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Small oscillations with many degrees of freedom

1 General formalism

Consider a dynamical system with N degrees of freedom near a minimum of the potential energy. The
Lagrangian has a general form

L =
1

2

∑

ij

(mijẋiẋj − kijxixj) , (1)

where xi ≡ qi − q
(0)
i are deviations from the minimum and the mass and stiffness coefficients are symmetric,

mij = mji and kij = kji The Lagrangian can be written in the matrix form as

L =
1

2

(

Ẋ
T ·M · Ẋ− X

T ·K · X
)

, (2)

where M is the mass matrix, K is the stiffness matrix, X = (x1, x2, . . . , xN ) (a column) and X
T its trans-

position (a row). The Lagrange equations read

∑

j

(mijẍj + kijxj) = 0, i = 1 . . . N, (3)

or, in the matrix form,
M · Ẍ + K ·X = 0. (4)

We search for the solution in the form
X = a sin (ωt) (5)

[or the same with cos (ωt)] and obtain the system of linear algebraic equations

(

−ω2
M + K

)

·a = 0. (6)

This system of equations has a nontrivial solution for a only if

∣

∣

∣−ω2
M + K

∣

∣

∣ = 0 (7)

that defines N eigenfrequencies ω2
α, α = 1 . . . N. One can prove that ω2

α are positive, if the potential energy
is a positively defined bilinear form, as it is the case for the energy minimum. Then the vectors aα are
real. We will assume the simplest case of ω2

α nondegenerate, ω2
α 6= ω2

β for α 6= β. Technically, Eq. (6) is a
generalized eigenvalue problem,

K · a =λM · a (8)

and a is eigenvector of K with respect to M. Algorithm for solving this problem is implemented in Wolfram
Mathematica.

The problem we are solving is resembling an eigenvalue problem. It is more complicated, however, since
we have two matrices instead of one. Whereas in eigenvalue problems eigenvectors corresponding to different
eigenvalues are orthogonal, here a generalized orthogonality relation takes place. To obtain it, write Eq. (6)
with two different eigenvalues ω2

α and ω2
β:

ω2
αM · aα = K · aα

ω2
βM · aβ = K · aβ . (9)
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Now multiply the first equation by a
T
β from the left, multiply the second equation by a

T
α from the left, and

subtract them from each other:

ω2
αa

T
β ·M · aα − ω2

βa
T
α ·M · aβ = a

T
β · K · aα − a

T
α ·K · aβ. (10)

Using symmetry of matrices M and K, one can be easily show a
T
β ·M · aα = a

T
α · M · aβ and a

T
β · K · aα =

a
T
α ·K · aβ. Thus the rhs vanishes and one obtains

(

ω2
α − ω2

β

)

a
T
α ·M · aβ = 0. (11)

This means that for α 6= β one has a
T
α · M · aβ = 0. It is convenient also to require a

T
α · M · aα = 1. This

gives the generalized orthogonality condition

a
T
α · M · aβ = δαβ. (12)

Now from the second of equations (9) one obtains

ω2
βa

T
α ·M · aβ = ω2

βδαβ= a
T
α ·K · aβ (13)

One can compose the N ×N matrix of vectors A by stacking all aα together. In terms of A Eq. (12) takes
the form

A
T · M · A = I, (14)

where I is the unit matrix, whereas Eq. (13) becomes

A
T · K ·A = Ω

2, (15)

where Ω =diag {ωα} .
Let us now introduce the normal-coordinate vector ζ defined by

X = A · ζ, X
T = (A · ζ)T = ζT · AT . (16)

These equations can be resolved for ζ and ζα:

ζ = A
−1 · X, ζα =

(

A
−1
)

αi
xi. (17)

Note that, according to Eq. (14), A
−1 6= A

T and
(

A
−1
)

αi 6= aαi. Inserting Eq. (16) into the Lagrangian,
Eq. (2), and using Eqs. (12) and (15), one obtains

