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Transformations and conservation laws

We mainly use inertial frames in which a free body (no forces applied) moves with a constant
velocity. A frame moving with a constant velocity with respect to an inertial frame is inertial, too. 
Thus there is an infinite number of inertial frames. The equations of motion are invariant with
respect to transformations from one inertial frame to another, and the transformed Lagrange
function can differ from the initial one only by an irrelevant full derivative. This is the principle of the
Galilean invariance, i.e., invariance with resperct to Galilean transfromations, that is valid in the
classical mechanics.

Galilean transformation
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Transformation of the Lagrange function of a free particle:

Irrelevant full derivative

- Thus the Lagrange equations are the same in both frames
(Prove the same for systems with interaction)

O

O‘



2

The proof of the Galilean invariance on the previous page (Landau and Lifshitz) is not fully
satisfactory since the Largange function in the K‘ frame is expressed as the function of the
variables in the K frame. The true check of the Galilean invariance should be that of the covariance
of the Lagrange equations, that is,
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under the Galilean transformation with the same functional forms of the Lagrange function. The
proof is simple. With
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one obtains

has the same functional form, as required. Note that the latter was just assumed in the LL reasoning. 

The proof of the Galilean invariance can be easily extended for the systems of particles with pair 
interaction
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since the Galilean transformation does not change the distances between particles,
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Integrals of motion

Energy E : Conserved if the Lagrange function does not explicitly depend on 
time (the problem is invariant with respect to time translations) 
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can be shown to be zero:
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Thus E is conserved. As the Lagrange function is a bilinear function of the velocities, one has
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That is, E is indeed the full energy of the system.
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Generalized momentum pi : Conserved if the Lagrange function does not depend
on the particular qi (qi is the cyclic coordinate)
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Indeed, from the Lagrange equation follows

Example: Consider a constant force F = const of a particular form zFeF =

The corresponding potential energy is given by FzU −=•−= rF

Thus the coordinate components x and y are cyclic so that
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Total momentum P of a system: Conserved if the system is isolated

The Lagrangian of an isolated system (no external forces acting) is invariant under translations
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F (Newton‘s third law)

Considering εεεε as infinitesimal, one obtains

On the other hand, from the Lagrange equations follows
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Alternatively, all relations above could be obtained (in a slightly less general form) using the
potential energy

(that is explicitly translationally invariant) to calculate the sum of all forces etc. (Home exercise)
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Angular momentum L : Conserved if the system is rotationally invariant (in particular, 
for any isolated system)

An infinitesimal rotation ][],[ iiii vvrr ×=×= ϕϕϕϕϕϕϕϕ δδδδ

leaves the Lagrangian unchanged:
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is obvious since rotations do not change the distances between the particles and the squares of 
the velocities. Rotational invariance can be incomplete. If, for instance, the Lagrangian is
invariant with respect to rotations only around the z axis, then only Lz is conserved (the proof is
similar).
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where are components of the angular velocity (to be considered later in the course) 

In the Lagrangian formalism the angular momentum is just a generalized momentum. 
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Center of mass (CM)

The position of the CM is defined by
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For the velocity of the CM one obtains
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that is, 
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and one can consider the motion of a system as the whole in terms of the total mass
M and the velocity of the CM V.
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Transformation of the integrals of motion

Momentum:

(see page 1)
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If the frame K‘ moves with the velocity of the CM, then
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(the „internal“ momentum of the system is zero)
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Energy:
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If the frame K‘ moves with the velocity of the CM, then
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(the sum of the „internal“ energy and the kinetic energy of the CM)



11

Angular momentum:

Here not only the velocity V of the frame K‘ with respect to the frame K but also the position of O‘
with respect to K is important. Thus we use the Galilean transformation in the form
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One can see that in the case V = 0 but a

�

0 (statically shifted frames) the angular momenta in 
the two frames are different, if the total momentum P = P´ is nonzero and not collinear to a. 

If the origin O‘ of the frame K‘ is located at the CM, then

Ra =
and the transformation of the angular momentum simplifies to
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(the sum of the „internal“ angular momentum and angular momentum of the CM). Note that Landau 
and Lifshitz obtain this formula setting a = 0 (at a given moment of time!) and using V.P M=
Their derivation can be valid at one moment of time only.


