos θθ̇ +Rω cos (ωt)

ẏ = l sin θθ̇ −Rω sin (ωt) . (160)
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Now, Ek = m
(
ẋ2 + ẏ2

)
/2 and U = mgy, so that the Lagrange function becomes

L =
m

2

[
l2θ̇2 + 2lRω (cos θ cos (ωt)− sin θ sin (ωt)) θ̇

]
+mgl cos θ (161)

or
L =

m

2

[
l2θ̇2 + 2lRω cos (θ + ωt) θ̇

]
+mgl cos θ (162)

up to irrelevant terms. The Lagrange equation has the form

0 =
d

dt

∂L
∂θ̇
− ∂L
∂θ

= ml2θ̈ −mlRω2 sin (θ + ωt) +mgl sin θ (163)

and, finally,

θ̈ +
g

l
sin θ =

R

l
ω2 sin (θ + ωt) . (164)

This is an equation of motion for a pendulum with an external force depending on pendulum’s angle.

5.5 Two connected masses on a double incline

Two masses m on different sides of a double incline with the angle θ are connected by a light rod of length
l. Find the Lagrangian, equations of motion and the frequency of small oscillations around the equilibrium
configuration. Tip: As the dynamic variable choose the angle θ1.
Solution. With respect to the top of the incline potential energy has the form

U = −mg sin θ (x1 + x2) . (165)

Let us express x1 and x2 via the angles θ1 and θ2. From the cosine theorem one obtains

l2 = x2
1 + x2

2 − 2x1x2 cos (π − 2θ) = x2
1 + x2

2 + 2x1x2 cos (2θ) . (166)

Expressing the triangle height h in both ways yields another equation

x1 sin θ1 = x2 sin θ2. (167)

From here one finds

x1 =
l sin θ2√

sin2 θ1 + sin2 θ2 + 2 sin θ1 sin θ2 cos (2θ)
(168)

and a similar result for x2. Taking into account the sum rule

θ1 + θ2 = 2θ, (169)

one can prove that
sin2 θ1 + sin2 θ2 + 2 sin θ1 sin θ2 cos (2θ) = sin2 (2θ) . (170)
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After this the final result becomes

x1 = l
sin θ2

sin (2θ)
, x2 = l

sin θ1

sin (2θ)
. (171)

Now the potential energy takes the form

U = −mgl sin θ sin θ1 + sin θ2

sin (2θ)
. (172)

Eliminating θ2, after simplifications one finally obtains

U = −mgl tan θ cos (θ − θ1) . (173)

The angle θ1 changes within the interval (0, 2θ), and at the boundaries of this interval one has U = −mgl sin θ,
as it should be. The minimum of U is at θ1 = θ, as could be expected on symmetry grounds.

Kinetic energy of the system can be obtained from Eq. (171):

Ek =
m

2

(
ẋ2

1 + ẋ2
2

)
=
ml2

2

[
cos2 (2θ − θ1) + cos2 θ1

]
θ̇2

1

sin2 (2θ)
(174)

After simplification one obtains

Ek =
ml2

2

[1 + cos (2θ) cos (2θ − 2θ1)] θ̇2
1

sin2 (2θ)
. (175)

Thus the Lagrangian has the form

L = Ek − U =
ml2

2

[1 + cos (2θ) cos (2θ − 2θ1)] θ̇2
1

sin2 (2θ)
+mgl tan θ cos (θ − θ1) . (176)

The Lagrange equation
d

dt

∂L
∂θ̇1

− ∂L
∂θ1

= 0 (177)

becomes

ml2

sin2 (2θ)

{
[1 + cos (2θ) cos (2θ − 2θ1)] θ̈1 + 2 cos (2θ) sin (2θ − 2θ1) θ̇2

1

}
−mgl tan θ sin (θ − θ1) = 0 (178)

or

[1 + cos (2θ) cos (2θ − 2θ1)] θ̈1 + 2 cos (2θ) sin (2θ − 2θ1) θ̇2
1 −

g

l
tan θ sin (θ − θ1) sin2 (2θ) = 0. (179)

Near equilibrium one can expand the equation of motion in small δθ1 setting θ1 = θ + δθ1. Keeping only
linear terms, one obtains

[1 + cos (2θ)] δθ̈1 +
g

l
tan θ sin2 (2θ) δθ1 = 0 (180)

or
δθ̈1 + 2 tan θ sin2 θ

g

l
δθ1 = 0. (181)

Thus the oscillation frequency is given by

ω0 =

√
2 tan θ sin2 θ

g

l
. (182)

For θ � 1 the frequency becomes small, ω0 ∝ θ3/2.
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Part III

Oscillations

5.6 Two masses on a double incline connected by a spring

Two masses m on a double incline with the angle θ are connected by a spring of the equilibrium length l0
and stiffness k. Find oscillation frequencies. Consider the limit k →∞.
Solution. Let us take the top of the double incline for the origin O and measure the position of the masses

on the incline from this point, as shown in the figure.

Newtonian solution below contains some involved geometry. The equilibrium position of the masses should
be symmetric. From the balance of horizontal and vertical forces one obtains

Neq cos θ = mg, Neq sin θ = Feq = k(leq − l0). (183)

From this one finds
Feq = k(leq − l0) = mg tan θ. (184)

Also one can project the forces onto the direction of motion along the slopes and the direction perpendicular
to it. In this case the normal force N becomes irrelevant and one obtains

mg sin θ = Feq cos θ (185)

that leads to the same result. Equilibruim positions of the masses are characterized by

xeq = leq/(2 cos θ). (186)

Equations of motion for the masses have the form (see figure)

mẍ1 = mg sin θ − F cos θ1

mẍ2 = mg sin θ − F cos θ2, (187)
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where F = k(l − l0) and

l =
√
x2

1 + x2
2 − 2x1x2 cos (π − 2θ) =

√
x2

1 + x2
2 + 2x1x2 cos (2θ). (188)

The angles θ1 and θ2 satisfy the two equations,

θ1 + θ2 = 2θ (189)

and
x1 sin θ1 = x2 sin θ2 (190)

that is the triangle height h expressed in two ways.
One can see that the problem is nonlinear, and even to obtain solvable equations of motion one has first

to solve the algebraic problem of finding θ1 and θ2 in terms of x1 and x2. Since we are interested in small
oscillations around the equilibrium configuration, we expand everything up to the linear order in small
deviations δx1 and δx2 defined by

x1 = xeq + δx1, x2 = xeq + δx2. (191)

Correspondingly,
θ1 = θ + δθ1, θ2 = θ + δθ2. (192)