L =
1

2

(

ζ̇
T ·AT ·M · A · ζ̇ − ζ

T ·AT ·K ·A · ζ
)

=
1

2

(

ζ̇
T · ζ̇ − ζ

T ·Ω2 · ζ
)

(18)

or

L =
1

2

N
∑

α=1

(

ζ̇
2
α − ω2

αζ2
α

)

, (19)

where ζα are components of the normal-coordinate vector ζ or normal coordinates. One can see that the
Lagrangian is separable in terms of the normal coordinates, so that every normal coordinate ζα oscillates
with its own frequency ωα:

ζα(t) = Csα sin (ωαt) + Ccα cos (ωαt) . (20)

From Eq. (16) one obtains

xi(t) =
N
∑

α=1

aiαζα(t) =
N
∑

α=1

aiα [Csα sin (ωαt) + Ccα cos (ωαt)] (21)
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that can be compared with the tentative Eq. (5). To obtain the coefficients from the initial conditions, one
writes

ζ̇α(t) = Csαωα cos (ωαt) − Ccαωα sin (ωαt) (22)

and at t = 0 from Eqs. (17), (20), and (22) obtains

Ccα =
(

A
−1
)

αi
xi(0), Csα =

(

A
−1
)

αi

ẋi(0)

ωα
. (23)

2 Example: Double pendulum

Consider a double pendulum that consists of the pendulum 1 attached in a standard way and the pendulum
2 attached to the end of pendulum 1. For simplicity we consider the case m1 = m2 = m and l1 = l2 = l.
Describing the pendula with the angles θ1 and θ2, one writes

x1 = l sin θ1, x2 = l sin θ1 + l sin θ2

y1 = −l cos θ1, y2 = −l cos θ1 − l cos θ2.

The potential energy reads
U = mg (y1 + y2) = −mgl (2 cos θ1 + cos θ2)

and the kinetic energy is given by

T =
m

2

(

ẋ2
1 + ẏ2

1 + ẋ2
2 + ẏ2

2

)

=
ml2

2

[

θ̇
2
1 +

(

− cos θ1θ̇1 − cos θ2θ̇2

)2
+
(

sin θ1θ̇1 + sin θ2θ̇2

)2
]

=
ml2

2

[

2θ̇
2
1 + θ̇

2
2 + 2 (cos θ1 cos θ2 + sin θ1 sin θ2) θ̇1θ̇2

]

.

Near the ground state θ1 = θ2 = 0 one leaves only quadratic terms that results in

L = T − U ∼= ml2

2

(

2θ̇
2
1 + θ̇

2
2 + 2θ̇1θ̇2

)

− mgl

2

(

2θ2
1 + θ2

2

)

.

Identifying this with Eq. (1) yields

M = ml2
(

2 1
1 1

)

, K = mgl

(

2 0
0 1

)

.

The generalized eigenvalue problem, Eq. (6), has the form
(

2
(

−ω2 + ω2
0

)

−ω2

−ω2 −ω2 + ω2
0

)(

a1

a2

)

= 0,

where we have introduced
ω2

0 =
g

l
.

The secular equation is

0 = 2
(

−ω2 + ω2
0

)2
− ω4 =

[√
2
(

ω2 − ω2
0

)

+ ω2
] [√

2
(

ω2 − ω2
0

)

− ω2
]

=
[(√

2 + 1
)

ω2 −
√

2ω2
0

] [(√
2 − 1

)

ω2 −
√

2ω2
0

]

.

Thus the eigenfrequencies are given by

ω2
1 =

√
2ω2

0√
2 + 1

=
(

2 −
√

2
)

ω2
0, ω2

2 =

√
2ω2

0√
2 − 1

=
(

2 +
√

2
)

ω2
0.
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Let us find now generalized eigenvectors and normal modes of the system. Eq. (??) becomes

2
(

ω2
α − ω2

0

)

a1α + ω2
αa2α = 0

ω2
αa1α +

(

ω2
α − ω2

0

)

a2α = 0.

