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Bead sliding along a rotating ring

A ring of radius R is rotating in its plane with the constant angular velocity Ω around a point O. A bead
of mass m can slide along the ring without friction.
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Describing the position of the bead on the ring with the angle θ,

a) Construct the Lagrange function and obtain the equation of motion,

b) Find the effective kinetic, potential and total energies

c) Find the force F acting on the bead.

Solution: a) In this problem the potential energy is absent, thus the Lagrange function has the form

L =
mv2

2
, (1)

wher v is the bead’s velocity that consists of two contribution, sliding of the bead and rotating of the ring,
respectively,

v = v′ + u. (2)

Thus one can write
L =

m

2

(

v′ + u
)2

=
m

2

(

v′2 + u2 + 2v′
· u

)

. (3)

Here
v′ = Rθ̇ (4)

and, from the triangles,

u = aΩ = 2RΩ cos ϕ = 2RΩ cos
θ

2
. (5)



The angle between v′ and u is also ϕ = θ/2, so that the Lagrange function becomes

L =
m

2

(

v′2 + u2 + 2v′u cos
θ

2

)

=
mR2

2

(

θ̇
2
+ 4Ω2 cos2

θ

2
+ 4Ωθ̇ cos2

θ

2

)

= mR2

[

1

2
θ̇
2
+ Ω2 (1 + cos θ) + Ωθ̇ (1 + cos θ)

]

⇒ mR2

[

1

2
θ̇
2
+ Ω2 (1 + cos θ)

]

. (6)

The last term in the above expression has been dropped since it is a full time derivative

Ωθ̇ (1 + cos θ) =
d

dt
Ω [θ + sin θ]

that does not make a contribution into the Lagrange equation that can be checked directly. The Lagrange
equation

d

dt

∂L

∂θ̇
−

∂L

∂θ
= 0 (7)

has the form
θ̈ + Ω2 sin θ = 0, (8)

the equation of motion for the pendulum.
b) Already from the final expression for the Lagrangian, Eq. (6), it is clear that the problem is equivalent
to that of a pendulum and the effective kinetic and potential energies are given by

Teff =
1

2
mR2θ̇

2
, Ueff = −mR2Ω2 (1 + cos θ) . (9)

The total effective energy

Eeff = Teff + Ueff =
1

2
mR2θ̇

2
− mR2Ω2 (1 + cos θ) (10)

is conserved. Note that the true total energy is just L and it does not conserve.
c) The force F acting on the bead is the reaction force from the ring. Since the friction is absent, this force
is directed radially, there is no component of F in the direction tangential to the ring. Since F is a force due
to a holonomic constraint, and in the Lagrangian formalism holonomic constraints are eliminated, there is
no way to find F within the Lagrangian formalism. On the other hand, the Newtonean formalism yields

F =mv̇, (11)

i.e., it is sufficient to calculate the acceleration. It is convenient to project the vectors onto the frame vectors
er and eθ (see Figure). One has thus

v =vrer + vθeθ. (12)

Differentiation yields
v̇ =v̇rer + vrėr + v̇θeθ + vθėθ. (13)

The time dependences of er and eθ are due to the double rotation of the bead, along the ring and with the
ring. One elementarily obtains

ėr =
(

θ̇ + Ω
)

eθ, ėθ = −

(

θ̇ + Ω
)

er. (14)

Thus the acceleration takes the form

a = v̇ =
[

v̇r −

(

θ̇ + Ω
)

vθ

]

er +
[

v̇θ +
(

θ̇ + Ω
)

vr

]

eθ. (15)



For the velocity components using Eqs. (4) and (5) one has

vr = u sin ϕ = 2RΩ cos
θ

2
sin

θ

2
= RΩ sin θ

vθ = v′ + u cos ϕ = Rθ̇ + 2RΩ cos2
θ

2
= R

[

θ̇ + Ω (1 + cos θ)
]

(16)

and

v̇r = RΩ cos θ θ̇

v̇θ = R
[

θ̈ − Ω sin θ θ̇
]

. (17)

Thus one obtains
aθ = v̇θ +

(

θ̇ + Ω
)

vr = R
[

θ̈ − Ω sin θ θ̇ +
(

θ̇ + Ω
)

Ω sin θ
]

= 0, (18)

where Eq. (8) has been used. Now Eq. (11) yields Fθ = 0, as expected. Next one obtains

ar = v̇r −

(

θ̇ + Ω
)

vθ = R
[

Ω cos θ θ̇ −

(

θ̇ + Ω
) (

θ̇ + Ω (1 + cos θ)
)]

= R

[

Ω cos θ θ̇ −

(

θ̇ + Ω
)2

−

(

θ̇ + Ω
)

Ω cos θ

]

= −R

[

(

θ̇ + Ω
)2

+ Ω2 cos θ

]

. (19)

This yields

Fr = −mR

[

(

θ̇ + Ω
)2

+ Ω2 cos θ

]

. (20)

For θ = θ̇ = 0 this reduces to Fr = −m (2R)Ω2 that is a known expression for the centrifugal force.