Now

l ∼=
√
x2

eq + 2xeqδx1 + x2
eq + 2xeqδx2 + 2x2

eq cos (2θ) + 2xeq (δx1 + δx2) cos (2θ)

= xeq

√
2 [1 + cos (2θ)] +

δx1 + δx2

xeq
2 [1 + cos (2θ)]

= 2xeq cos θ

√
1 +

δx1 + δx2

xeq
= leq

√
1 +

δx1 + δx2

xeq

∼= leq + cos θ (δx1 + δx2) ≡ leq + δl,

where Eq. (186) was used. Linearized Eqs. (189) and (190) become

δθ1 + δθ2 = 0

(δx1 − δx2) sin θ = − xeq cos θ (δθ1 − δθ2) . (193)

Solving these equations, one obtains

δθ1 = −δθ2 = −δx1 − δx2

2xeq
tan θ = −δx1 − δx2

leq
sin θ. (194)

After that Eqs. (187) one expands

F cos θ1 = (Feq + kδl) cos (θ + δθ1)
∼= Feq cos θ + kδl cos θ − Feq sin θδθ1

= mg sin θ + k cos2 θ (δx1 + δx2) +mg sin2 θ tan θ
δx1 − δx2

leq

= mg sin θ +

(
k cos2 θ +

mg sin2 θ tan θ

leq

)
δx1 +

(
k cos2 θ − mg sin2 θ tan θ

leq

)
δx2, (195)

where Eq. (184) was used. Similarly one obtains

F cos θ2
∼= mg sin θ +

(
k cos2 θ − mg sin2 θ tan θ

leq

)
δx1 +

(
k cos2 θ +

mg sin2 θ tan θ

leq

)
δx2. (196)
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Now the equations of motion become

mδẍ1 +A+δx1 +A−δx2 = 0

mδẍ2 +A−δx1 +A+δx2 = 0, (197)

where

A± ≡ k cos2 θ ± mg sin2 θ tan θ

leq
. (198)

The eingenfrequencies follow from the secular equation(
−mω2 +A+

)2 −A2
− = 0. (199)

The two solutions are

ω2
± =

1

m
(A+ ±A−) . (200)

Explicitly this becomes

ω2
+ = 2 cos2 θ

k

m
, ω2

− = 2 sin2 θ tan θ
g

leq
. (201)

Thus, there are two decoupled modes. One mode is due to the stiffness of the spring and another is due
to the gravity. In the stiffness mode the masses are moving anti-phase while in the gravity mode they are
moving in-phase with l = leq = const. In the limit k → ∞ the stiffness mode disappeares and only the
gravity mode remains. In this case the system has only one degree of freedom.
Solution using Lagrangial mechanics below is more straightforward. Kinetic energy of the system is given

by

Ek =
m

2

(
ẋ2

1 + ẋ2
2

)
. (202)

The potential energy reads

U = −mg sin θ (x1 + x2) +
1

2
k (l − l0)2 , (203)

where

l =
√
x2

1 + x2
2 − 2x1x2 cos (π − 2θ) =

√
x2

1 + x2
2 + 2x1x2 cos (2θ). (204)

Thus the Langrange function becomes

L =
m

2

(
ẋ2

1 + ẋ2
2

)
+mg sin θ (x1 + x2)− 1

2
k (l − l0)2 . (205)

The Lagrange equations have the form

0 =
d

dt

∂L
∂ẋi
− ∂L
∂xi

= mẍi −mg sin θ + k

(
1− l0

l

)
[xi + x3−i cos (2θ)] . (206)

Next one has to expand the elastic term in small deviations from the equilibrium corresponding to the
minimum of the potential energy. The latter can be searched for under the constraint x1 = x2 = x, so that

U = −2mg sin θx+
1

2
k
(
x
√

2 [1 + cos (2θ)]− l0
)2

(207)

or

U = −2mg sin θx+
1

2
k (2x cos θ − l0)2 (208)

and the equilibrium value x = xeq is defined by

0 =
∂U

∂x
= −2mg sin θ + k (2x cos θ − l0) 2 cos θ, (209)
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so that

xeq =
1

2 cos θ

(mg
k

tan θ + l0

)
. (210)

Now one has to expand the elastic term up to linear terms in small deviations from the equilibrium:

x1 = xeq + δx1, x2 = xeq + δx2. (211)

One has

l ∼=
√
x2

eq + 2xeqδx1 + x2
eq + 2xeqδx2 + 2x2

eq cos (2θ) + 2xeq (δx1 + δx2) cos (2θ)

= xeq

√
2 [1 + cos (2θ)] +

δx1 + δx2

xeq
2 [1 + cos (2θ)]

= 2xeq cos θ

√
1 +

δx1 + δx2

xeq
= leq

√
1 +

δx1 + δx2

xeq

∼= leq + cos θ (δx1 + δx2) , (212)

where leq = 2xeq cos θ. Now

1− l0
l
∼= 1− l0

leq + cos θ (δx1 + δx2)
∼= 1− l0

leq

(
1− cos θ (δx1 + δx2)

leq

)
(213)

and the Lagrange equations become

0 = mδẍi −mg sin θ+ k

[
1− l0

leq

(
1− cos θ (δx1 + δx2)

leq

)]
[xeq (1 + cos (2θ)) + δxi + δx3−i cos (2θ)] . (214)

The zero-order part of these equations,

−mg sin θ + k

(
1− l0

leq

)
xeq (1 + cos (2θ)) = 0, (215)

because of Eq. (210), so that at linear order one has

0 = mδẍi + k

(
1− l0

leq

)
(δxi + δx3−i cos (2θ)) + k

l0
leq

cos θ (δx1 + δx2)

leq
xeq (1 + cos (2θ)) , (216)

or

0 = mδẍi + k

(
1− l0

leq

)
(δxi + δx3−i cos (2θ)) + k

l0
leq

δx1 + δx2

2
(1 + cos (2θ)) . (217)

This becomes

mδẍ1 + k

(
1− l0

leq

1− cos (2θ)

2

)
δx1 + k

(
cos (2θ) +

l0
leq

1− cos (2θ)

2

)
δx2 = 0

mδẍ2 + k

(
cos (2θ) +

l0
leq

1− cos (2θ)

2

)
δx1 + k

(
1− l0

leq

1− cos (2θ)

2

)
δx2 = 0. (218)

Eigenfrequencies of this system of equations satisfy the equation[
−mω2 + k

(
1− l0

leq

1− cos (2θ)

2

)]2

− k2

(
cos (2θ) +

l0
leq

1− cos (2θ)

2

)2

= 0 (219)

or [
−mω2 + k (1 + cos (2θ))

] [
−mω2 + k

(
1− l0

leq

)
(1− cos (2θ))

]
= 0 (220)
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or [
−mω2 + 2k cos2 θ

] [
−mω2 + 2k

(
1− l0

leq

)
sin2 θ

]
= 0. (221)

Thus the two eigenfrequencies are given by

ω2
1 = 2 cos2 θ

k

m
, ω2

2 = 2 sin2 θ
k

m

(
1− l0

leq

)
. (222)

One can see that the first of the oscillation modes is purely elastic. The second oscillation frequency with
the help of Eq. (215) can be rewritten as

ω2
2 = 2 sin2 θ tan θ

g

leq
, (223)

that is, the second oscillation mode is a pure gravity mode. This mode survives in the limit k →∞.