For instance, from the second equation one obtains

aα = µα

(

−ω2
α + ω2

0

ω2
α

)

,

where µα are normalization coefficients. In particular,

a1 = µ1

(

−ω2
1 + ω2

0

ω2
1

)

= µ1ω
2
0

( √
2 − 1

2 −
√

2

)

= µ1ω
2
0

(√
2 − 1

)

(

1√
2

)

a2 = µ2

(

−ω2
2 + ω2

0

ω2
2

)

= µ2ω
2
0

(

−
√

2 − 1

2 +
√

2

)

= µ2ω
2
0

(√
2 + 1

)

(

−1√
2

)

.

Let us check the orthogonality of these eigenvectors, Eq. (12):

a
T
1 ·M · a2 = µ1µ2ml2ω4

0

(

1
√

2
)

(

2 1
1 1

)(

−1√
2

)

= µ1µ2ml2ω4
0

(

1
√

2
)

(

−2 +
√

2

−1 +
√

2

)

= µ1µ2ml2ω4
0

(

1
√

2
)

(

−
√

2
1

)

(√
2 − 1

)

= 0,

as expected. Now calculate normalization factors:

1 = a
T
1 · M · a1 = µ2

1ml2ω4
0

(√
2 − 1

)2 (

1
√

2
)

(

2 1
1 1

)(

1√
2

)

= µ2
1ml2ω4

0

(√
2 − 1

)2
2
√

2
(√

2 + 1
)

= µ2
1ml2ω4

0

(√
2 − 1

)

2
√

2

and

1 = a
T
2 ·M · a2 = µ2

2ml2ω4
0

(√
2 + 1

)2 (

−1
√

2
)

(

2 1
1 1

)(

−1√
2

)

= µ2
2ml2ω4

0

(√
2 + 1

)2
2
√

2
(√

2 − 1
)

= µ2
2ml2ω4

0

(√
2 + 1

)

2
√

2.

Thus

µ1ω
2
0 =

1√
ml2





1
(√

2 − 1
)

2
√

2





1/2

=
1√
ml2

(√
2 + 1

2
√

2

)1/2

µ2ω
2
0 =

1√
ml2





1
(√

2 + 1
)

2
√

2





1/2

=
1√
ml2

(√
2 − 1

2
√

2

)1/2

and, finally,

a1 =
1√
ml2

(√
2 − 1

2
√

2

)1/2 (

1√
2

)

a2 =
1√
ml2

(√
2 + 1

2
√

2

)1/2 ( −1√
2

)

.
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Now, the angles expressed through the eigenmodes are given by Eqs. (16) or (21):

θ1 = a11ζ1 + a12ζ2 =
1√
ml2

(√
2 − 1

2
√

2

)1/2

ζ1 −
1√
ml2

(√
2 + 1

2
√

2

)1/2

ζ2

θ2 = a21ζ1 + a22ζ2 =
1√
ml2

√
2

(√
2 − 1

2
√

2

)1/2

ζ1 +
1√
ml2

√
2

(√
2 + 1

2
√

2

)1/2

ζ2.

The inverse transformation has the form

ζ1 =
det1
det

=
θ1a22 − θ2a12

a11a22 − a21a12
= (θ1a22 − θ2a12)ml2 =

√
ml2

√
2

(√
2 + 1

2
√

2

)1/2

θ1 +
√

ml2

(√
2 + 1

2
√

2

)1/2

θ2

=
√

ml2

(√
2 + 1

2
√

2

)1/2
(√

2θ1 + θ2

)

ζ2 =
det2
det

= (a11θ2 − a21θ1) ml2 =
√

ml2

(√
2 − 1

2
√

2

)1/2

θ2 −
√

ml2
√

2

(√
2 − 1

2
√

2

)1/2

θ1

=
√

ml2

(√
2 − 1

2
√

2

)1/2
(

−
√

2θ1 + θ2

)

.

