
Analytical Dynamics - Graduate Center CUNY - Fall 2008
Professor Dmitry Garanin

Problem set 03 (with solution for problem 3)

1 Hamiltonian formalism for the double pendulum

(10 points) Consider a double pendulum that consists of two massless rods of the same length l with the same masses
m attached to their ends. The first pendulum is attached to a fixed point and can freely swing about it. The second
pendulum is attached to the end of the first one and can freely swing, too. The motion of both pendulums is confined
to a plane, so that it can be described in terms of their angles with respect to the vertical, ϕ1 and ϕ2.

(a) Write down the Lagrange function for this system.
(b) Introduce generalized momenta p1 and p2 and change to the Hamiltonian description. Find the transformation

matrix that yields the velocities ϕ1 and ϕ2 in terms of the momenta p1 and p2: Write down the Hamilton function
H(ϕ1; p1; ϕ2; p2) using the transformation matrix.

(c) Obtain the Hamilton equations.

2 Canonical transformations

(10 points) a) The canonical transformation between two sets of variables is given by

Q = ln (1 +
√

q cos p) , P = 2 (1 +
√

q cos p)
√

q sin p.

Show directly that this transformation is canonical. Show that

FpQ(p,Q) = − (
eQ − 1

)2
tan p

is the generating function of this transformation.
b) For what values of α and β the transformation

Q = qα cos (βp) , P = qα sin (βp)

is canonical? What is the form of the generating function FpQ(p,Q) in this case?

3 Hamilton-Jacoby equation

(10 points) The motion of the particle in one dimension is described by the Hamiltonian

H(q, p) =
p2

2
+

ω2q2

2
+ λ

(
p2

2
+

ω2q2

2

)2

. (1)

a) Using the generating function

FqQ(q, Q) =
ωq2

2
cot Q

define new canonical variables Q and P and find the transformed Hamiltonian H(Q, P )
Solution: From the above generating function one obtains

p =
∂F

∂q
= ωq cot Q, P = −∂F

∂Q
=

ωq2

2
1

sin2 Q
. (2)

Resolving the second of these equations for q and then substituting the result into the first equation one obtains

q =

√
2P

ω
sin Q, p =

√
2Pω cos Q. (3)
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Substituting this into the Hamiltonian one obtains

H(Q,P ) = ωP + λω2P 2. (4)

One can see that Q is a cyclic variable, thus P = const. The Hamiltonian equation for Q has the form

Q̇ =
∂H
∂P

= ω + 2λω2P. (5)

The solution of this equation is
Q = ωefft + ϕ0, ωeff ≡ ω (1 + 2λωP ) . (6)

One can relate P to the conserved energy E of the system.

E = ωP + λω2P 2

thus
ωP =

1
2λ

(
−1 +

√
1 + 4λE

)
(7)

and
ωeff = ω

√
1 + 4λE. (8)

Substituting the results into Eq. (3), one obtains

q(t) = q0 sin (ωefft + ϕ0) , p(t) = p0 cos (ωefft + ϕ0) , (9)

where

q0 =
1
ω

√
1
λ

(
−1 +

√
1 + 4λE

)
, p0 =

√
1
λ

(
−1 +

√
1 + 4λE

)
.

One can see that for small energy E, precisely for λE ¿ 1, the amplitude of the oscillations becomes small and
independent of λ,

q0
∼= 1

ω

√
2E, p0 =

√
2E,

whereas ωeff
∼= ω.

b) Set up the Hamilton-Jacoby equation for the Hamiltonian H(Q,P ) and find the Hamilton principal function
(action) S(Q,α, t), where α = const.

Solution: With the transformed Hamiltonian of Eq. (4), the Hamilton-Jacoby equation reads

∂S
∂t

+ ω
∂S
∂Q

+ λ

(
ω

∂S
∂Q

)2

= 0.

The solution can be searched for in the form

S(Q, t) = −Et + S0(Q).

Here S0(Q) satisfies the equation

ω
∂S0

∂Q
+ λ

(
ω

∂S0

∂Q

)2

= E.

One finds
ω

∂S0

∂Q
=

1
2λ

(
−1 +

√
1 + 4λE

)

and thus
S0 =

Q

2λω

(
−1 +

√
1 + 4λE

)
+ α,

where α is an integration constant, and further

S(Q,E, t) = −Et +
Q

2λω

(
−1 +

√
1 + 4λE

)
+ α.

Now one can consider E as a new momentum and Q as an old coordinate. Then the equation of motion for Q follows
from

β =
∂S
∂E

= −t +
Q

ω

1√
1 + 4λE

= −t +
Q

ωeff
,
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thus Q is given by Eq. (6) with ωeff given by Eq. (8). This further leads to the final solution of the problem, Eq. (9).
Of course, this method of the solution is not natural.

c) Find q(t) and p(t) using the Hamilton-Jacoby method. Use initial conditions q = α and p = 0 at t = 0.
Solution: The Hamilton-Jacobi equation for the original Hamiltonian (1) has the form

∂S
∂t

+
1
2

(
∂S
∂q

)2

+
ω2q2

2
+ λ

[
1
2

(
∂S
∂q

)2

+
ω2q2

2

]2

= 0.

We search for the solution in the form
S(q, t) = −Et + S0(q).

Substitution yieds

1
2

(
∂S0

∂q

)2

+
ω2q2

2
+ λ

[
1
2

(
∂S0

∂q

)2

+
ω2q2

2

]2

= E.

Resolving this quadratic equation results in

1
2

(
∂S0

∂q

)2

+
ω2q2

2
=

1
2λ

(
−1 +

√
1 + 4λE

)
≡ Eeff .

Integrating over q, one obtains the action

S (q, E, t) =
∫ q

dq′
√

2 [Eeff − U(q′)]− Et (10)

with U(q) = ω2q2/2. Using this as the generating function Φ (q, P, t) with P = E, one obtains the implicit formula for
q(t)

Q =
∂S
∂E

=
∂Eeff

∂E

∫ q

dq′
√

1
2 [Eeff − U(q′)]

− t, (11)

where
∂Eeff

∂E
=

1√
1 + 4λE

.

For the harmonic oscillator one can calculate the integral analytically as follows

Q =
1√

1 + 4λE

∫ q

dq′
√

1
2Eeff − ω2q′2

− t =
1

ωeff

∫ q̃ dq̃′√
1− q̃′2

− t =
1

ωeff
arcsin q̃ − t, (12)

where

q̃ ≡
√

ω2

2Eeff
q. (13)

Inverting Eq. (12) one obtains the well-known solution

q̃ = sin (ωefft + ωQ) = sin (ωt + ϕ0) (14)

or

q =

√
2Eeff

ω2
sin (ωefft + ϕ0) =

1
ω

√
1
λ

(
−1 +

√
1 + 4λE

)
sin (ωefft + ϕ0) . (15)

After that one finds p as

p =
∂S
∂q

=
√

2 [Eeff − U(q)] (16)

that for the harmonic oscillator yields the well-known expression in the form modified for our problem:

p =
√

2Eeff

√
1− q̃2 =

√
2Eeff cos (ωefft + ϕ0) =

√
1
λ

(
−1 +

√
1 + 4λE

)
cos (ωefft + ϕ0) . (17)
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