Part IV

Rotational motion of rigid bodies

6 Kinetic energy, moments of inertia

6.1 Moments of inertia

Calculate tensors of inertia with respect to the principal axes of the following bodies:

1. Hollow sphere of mass M and radius R.

2. Cone of the height h and radius of the base R, both with respect to the apex and to the center of
mass.

3. Body of a box shape with sides a, b, and c. Consider the limit of a thin rod.

Solution. (1) We calculate tensor of inertia with respect to the center of mass that is licated in the geometrical
center. Tensor of inertia is diaginal and all its diagonal elements are the same, Ixx = Iyy = Izz = I. Let us
calculate, for instance, I as Izz. Introducing the surface mass density

σ ≡ M

S
=

M

4πR2
, (224)

one defines I = Izz as

I = σ

ˆ

S

dS
(
x2 + y2

)
= σR2

π̂

0

dθ sin θ

2πˆ

0

dϕ
(
x2 + y2

)
. (225)

In this and all similar cases, it is convenient to use u = cos θ as an integration variable. Using x2 + y2 =
R2 sin2 θ = R2

(
1− u2

)
, one obtains

I = σR22πR2

1ˆ

−1

du
(
1− u2

)
= 4πR2σR2

1ˆ

0

du
(
1− u2

)
= MR2

(
1− 1

3

)
=

2

3
MR2. (226)

One can calculate moments of inertia using the symmetry, Ixx = Iyy = Izz and writing

I =
1

3
(Ixx + Iyy + Izz) =

1

3
σ

ˆ

S

dS
(
y2 + z2 + z2 + x2 + x2 + y2

)
=

2

3
σR2

ˆ

S

dS =
2

3
MR2. (227)
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In this calculation one can replace integration by summation, then it becomes suitable for a non-calculus-
based physics course.

(2) Let us first calculate moments of inertia of the cone with respect to its apex and then obtain those
with respect to CM with the help of Steiner theorem. The volume of the cone is

V =

hˆ

0

dzS(z) =

hˆ

0

dzπr2(z) =

hˆ

0

dzπ
(
R
z

h

)2
=

1

3
πR2h. (228)

Introducing the mass density

ρ ≡ M

V
, (229)

one proceeds

Izz = ρ

ˆ

V

dV
(
x2 + y2

)
= ρ

hˆ

0

dz

Rz/hˆ

0

2πrdr r2 = ρ

hˆ

0

dz
π

2

(
R
z

h

)4
=

1

10
ρπR4h =

3

10
MR2. (230)

Similarly

I ′xx = ρ

ˆ

V

dV
(
y2 + z2

)
, I ′yy = ρ

ˆ

V

dV
(
z2 + x2

)
. (231)

Since, by symmetry, I ′xx = I ′yy ≡ I⊥, one can simplify the calculation,

I⊥ =
1

2

(
I ′xx + I ′yy

)
=

1

2
ρ

ˆ

V

dV
(
x2 + y2 + 2z2

)
=

1

2
Izz + I⊥”, (232)

where

I⊥” ≡ ρ
ˆ

V

dV z2 = ρ

hˆ

0

dzπ
(
R
z

h

)2
z2 =

1

5
ρπR2h3 =

3

5
Mh2. (233)

Thus

I ′⊥ =
3

20
MR2 +

3

5
Mh2. (234)

According to the Steiner theorem, transverse moment of inertia with respect to CM is given by

I⊥ = I ′⊥ −Ma2, (235)

where a is the distance from the apex to CM. The latter can be calculated as

a =
1

M
ρ

ˆ

V

dV z =
1

M
ρ

hˆ

0

dzπ
(
R
z

h

)2
z =

1

M
ρ

1

4
πR2h2 =

3

4
h. (236)

Using this, one obtains

I⊥ =
3

20
MR2 +

3

80
Mh2. (237)

Izz with respect to CM is the same.
(3) Calculate moments of inertia with respect to CM.

Izz =
M

abc

a/2ˆ

−a/2

dx

b/2ˆ

−b/2

dy

c/2ˆ

−c/2

dx
(
x2 + y2

)
=

M

abc

(
1

3
a3b+

1

3
ab3
)
c =

1

3
M
(
a2 + b2

)
. (238)
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Similarly one obtains

Ixx =
1

3
M
(
b2 + c2

)
, Iyy =

1

3
M
(
c2 + a2

)
. (239)

The limit of a thin rod can be obtained from this by setting a = b = 0 and c = L. This yields

Ixx = Iyy =
1

3
ML2, Izz = 0. (240)

6.2 Rolling half-cylinder

Consider a half-cylinder of mass M and radius R on a horizontal plane.

1. Find the position of its center of mass (CM) and the moment of inertia with respect to CM.

2. Write down the Lagrange function in terms of the angle ϕ (see Figure)

3. Find the frequency of cylinder’s oscillations in the linear regime, ϕ� 1.

Solution. (1) Position of CM with respect to the center of the cylinder is given by the integral over cross-
section

a =
1

M

2M

πR2

ˆ

S

ydS =
2

πR2

π̂

0

dφ

R̂

0

rdr r sinφ =
2

πR2
2
R3

3
=

4

3π
R. (241)

The moment of inertia of the half-cylinder with respect to the geometrical center of the cylinder is, obviously,
the same as that of the cylinder,

I ′ ≡ I ′zz =
1

2
MR2. (242)

The moment of inertia with respect to CM can be obtained with the help of the Steiner theorem,

I = I ′ −Ma2 =

(
1

2
− 16

9π2

)
MR2 ≈ 0.32MR2. (243)

(2)
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The easiest way to write down the kinetic energy is to consider rotation around the instantaneous axis
going through the contact point (CP). The moment of inertia with respect to CP I” is given by the Steiner
theorem,