One can see that in the normal mode 1 both pendula are swinging in-phase and in the mode 2 they are
swinging antiphase. The frequency of the mode 1 is lower.

3 Example: Two coupled oscillators

Another model that illustrate general principles and has more interesting physical content is the model of
two coupled oscillators with the Lagrangian

L =
m

2

(

ẋ2
1 − ω2

1x
2
1 + ẋ2

2 − ω2
2x

2
2 − ∆2x1x2

)

. (24)

We will show that if |ω1 − ω2| � ∆, the oscillators behave nearly independently from each other and oscillate
with their own frequencies ω1,2, whereas in the opposite limit they strongly hybridize and both normal modes
involve both coordinates. Here the matrices M and K are given by

M =m

(

1 0
0 1

)

, K = m

(

ω2
1 ∆2/2

∆2/2 ω2
2

)

and the eigenvalue problem, Eq. (6), is

(

−ω2 + ω2
1 ∆2/2

∆2/2 −ω2 + ω2
2

)(

a1

a2

)

= 0.

Note that this is a standard eigenvalue problem, not generalized. The secular equation has the form

0 =
(

ω2 − ω2
1

) (

ω2 − ω2
2

)

− ∆4/4 = ω4 − ω2
(

ω2
1 + ω2

2

)

+ ω2
1ω

2
2 − ∆4/4

and the eigenfrequencies are

ω2
± =

1

2

(

ω2
1 + ω2

2 ±
√

(

ω2
1 + ω2

2

)2 − 4ω2
1ω

2
2 + ∆4

)

=
1

2

(

ω2
1 + ω2

2 ±
√

(

ω2
1 − ω2

2

)2
+ ∆4

)

. (25)
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One can see that, indeed, for |ω1 − ω2| � ∆ the eigenfrequencies ω± coincide with ω1,2. On the other hand,
for ω1 = ω2 = ω0 one obtains

ω2
± = ω2

0 ±
1

2
∆2. (26)

Let us now find the eigenvectors and normal modes. From the equation

(

−ω2
± + ω2

1

)

a1± +
(

∆2/2
)

a2± = 0

one obtains

a± = µ±

(

∆2/2
ω2
± − ω2

1

)

,

where µα is a normalization coefficient. This form is nonsymmetric and it is convenient to symmetrize it.
To this end, consider the case ω1 < ω2. One can see from Eq. (25) that the frequencies are ordered as

ω− < ω1 < ω2 < ω+.

Now a+ can be symmetrized as

a+ = µ+









√

∆2

2(ω2
+
−ω2

1)
√

2(ω2
+
−ω2

1)
∆2









(27)

with another µ+. Here

2
(

ω2
+ − ω2

1

)

∆2
=

−ω2
1 + ω2

2 +
√

(

ω2
1 − ω2

2

)2
+ ∆4

∆2

and

∆2

2
(

ω2
+ − ω2

1

) =
∆2

−ω2
1 + ω2

2 +
√

(

ω2
1 − ω2

2

)2
+ ∆4

=
−ω2

1 + ω2
2 −

√

(

ω2
1 − ω2

2

)2
+ ∆4

−∆2

=
ω2

1 − ω2
2 +

√

(

ω2
1 − ω2

2

)2
+ ∆4

∆2
.

To the contrary, a− can be symmetrized as

a− = µ−









√

∆2

2(ω2
1
−ω2

−
)

−
√

2(ω2
1
−ω2

−
)

∆2









. (28)

Here

2
(

ω2
1 − ω2

−

)

∆2
=

ω2
1 − ω2

2 +
√

(

ω2
1 − ω2

2

)2
+ ∆4

∆2

and

∆2

2
(

ω2
1 − ω2

−

) =
∆2

ω2
1 − ω2

2 +
√

(

ω2
1 − ω2

2

)2
+ ∆4

=
ω2

1 − ω2
2 −

√

(

ω2
1 − ω2

2

)2
+ ∆4

−∆2

=
−ω2

1 + ω2
2 +

√

(

ω2
1 − ω2

2

)2
+ ∆4

∆2
.
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Obviously eigenvectors a+ and a− are orthogonal. Let us now calculate the normalization factors.

