Analytical Dynamics - Graduate Center CUNY - Fall 2008

Professor Dmitry Garanin

Problem set 03 (with solution for problem 3)

1 Hamiltonian formalism for the double pendulum

(10 points) Consider a double pendulum that consists of two massless rods of the same length [ with the same masses
m attached to their ends. The first pendulum is attached to a fixed point and can freely swing about it. The second
pendulum is attached to the end of the first one and can freely swing, too. The motion of both pendulums is confined
to a plane, so that it can be described in terms of their angles with respect to the vertical, ¢, and 5.

(a) Write down the Lagrange function for this system.

(b) Introduce generalized momenta p; and py and change to the Hamiltonian description. Find the transformation
matrix that yields the velocities ¢; and ¢, in terms of the momenta p; and po: Write down the Hamilton function
H(pq; p1; o3 p2) using the transformation matrix.

(¢) Obtain the Hamilton equations.

2 Canonical transformations

(10 points) a) The canonical transformation between two sets of variables is given by

Q=1In(1+./gcosp), P =2(1+/gcosp)+/gsinp.

Show directly that this transformation is canonical. Show that

Fpo(p,Q) = — (2 1)  tanp

is the generating function of this transformation.
b) For what values of @ and (8 the transformation

Q = q* cos (Bp) , P = ¢”sin (0p)

is canonical? What is the form of the generating function Fj,q(p, @) in this case?

3 Hamilton-Jacoby equation

(10 points) The motion of the particle in one dimension is described by the Hamiltonian
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a) Using the generating function
2
wq
Fuolq,Q) = N cot @

define new canonical variables @ and P and find the transformed Hamiltonian H(Q, P)
Solution: From the above generating function one obtains
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Resolving the second of these equations for ¢ and then substituting the result into the first equation one obtains

q= \/?sin Q, p = V2Pwcos Q. (3)



Substituting this into the Hamiltonian one obtains
H(Q, P) = wP + M\’ P2,
One can see that @ is a cyclic variable, thus P = const. The Hamiltonian equation for @) has the form

OH
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QiaP w + 2 w*P.

The solution of this equation is
Q = wert + g, Wef = w (1 + 2XwP).
One can relate P to the conserved energy E of the system.
E =wP + \w’P?

thus

WP = % (—1 VIt 4)\E)

and

Weff = WV 1+ 4ME.

Substituting the results into Eq. (3), one obtains

q(t) = qosin (west + o),  p(t) = pocos (west + ©p) ,

where

o=\ (1 VITDE).  w= 5 (1 VITDE).

One can see that for small energy FE, precisely for A\E < 1, the amplitude of the oscillations becomes small and

independent of A,
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2Ea bo = 2 ’

Qo = —
w

whereas weg = w.

b) Set up the Hamilton-Jacoby equation for the Hamiltonian H(Q, P) and find the Hamilton principal function

(action) S(Q, a, t), where oo = const.
Solution: With the transformed Hamiltonian of Eq. (4), the Hamilton-Jacoby equation reads

at Y80 Yoo ) —

The solution can be searched for in the form

S(Q,t) = —Et + 50(Q).

Here So(Q) satisfies the equation

oQ oQ
One finds
waa—i; = % (—1 + m)
and thus
80:% (—1+\/m) + a,
w

where « is an integration constant, and further

S(Q,E,t) = —Et + % (—1 +V1 +4>\E) ta

Now one can consider F as a new momentum and @ as an old coordinate. Then the equation of motion for @) follows

from
o oS - (Q 1 (;)
= —— = —

bR =t
w 1+4AE Weff
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thus @ is given by Eq. (6) with weg given by Eq. (8). This further leads to the final solution of the problem, Eq. (9).
Of course, this method of the solution is not natural.
c¢) Find ¢(t) and p(t) using the Hamilton-Jacoby method. Use initial conditions ¢ = o and p = 0 at ¢ = 0.
Solution: The Hamilton-Jacobi equation for the original Hamiltonian (1) has the form

2
oS 1 /0S\? w?q? 1 /0S\? w?q?
at+2(aq> + 5 + A 2(8(1> + 5 =0.
S(gq,t) = —Et + So(q).
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Resolving this quadratic equation results in

We search for the solution in the form

Substitution yieds

|
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Integrating over ¢, one obtains the action

q
S@ED = [ di VB -~ U] - Bt (10)
with U(q) = w?¢?/2. Using this as the generating function ® (¢, P,t) with P = E, one obtains the implicit formula for
q(t)
oS aEeff ,
dq 11
C=58" / o (11)
where
aEeff
OF 1+4)E’
For the harmonic oscillator one can calculate the integral analytically as follows
1 a 1 T qq 1
= | dfy| s —t= ——t= arcsin ¢ — t, 12
@ V1+4\E / T\ 2y — w?¢? Weff 1—g? Weff K (12)
where
i W 13
1=\ 357 (13)
Inverting Eq. (12) one obtains the well-known solution
g = sin (weat + wQ) = sin (wt + ) (14)
or
2F.x . 1 /1 .
q= — sin (Westt + ) = SV (—1 +V1+ 4)\E) sin (weat + @q) - (15)
After that one finds p as
oS
=22 = \2[Eg - U 16
p=5 = V2B - V@) (16)

that for the harmonic oscillator yields the well-known expression in the form modified for our problem:

1
P =V2E\/1 — @ = \/2E.g cos (wegtt + ) = \/)\ (—1 +V1+4 4/\E> cos (wesrt + ¢p) - (17)