I” = I +Mb2 = I +M
(
R2 + a2 − 2Ra cosϕ

)
, (244)

where the cosine rule was used. Substituting a, one obtains

I” =

(
3

2
− 8

3π
cosϕ

)
MR2. (245)

Potential energy is similar to that of the pendulum, U = −Mga cosϕ. Finally the Lagrangian becomes

L = Ek − U =
1

2
I”ϕ̇2 +Mga cosϕ (246)

that becomes

L =
1

2

(
3

2
− 8

3π
cosϕ

)
MR2ϕ̇2 +

4

3π
MgR cosϕ. (247)

The system is similar to the pendulum but the coefficient in the kinetic energy is variable.
(3) In the case of small oscillations around equilibrium one can replace cosϕ ⇒ 1 in the kinetic energy,

since there is already a small quantity ϕ̇2. After this the problem becomes mathematically equivalent to the
pendulum. One obtains

L =
1

2

(
3

2
− 8

3π

)
MR2ϕ̇2 +

4

3π
MgR

(
1− 1

2
ϕ2

)
, (248)

equation of motion becomes (
3

2
− 8

3π

)
MR2ϕ̈+

4

3π
MgRϕ = 0, (249)

and the oscillation frequency is given by

ω2
0 =

4
3π

3
2 −

8
3π

g

R
=

1/2

9π/16− 1

g

R
. (250)
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6.3 Cylinder rolling inside a cylinder

A cylinder of mass M and radius a is rolling without slipping inside a stationary cylinder of radius R > a.
Find its kinetic energy.
Solution. The speed of CM of the cylinder is

V = (R− a) ϕ̇. (251)

From the no-slipping condition V = aω one obtains the angular velocity of the cylinder

ω =
R− a
a

ϕ̇. (252)

Now the kinetic energy can be written as the sum of the kinetic energy of CM and rotation around CM as

Ek =
MV 2

2
+
Iω2

2
=

1

2

(
M +

I

a2

)
(R− a)2 ϕ̇2. (253)

Substituting I = MR2/2 for the cylinder, one obtains

Ek =
3

4
M (R− a)2 ϕ̇2. (254)

6.4 Cone rolling on a plane

Find kinetic energy of a cone rolling on a plane without slipping. The height of the cone is h, the apex
angle is 2α. The mass is M .
Solution. The cone is rolling in such a way that its apex is stationary. We chose a frame such that the

apex is at its origin O. The orientation of the cone is described by the angle ϕ that the contact line OA
makes with one of the horizontal axes. CM of the cone is at the distance a from the apex. At any moment
of time the cone is rotating around the instantaneous axis OA. The angular velocity can be found via the
speed of CM V as

ω =
V

a sinα
=
a cosαϕ̇

a sinα
= cotαϕ̇. (255)
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Here a canceled, thus one could use any point on the cone’s symmetry axis instead of CM. Kinetic energy
can be found by projecting ω onto the 3 and perpendicular axes of the cone

Ek =
1

2
I3 (ω cosα)2 +

1

2
I ′⊥ (ω sinα)2 . (256)

Using moments of inertia with respect to the apex from the problem above,

I3 =
3

10
MR2 =

3

10
Mh2 tan2 α, I ′⊥ =

3

20
MR2 +

3

5
Mh2 =

3

20
Mh2 tan2 α+

3

5
Mh2, (257)

one obtains

Ek =
1

2
Mh2

[
3

10
cos2 α+

3

20
sin2 α+

3

5
cos2 α

]
ϕ̇2 =

3

40
Mh2

(
1 + 5 cos2 α

)
ϕ̇2. (258)

6.5 Rolling cone with a horizontal axis

Find kinetic energy of a cone rolling on a plane and having the symmetry axis horizontal (see Figure).
Solution. In this case the instantaneous axis of rotation is the line OA. To find ω, one can use, say, the

center of the cone’s base. The speed of this point is V = hϕ̇, so that

ω =
V

h sinα
=

hϕ̇

h sinα
=

ϕ̇

sinα
. (259)

Kinetic energy is given by

Ek =
1

2
I3 (ω cosα)2 +

1

2
I ′⊥ (ω sinα)2 . (260)

Using moments of inertia with respect to the apex from the problem above,

I3 =
3

10
MR2 =

3

10
Mh2 tan2 α, I ′⊥ =

3

20
MR2 +

3

5
Mh2 =

3

20
Mh2 tan2 α+

3

5
Mh2, (261)

one obtains

Ek =
1

2
Mh2

[
3

10
+

3

20
tan2 α+

3

5

]
ϕ̇2 =

3

40
Mh2

(
1

cos2 α
+ 5

)
ϕ̇2. (262)

7 Rotational dynamics

7.1 Rod on the axis

Thin rod of length l and mass M is mounted on an axis at its center.
a) If the angle θ between the rod and the axis is fixed and the rod rotates with the angular velocity ω = ϕ̇

around the axis, what is the (i) kinetic energy of the rod; (ii) breaking torque acting from the rod on the
axis?
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b) Set up Lagrange equations for the rod in the case where both θ and ϕ can freely change. Find integrals
of motion and the effective potential energy. If you have access to mathematical software, you can try
to produce numerical solutions with particular initial conditions such as θ(0) = θ0, θ̇(0) = 0, ϕ(0) = 0,
ϕ̇(0) = ω0.

c) Consider the motion of this system confined to the vicinity of θ = π/2 and try to integrate Lagrange
equations analytically.

Solution.
a) i) Introducing the linear mass density γ ≡M/l, for the kinetic energy one obtains

Ek =
γ

2

l/2ˆ

l/2

du [ω × r]2 =
γω2 sin2 θ

2

l/2ˆ

l/2

duu2 =
γω2l3 sin2 θ

24
=
Mω2l2 sin2 θ

24
. (263)

This can be rewritten in the form

Ek =
Iθω

2

2
, Iθ =

Ml2 sin2 θ

12
. (264)

(ii) To calculate the breaking torque, one has first to work out the angular momentum L that lies in the
plane spanned by ω (z axis) and the axis of the rod and perpendicular to the latter:

L = γ

l/2ˆ

l/2

du [r× [ω × r]] = γ

l/2ˆ

l/2

du
{
ωr2 − r (r · ω)

}
= γωe2 sin θ

l/2ˆ

l/2

duu2 = Iω sin θe2, (265)

where we use sliding embedded vectors, e2 = eA. As the rod is precessing around z axis, e2 is precessing as
well. Thus the Newtonian equation for L has the form