1 = a
T
+ · a+ =

µ2
+

∆2

( √

−ω2
1 + ω2

2 +
√

(

ω2
1 − ω2

2

)2
+ ∆4

√

ω2
1 − ω2

2 +
√

(

ω2
1 − ω2

2

)2
+ ∆4

)

·









√

−ω2
1 + ω2

2 +
√

(

ω2
1 − ω2

2

)2
+ ∆4

√

ω2
1 − ω2

2 +
√

(

ω2
1 − ω2

2

)2
+ ∆4









=
µ2

+

∆2

[

−ω2
1 + ω2

2 +
√

(

ω2
1 − ω2

2

)2
+ ∆4 + ω2

1 − ω2
2 +

√

(

ω2
1 − ω2

2

)2
+ ∆4

]

=
µ2

+

∆2
2
√

(

ω2
1 − ω2

2

)2
+ ∆4.

The equation for µ− is the same. Thus one obtains

µ± =

√

√

√

√

∆2

2
√

(

ω2
1 − ω2

2

)2
+ ∆4

.

After that Eqs. (27) and (28) become

a+ =

√

√

√

√

∆2

2
√

(

ω2
1 − ω2

2

)2
+ ∆4













√

ω2
1
−ω2

2
+

√

(ω2
1
−ω2

2)
2
+∆4

∆2
√

−ω2
1
+ω2

2
+

√

(ω2
1
−ω2

2)
2
+∆4

∆2













=
1√
2













√

1 +
ω2

1
−ω2

2
√

(ω2
1
−ω2

2)
2
+∆4

√

1 − ω2
1
−ω2

2
√

(ω2
1
−ω2

2)
2
+∆4













and

a− =

√

√

√

√

∆2

2
√

(

ω2
1 − ω2

2

)2
+ ∆4













√

−ω2
1
+ω2

2
+

√

(ω2
1
−ω2

2)
2
+∆4

∆2

−

√

ω2
1
−ω2

2
+

√

(ω2
1
−ω2

2)
2
+∆4

∆2













=
1√
2













√

1 − ω2
1
−ω2

2
√

(ω2
1
−ω2

2)
2
+∆4

−
√

1 +
ω2

1
−ω2

2
√

(ω2
1
−ω2

2)
2
+∆4













.

Both eigenvectors can be written as

a± =
1√
2













√

1 ± ω2
1
−ω2

2
√

(ω2
1
−ω2

2)
2
+∆4

±
√

1 ∓ ω2
1
−ω2

2
√

(ω2
1
−ω2

2)
2
+∆4













.

Actually this result is valid for an arbitrary relation between ω1 and ω2. For ω2 − ω1 � ∆ one has

a+
∼=
(

0
1

)

, a−
∼=
(

1
0

)

that means that ω+
∼= ω2 corresponds to the second oscillator and ω−

∼= ω1 corresponds to the first oscillator.
In the resonance case ω2

1 = ω2
2 one obtains

a± =
1√
2

(

1
±1

)

that means that the modes are strongly mixed.
The original coordinates expressed through the normal modes are given by

xi =
∑

α=±

aiαζα,
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i.e.,
x1 = a1+ζ+ + a1−ζ−, x2 = a2+ζ+ + a2−ζ−.

The normal modes behave as independent harmonic oscillators with frequencies ω±. Thus the time depen-
dence of both x1 and x2 is a superposition of these two oscillations.