L̇ = Iω sin θ [ω × e2] = Iω2 sin θ cos θe1 = τ . (266)

This yields the breaking torque τ , acting between the rod and the axis. τ reaches its maximum for θ = π/4.
b) In the case when both θ and ϕ are free to change, the kinetic energy of the rod can be written as

Ek =
1

2
I1ω

2
1 +

1

2
I2ω

2
2. (267)

With the sliding embedded vectors and I2 = I1 = I one obtains

L = Ek =
1

2
I
(
θ̇2 + sin2 θϕ̇2

)
. (268)

Here ϕ is cyclic variable, and the corresponding integral of motion is the projection of the angular momentum
on z axis,

lz ≡ l =
∂L
∂ϕ̇

= I sin2 θϕ̇. (269)

Lagrange equation for θ reads

d

dt

∂L
∂θ̇
− ∂L
∂θ

= Iθ̈ − I sin θ cos θϕ̇2 = 0. (270)

With the account of angular-momentum conservation, one obtains the equation

Iθ̈ − cos θ

sin3 θ

l

I

2

= 0. (271)
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This can be written in the form

Iθ̈ = −∂Ueff

∂θ
, Ueff =

l

2I

2 1

sin2 θ
. (272)

Ueff(θ) has a minimum at θ = π/2.
c) Near the minimum of the effective potential energy, one can use

θ =
π

2
+ δθ, δθ � 1. (273)

With sin θ ∼= 1 and cos θ ∼= −δθ the equation of motion becomes

δθ̈ + ω2
0δθ = 0, ω0 =

l

I
. (274)

This is the equation of motion of a harmonic oscillator.

7.2 Asymmetric top with a θ = 0 holder

Consider an asymmetric top with moments of inertia I1 < I2 supported by a holder that allows the top to
freely rotate changing its Euler angles φ and ψ while preserving θ = π/2, see figure. The axes of the holder
cross at the center of mass of the top.

a) Set up Lagrange equations for this top, find integrals of motion;
b) Eliminate φ to obtain an effective energy for ψ. What kinds of motion for ψ are possible? Analyze the

behavior of ψ near the minimum of the effective potential energy.
c) If you have access to mathematical software, you can try to produce numerical solutions with particular

initial conditions.

Solution.
a) Angular velocity is due to the two types of rotational motion,

ω = ezφ̇+ e3ψ̇. (275)

Projecting ez onto the principal axes e1 and e2, one obtains kinetic energy and thus the Lagrangian:

L = Ek = E =
1

2
I1ω

2
1 +

1

2
I2ω

2
2 +

1

2
I3ω

2
3 =

1

2

[
I1 sin2 ψ + I2 cos2 ψ

]
φ̇2 +

1

2
I3ψ̇

2. (276)

At ψ = 0 one has e2 = ez. Lagrange equations have the form

d

dt

∂L
∂φ̇
− ∂L
∂φ

=
d

dt

{[
I1 sin2 ψ + I2 cos2 ψ

]
φ̇
}

= 0 (277)

and
d

dt

∂L
∂ψ̇
− ∂L
∂ψ

= I3ψ̈ − (I2 − I1) sinψ cosψφ̇2 = 0 (278)
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b) Here φ is cyclic variable and the corresponding generalized momentum is conserved. This is nothing
else than vertical component of the angular momentum:

lz ≡ l =
∂L
∂φ̇

=
[
I1 sin2 ψ + I2 cos2 ψ

]
φ̇ = const. (279)

Eliminating φ̇, one can rewrite energy as

E =
1

2
I3ψ̇

2 + Ueff (ψ) , (280)

where effective energy is given by

Ueff (ψ) ≡ l2

2
[
I1 sin2 ψ + I2 cos2 ψ

] =
l2

2
[
I2 − (I2 − I1) sin2 ψ

] (281)

Motion of the system now can be defined as in the case of one-dimensional motion – using energy conser-
vation, resolving for ψ̇ and then integrating. For I1 < I2 the minimum of effective potential energy is at
ψ = 0, that corresponds to rotating around axis 2 having the greater moment of inertia. Near ψ = 0 one
has

Ueff (ψ) ∼=
l2

2I2

[
1 +

(
1− I1

I2

)
sin2 ψ

]
∼=

l2

2I2

(
1− I1

I2

)
ψ2 + const. (282)

Using the effective Newtonian equation

I3ψ̈ +
∂Ueff (ψ)

∂ψ
= 0 (283)

(that is equivalent to the second Lagrange equation), one obtains the harmonic-oscillator equation

ψ̈ + ω2
0ψ = 0, ω0 =

l√
I2I3

√
1− I1

I2
. (284)

Part V

Hamiltonian dynamics

8 Hamiltonian equations

8.1 Double pendulum

Consider a double pendulum that consists of two massless rods of lengths l1 = l2 = l with masses m1 =
m2 = m attached to their ends. The first pendulum is attached to a fixed point and can freely swing about
it. The second pendulum is attached to the end of the first one and can freely swing, too. The motion of
both pendulums is confined to a plane, so that it can be described in terms of their angles with respect to
the vertical, θ1and θ2.

a) Write down the Lagrange function for this system.
b) Introduce generalized momenta p1 and p2 and change to Hamiltonian description. Find the transforma-

tion matrix that yields the velocities θ1and θ2 in terms of the momenta p1 and p2. Write down Hamiltonian
function H(θ1, p1, θ2, p2) using the transformation matrix.

c) Obtain Hamiltonian equations.

Solution.
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a) Describing the pendula by the angles θ1 and θ2, one writes

x1 = l1 sin θ1, x2 = l sin θ1 + l sin θ2

y1 = −l cos θ1, y2 = −l cos θ1 − l cos θ2. (285)

Potential energy reads
U = mg (y1 + y2) = −mgl (2 cos θ2 + cos θ1) (286)

and the kinetic energy is given by

Ek =
m

2

[
ẋ2

1 + ẏ2
1 + ẋ2

2 + ẏ2
2

]
=
ml2

2

[
θ̇2

1 +
(

cos θ1θ̇1 + cos θ2θ̇2

)2
+
(

sin θ1θ̇1 + sin θ2θ̇2

)2
]

=
ml2

2

[
2θ̇2

1 + θ̇2
2 + 2 (cos θ1 cos θ2 + sin θ1 sin θ2) θ̇1θ̇2

]
=

ml2

2

[
2θ̇2

1 + θ̇2
2 + 2 cos (θ1 − θ2) θ̇1θ̇2

]
. (287)

This kinetic energy can be written in the matrix form

Ek =
1

2
θT · A · θ̇, (288)

where θT = (θ1, θ2) and

A = ml2
(

2 cos (θ1 − θ2)
cos (θ1 − θ2) 1

)
. (289)

Lagrange function reads

L = Ek − U =
ml2

2

[
2θ̇2

1 + θ̇2
2 + 2 cos (θ1 − θ2) θ̇1θ̇2

]
+mgl (2 cos θ2 + cos θ1) . (290)

b) Generalized momenta has the form

p1 =
∂L
∂θ̇1

= ml2
[
2θ̇1 + cos (θ1 − θ2) θ̇2

]
p2 =

∂L
∂θ̇2

= ml2
[
θ̇2 + cos (θ1 − θ2) θ̇1

]
. (291)

This can be written in the matrix form as p = A · θ̇. Resolving these equations for θ̇1 and θ̇2, one obtains

θ̇1 =
1

ml2
p1 − cos (θ1 − θ2) p2

2− cos2 (θ1 − θ2)

θ̇2 =
1

ml2
2p2 − cos (θ1 − θ2) p1

2− cos2 (θ1 − θ2)
. (292)

This can be written in the matrix form θ̇ = A−1 · p, where

A−1 =
1

ml2
1

2− cos2 (θ1 − θ2)

(
1 − cos (θ1 − θ2)

− cos (θ1 − θ2) 2

)
. (293)

Now Hamilton function becomes

H =
1

2
pT · A−1 · p + U =

1

2
pT · θ̇ + U (294)
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or, in components,

H =
1

2ml2
p2

1 − 2 cos (θ1 − θ2) p1p2 + 2p2
2

2− cos2 (θ1 − θ2)
−mgl (2 cos θ2 + cos θ1) . (295)

c) Hamiltonian equations are the following.

θ̇1 =
∂H
∂p1

=
1

ml2
p1 − cos (θ1 − θ2) p2

2− cos2 (θ1 − θ2)
(296)

θ̇2 =
∂H
∂p2

=
1

ml2
2p2 − cos (θ1 − θ2) p1

2− cos2 (θ1 − θ2)
. (297)

These two equations can be found above. Other Hamiltonian equations are

ṗ1 = − ∂H
∂θ1

= − 1

ml2
sin (θ1 − θ2)

{[
2 + cos2 (θ1 − θ2)

]
p2 − 2p1 cos (θ1 − θ2)

}
[2− cos2 (θ1 − θ2)]2

−mgl sin θ1

ṗ2 = − ∂H
∂θ2

= − 1

ml2
sin (θ2 − θ1)

{[
2 + cos2 (θ1 − θ2)

]
p1 − 2p2 cos (θ1 − θ2)

}
[2− cos2 (θ1 − θ2)]2

− 2mgl sin θ2.

8.2 Vortex dynamics via Hamiltonian formalism

Consider equations of motions describing vortices of strength γi at positions ri = (xi, yi) in the plane:

ẋi = −
∑
j 6=i

γj
yi − yj
|ri − rj |2

, ẏi =
∑
j 6=i

γj
xi − xj
|ri − rj |2

. (298)

Consider the Hamiltonian H and the following modified Poisson brackets:

H = −1

2

∑
j 6=i

γiγj ln |ri − rj | , {f, g} ≡
∑
i

1

γi

(
∂f

∂xi

∂g

∂yi
− ∂f

∂yi

∂g

∂xi

)
. (299)

a) Check that Hamiltonian equations

ẋi = {xi,H} , ẏi = {yi,H} (300)

reproduce the equations of motions.
b) Show that the following quantities are conserved:

Px ≡
∑
i

γiyi, Py ≡ −
∑
i

γixi (301)

Solution.
a) Work out Poisson brackets:

ẋi = {xi,H} =
∑
j

1

γj

(
∂xi
∂xj

∂H
∂yj
− ∂xi
∂yj

∂H
∂xj

)
=

1

γi

∂H
∂yi

(302)

ẏi = {yi,H} =
∑
j

1

γj

(
∂yi
∂xj

∂H
∂yj
− ∂yi
∂yj

∂H
∂xj

)
= − 1

γi

∂H
∂xi

. (303)

This is the standard form of Hamiltonian equations, except of the factors 1/γi. Next, one differentiates the
Hamiltonian, taking into account that there are two occurrences of a summation index coinciding with i:
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j′ = i and j = i. One proceeds as

ẋi =
1

γi

∂H
∂yi

=
1

γi

∂

∂yi

−1

2

∑
j 6=j′

γj′γj ln
∣∣rj′ − rj

∣∣
= −

∑
j 6=i

γj
∂

∂yi
ln |ri − rj | = −

∑
j 6=i

γj
1

|ri − rj |
∂ |ri − rj |

∂yi
= −

∑
j 6=i

γj
yi − yj
|ri − rj |2

(304)

that is the first equation of motion. The second equation of motion can be obtained in a similar way.
b) Check conservation directly:

Ṗx =
∑
i

γiẏi =
∑
i

γi
∑
j 6=i

γj
xi − xj
|ri − rj |2

=
∑
i 6=j

γiγj
xi − xj
|ri − rj |2

. (305)

Interchanging summation indices i
 j changes the sign of this expression:∑
i 6=j

γiγj
xi − xj
|ri − rj |2

=
∑
j 6=i

γjγi
xj − xi
|rj − ri|2

= −
∑
i 6=j

γiγj
xi − xj
|ri − rj |2

. (306)

Thus it is zero. In a similar way, one obtains Ṗy = 0.

9 Canonical transformations

9.1 A

a) Canonical transformation between the two sets of variables is

Q = ln(1 +
√
q cos p) (307)

P = 2(1 +
√
q cos p)

√
q sin p. (308)

Show directly that this transformation is canonical. Show that

FpQ(p,Q) = −
(
eQ − 1

)2
tan p (309)

is generating function of this transformation.