Now consider, as an illustration, the resonance case ω1 = ω2 = ω0 with a small coupling ∆ � ω0. Here

x1 =
1√
2

(

ζ+ + ζ−
)

, x2 =
1√
2

(

ζ+ − ζ−
)

(29)

and, inversely,

ζ+ =
1√
2

(x1 + x2) , ζ− =
1√
2

(x1 − x2) .

Suppose at t = 0 oscillator 1 was in a general state while oscillator 2 was in its ground state. Then the
initial condition for the normal modes is

ζ+(0) = ζ−(0) =
1√
2
x1(0)

ζ̇+(0) = ζ̇−(0) =
1√
2
ẋ1(0).

Thus the time dependence of the normal-mode coordinates is given by

ζ+(t) = ζ+(0) cos (ω+t) + ζ̇+(0)
1

ω+
sin (ω+t)

=
x1(0)√

2
cos (ω+t) +

ẋ1(0)√
2

1

ω+
sin (ω+t)

ζ−(t) = ζ−(0) cos (ω−t) +
ζ̇−(0)

ω−

sin (ω−t)

=
x1(0)√

2
cos (ω−t) +

ẋ1(0)√
2

1

ω−

sin (ω−t) .

Inserting this into Eq. (29) one obtains

x1(t) =
1√
2

[

ζ+(t) + ζ−(t)
]

=
1

2

{

x1(0) [cos (ω+t) + cos (ω−t)] + ẋ1(0)

[

1

ω+
sin (ω+t) +

1

ω−

sin (ω−t)

]}

x2(t) =
1√
2

[

ζ+(t) − ζ−(t)
]

=
1

2

{

x1(0) [cos (ω+t) − cos (ω−t)] + ẋ1(0)

[

1

ω+
sin (ω+t) − 1

ω−

sin (ω−t)

]}

.

In the small-coupling case the eigenfrequencies are close to each other, see Eq. (26), one can approximate

1

ω+

∼= 1

ω−

∼= 1

ω0
.

On the other hand, one cannot make this approximation in the arguments of sin and cos since it will
breakdown at large times. From Eq. (26) in the weak-coupling case follows

ω± = ω0

√

1 ± ∆2

2ω2
0

∼= ω0 ±
∆2

4ω0
.

Usung this and trigonometric relations, one obtains

x1(t) = x1(0) cos

(

ω+ + ω−

2
t

)

cos

(

ω+ − ω−

2
t

)

+
ẋ1(0)

ω0
sin

(

ω+ + ω−

2
t

)

cos

(

ω+ − ω−

2
t

)

∼=
[

x1(0) cos (ω0t) +
ẋ1(0)

ω0
sin (ω0t)

]

cos

(

∆2

4ω0
t

)

.
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This is a standard time dependence for a harmonic oscillator (square brackets) multiplied by a slowly
oscillating function of time. Using

ẋ1(t) ∼= [−x1(0)ω0 sin (ω0t) + ẋ1(0) cos (ω0t)] cos

(

∆2

4ω0
t

)

(we do not differentiate the slow function), one can compute the time dependence of the energy of the first
oscillator as

e1(t) =
m

2

(

ẋ2
1(t) + ω2

0x
2
1(t)

)

=
m

2

{

[−x1(0)ω0 sin (ω0t) + ẋ1(0) cos (ω0t)]
2 + ω2

0

[

x1(0) cos (ω0t) +
ẋ1(0)

ω0
sin (ω0t)

]2
}

cos2
(

∆2

4ω0
t

)

=
m

2

{

ẋ2
1(0) + ω2

0x
2
1(0)

}

cos2

(

∆2

4ω0
t

)

= e1(0) cos2

(

∆2

4ω0
t

)

.

The same can be done for the second oscillator. For instance, its energy behaves as

e2(t) = e1(0)

[

1 − cos2

(

∆2

4ω0
t

)]

,

so that the total energy e1(t) + e2(t) = e1(0) is conserved, whereas the energy is slowly migrating between
the two oscillators.
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