Solution. Since the transformation does not explicitly depend on time, its canonicity can be checked by
the Poisson-brackets criterion. One calculates

{Q,P} =
∂Q

∂q

∂P

∂p
− ∂Q

∂p

∂P

∂q

=
1

1 +
√
q cos p

2 cos p

2
√
q

[
(1 +

√
q cos p)

√
q cos p− q sin2 p

]
−

−2
√
q sin p

1 +
√
q cos p

[
cos p

2
√
q

√
q sin p+ (1 +

√
q cos p)

sin p

2
√
q

]
=

1

1 +
√
q cos p

1
√
q

[√
q cos2 p+ q cos p

(
cos2 p− sin2 p

)
+ 2q sin2 p cos p+

√
q sin2 p

]
=

1

1 +
√
q cos p

1
√
q

[
√
q + q cos p] = 1. (310)

Thus, the transformation is canonical. Next, the proposed generating function is obtained from the primary
generating function FqQ(q,Q) by Legendre transformation

FpQ = FqQ − pq. (311)
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Its differential reads

dFpQ = dFqQ − pdq − qdp = pdq − PdQ− pdq − qdp = −qdp− PdQ. (312)

Thus, FpQ = FpQ(p,Q) and our canonical transformation is defined by

q = −
∂FpQ
∂p

, P = −
∂FpQ
∂Q

. (313)

Let us work out these formulas. One has

q = −
∂FpQ
∂p

=
(
eQ − 1

)2 1

cos2 p
. (314)

Resolving this for Q, one obtains Eq. (307). Next, one obtains

P = −
∂FpQ
∂Q

=
∂

∂Q

(
eQ − 1

)2
tan p = 2

(
eQ − 1

)
eQ tan p. (315)

Inserting Eq. (307) here, one obtains Eq. (308).

9.2 B

For what values of α and β do the equations

Q = qα cos(βp), P = qα sin(βp) (316)

represent a canonical transformation? What is the form of the generating function FpQ(p,Q) in this case?

Solution. Let us calculate the Poisson bracket,

{Q,P} =
∂Q

∂q

∂P

∂p
− ∂Q

∂p

∂P

∂q

= αqα−1 cos(βp)qαβ cos(βp) + qαβ sin(βp)αqα−1 sin(βp)

= αβq2α−1. (317)

The result is 1 and thus the transformation is canonical for α = 1/2 and β = 2.
Let us now find a generating function for the canonical transformation

Q =
√
q cos(2p), P =

√
q sin(2p). (318)

To use Eq. (313), first one has to express the transformation in terms of p and Q. One obtains

Q2 + P 2 = q, (319)

thus
P =

√
Q2 + P 2 sin(2p). (320)

Resolving for P , one obtains
P = Q tan(2p). (321)

Now, integrating the second equation of (313) , one obtains

FpQ = −1

2
Q2 tan(2p) + f(p). (322)

Here f(p) is integration constant. Now the first equation of (313) becomes

q = −
∂FpQ
∂p

= Q2 1

cos2(2p)
+ f ′(p). (323)

Setting f(p) = 0 and resolving for Q, one obtains the first equation in (318). Thus Eq. (322) with f(p) = 0
is the generating function of our transformation.
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10 Hamilton-Jacobi equation and separation of variables

10.1 Coulomb + uniform field via parabolic coordinates

Find the complete integral of Hamilton-Jacobi equations for the problem with potential energy

U =
α

r
+ Fz. (324)

a) Write Hamilton-Jacobi equation in spherical coordinates and check whether variables separate.
b) Write Hamilton-Jacobi equation in cylindrical coordinates and check whether variables separate.
c) Use parabolic coordinates (ξ, η, ϕ) that are related to cylindrical coordinates (ρ, z, ϕ) as

z =
1

2
(ξ − η) , ρ =

√
ξη. (325)

Show that variables separate and find the complete integral of Hamilton-Jacobi equations.

Solution.
a) In spherical coordinates the Hamiltonian has the form

H =
1

2m

(
p2
r +

p2
θ

r2
+

p2
φ

r2 sin2 θ

)
+
α

r
+ Fr cos θ. (326)

Solution of Hamilton-Jacobi equation
∂S
∂t

+H
(
q,
∂S
∂q

)
= 0 (327)

for this time-independent problem can be searched for in the form

S = −Et+ S0(q) (328)

that yields

−E +
1

2m

[(
∂S0

∂r

)2

+
1

r2

(
∂S0

∂θ

)2

+
1

r2 sin2 θ

(
∂S0

∂ϕ

)2
]

+
α

r
+ Fr cos θ = 0. (329)

Here ϕ is cyclic variable, thus the solution has the form

S0 = S(r,θ)
0 + lϕ, (330)

where l is the constant z component of the angular momentum. HJ equation for the remaining function

S(r,θ)
0 takes the form

−E +
1

2m

(∂S(r,θ)
0

∂r

)2

+
1

r2

(
∂S(r,θ)

0

∂θ

)2

+
l2

r2 sin2 θ

+
α

r
+ Fr cos θ = 0. (331)

Here, because of the last term, one cannot split a fragment of this equation that depends only on θ (also
only on r). Thus variables do not separate.

b) Cylindrical coordinates are defined as

x = ρ cosϕ, y = ρ sinϕ, z = z. (332)

Kinetic energy has the form

Ek =
m

2

(
ρ̇2 + ρ2ϕ̇2 + ż2

)
. (333)
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Momenta are defined by

pρ =
∂Ek
∂ρ̇

= mρ̇, pϕ =
∂Ek
∂ϕ̇

= mρ2ϕ̇, pz = mż. (334)

Thus the Hamiltonian has the form

H =
1

2m

(
p2
ρ +

p2
ϕ

ρ2
+ p2

z

)
+

α√
ρ2 + z2

+ Fz. (335)

Here, again, ϕ is cyclic variable and the solution of HJ equation can be searched in the form

S = −Et+ lϕ+ S(ρ,z)
0 (336)

that yields the short HJ equation

−E +
1

2m

(∂S(ρ,z)
0

∂ρ

)2

+

(
∂S(ρ,z)

0

∂z

)2

+
l2

ρ2

+
α√

ρ2 + z2
+ Fz = 0. (337)

Here variables do not separate because of Coulomb-energy term.
c) Now use Eq. (325) and additional relations following from it:

r =
√
ρ2 + z2 =

1

2
(ξ + η) (338)

and
ξ = r + z, η = r − z. (339)

First, calculate ρ̇2 + ż2 in Eq. (333):

ρ̇2 + ż2 =

(
1

2

√
η

ξ
ξ̇ +

1

2

√
ξ

η
η̇

)2

+

(
1

2
ξ̇ − 1

2
η̇

)2

=
1

4

(
η

ξ
ξ̇2 + 2ξ̇η̇ +

ξ

η
η̇2 + ξ̇2 − 2ξ̇η̇ + η̇2

)
=

(ξ + η)

4

(
ξ̇2

ξ
+
η̇2

η

)
. (340)

Now kinetic energy of Eq. (333) becomes

Ek =
m

2

[
(ξ + η)

4

(
ξ̇2

ξ
+
η̇2

η

)
+ ξηϕ̇2

]
. (341)

Generalized momenta are given by

pξ =
∂Ek
∂ξ

=
m

4
(ξ + η)

ξ̇

ξ
, pη =

∂Ek
∂η

=
m

4
(ξ + η)

η̇

η
, pϕ = mξηϕ̇. (342)

Expressing velocities through momenta, inserting them into kinetic energy and adding potential energy
yields the Hamiltonian

H =
2

m

ξp2
ξ + ηp2

η

ξ + η
+

p2
ϕ

2mξη
+ U, (343)

where

U =
2α

ξ + η
+
F

2
(ξ − η) =

4α+ F
(
ξ2 − η2

)
2 (ξ + η)

. (344)
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Now, searching for the action in the form

S = −Et+ lϕ+ S(ξ,η)
0 , (345)

one obtains HJ equation in the form

−E +
2

m (ξ + η)

ξ(∂S(ξ,η)
0

∂ξ

)2

+ η

(
∂S(ξ,η)

0

∂η

)2
+

l2

2mξη
+

4α+ F
(
ξ2 − η2

)
2 (ξ + η)

= 0. (346)

After multiplying by ξ + η variables separate:

−E (ξ + η) +
2

m

ξ(∂S(ξ,η)
0

∂ξ

)2

+ η

(
∂S(ξ,η)

0

∂η

)2
+

l2

2m

(
1

ξ
+

1

η

)
+

4α+ F
(
ξ2 − η2

)
2

= 0. (347)

Solution of this equation can be searched for in the form

S(ξ,η)
0 (ξ, η) = S(ξ)

0 (ξ) + S(η)
0 (η) . (348)

Equating the two parts of HJ equation to constants P and −P , one obtains two separate ODE’s,

−Eξ +
2

m
ξ

(
∂S(ξ)

0

∂ξ

)2

+
l2

2mξ
+ α+

F

2
ξ2 = P (349)

and

−Eη +
2

m
η

(
∂S(η)

0

∂η

)2

+
l2

2mη
+ α+

F

2
η2 = −P. (350)

Integrating these equations, one obtains

S(ξ)
0 (ξ) =

√
m

2

ˆ
dξ
√
E − Uξ(ξ), Uξ(ξ) ≡

α− P
ξ

+
l2

2mξ2
+
F

2
ξ (351)

and

S(η)
0 (η) =

√
m

2

ˆ
dη
√
E − Uη(η), Uη(η) ≡ α+ P

η
+

l2

2mη2
+
F

2
η. (352)

As the result, we have obtained the complete integral of Hamilton-Jacobi equations having the form

S = S(ξ, η, ϕ;E, l, P ; t) = −Et+ lϕ+ S(ξ)
0 (ξ;E, l, P ) + S(η)

0 (η;E, l, P ) . (353)

It depends on three generalized coordinates ξ, η, ϕ and three integration constants E, l, P . Considering S
as generating function of a canonic transformation with E, l, P being new momenta, one defines dynamics
of the system implicitly from the three equations

QE =
∂S
∂E

, Ql =
∂S
∂l
, QP =

∂S
∂P

, (354)

where QE , Ql, QP are another three constants. As the system has three degrees of freedom, its solution
is specified by the total six integration constants, as it should be. Constants QE and Ql can be set to
zero, because reference points for the time and angle ϕ are arbitrary. The third equation yields the relation
between ξ and η. Together with the second equation, this yields the trajectory without time dependence. The
latter is obtained using the first equation. Doing this analytically is hardly possible because of complicated
integrals.
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10.2 Generalized harmonic oscillator

The motion of a particle in one dimension is described by the Hamiltonian

H =
1

2

(
p2 + ω2

0q
2
)

+
λ

4

(
p2 + ω2

0q
2
)2
. (355)

a) Using the generating function F (q,Q) =
(
ω0q

2/2
)

cotQ define new canonical variables Q and P and
find the transformed Hamiltonian H(Q,P ).

b) Set up Hamilton-Jacobi equation for the Hamiltonian H(Q,P ) and the action S(Q,α, t), where α is an
integration constant.

c) Find q(t) and p(t) using Hamilton-Jacobi method and the function S(Q,α, t). Use initial conditions
q(0) = q0 and p = 0.

Solution.
a) Transformation formulas have the form

p =
∂F

∂q
, P = −∂F

∂Q
. (356)

From this one obtains

p = ω0q cotQ, P =
ω0q

2

2

1

sin2Q
. (357)

Resolving the second equation for q and substituting the result into the first equation, one obtains

q =

√
2P

ω0
sinQ, p =

√
2ω0P cosQ. (358)

Inserting this into the Hamiltonian, one obtains

H = ω0P + λ (ω0P )2 . (359)

b) Using the formula
dS = PdQ−Hdt (360)

along the trajectory, thus

P =
∂S
∂Q

, H = −∂S
∂t
, (361)

one obtains Hamilton-Jacobi equation

∂S
∂t

+H
(
Q,

∂S
∂Q

)
= 0. (362)

With the transformed Hamiltonian above, this becomes

∂S
∂t

+ ω0
∂S
∂Q

+ λ

(
ω0
∂S
∂Q

)2

= 0. (363)

The complete integral of this equation can be searched for in the form

S = −Et+ S0(Q). (364)

For S0(Q) one obtains the equation

ω0
∂S0

∂Q
+ λ

(
ω0
∂S
∂Q

)2

= E. (365)
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Its solution can be searched for in the form

S0(Q) = αQ, (366)

where the irrelevant integration constant has been discarded and constant α can be expressed via the
conserved energy E using

ω0α+ λ (ω0α)2 = E. (367)

However, it is more convenient to work with α than with E. The full action reads

S (Q,α, t) = −
[
ω0α+ λ (ω0α)2

]
t+ αQ. (368)

c) Using S (Q,α, t) as generating function of another canonical transformation that nullifies the trans-
formed Hamiltonian, one obtains the solution for the dynamics in the form

β =
∂S
∂α

, (369)

where β is another integration constant. Thus one obtains

β = −
[
ω0 + 2λω2

0α
]
t+Q (370)

and
Q = ω̃0t+ β, ω̃0 ≡ ω0 + 2λω2

0α, (371)

ω̃0 being renormalized frequency. Generalized momentum P is obtained from the transformation formula

P =
∂S
∂Q

= α (372)

and it is constant. Now the dynamics of original variables q, p can be obtained as

q =

√
2P

ω0
sinQ =

√
2α

ω0
sin (ω̃0t+ β) (373)

and
p =

√
2ω0P cosQ =

√
2ω0α cos (ω̃0t+ β) . (374)
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