1. Sequences. Find the limit of given sequences for $n \to \infty$

a)
$$\frac{n^2 + 5n^3}{2n^3 + 3\sqrt{4 + n^6}}$$

b)
$$\frac{2^n}{n^2}$$

c)
$$\frac{n^2}{n!}$$

d)
$$\frac{(n!)^2}{(2n)!}$$

2. Series. Use the ratio test to find whether the following series converge or diverge

a)
$$\sum_{n=0}^{\infty} \frac{3^{2n}}{2^{3n}}$$

b)
$$\sum_{n=0}^{\infty} \frac{e^n}{\sqrt{n!}}$$

c)
$$\sum_{n=0}^{\infty} \frac{(n!)^3 e^{3n}}{(3n)!}$$

d)
$$\sum_{n=0}^{\infty} \frac{\sqrt{(2n)}}{n!}$$

3. Series. Find the interval of convergence of each of the following power series; be sure to investigate the endpoints of the interval in each case.

a)
$$\sum_{n=1}^{\infty} \frac{x^{3n}}{n}$$

a)
$$\sum_{n=1}^{\infty} \frac{x^{3n}}{n}$$
 b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{\sqrt{n}}$$

c)
$$\sum_{n=1}^{\infty} \frac{n}{n+1} \left(\frac{x}{3}\right)^n$$

d) $\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{(2n)!}$

d)
$$\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{(2n)!}$$

4. Series. Find the first two terms of the Maclaurin series for each of the following functions

a)
$$e^x \sin x$$

b)
$$e^{\sin x}$$

c)
$$\frac{x}{\sin x}$$

d)
$$ln(2 - e^x)$$

5. Find the following limits using the Maclaurin series

a)
$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{e^x - 1} \right)$$

b)
$$\lim_{x \to 0} \left(\frac{1}{x^2} - \frac{\cos x}{\sin^2 x} \right)$$

c)
$$\lim_{x \to 0} \left(\csc^2 x - \frac{1}{x^2} \right)$$

a)
$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{e^x - 1} \right)$$

b) $\lim_{x \to 0} \left(\frac{1}{x^2} - \frac{\cos x}{\sin^2 x} \right)$
c) $\lim_{x \to 0} \left(\csc^2 x - \frac{1}{x^2} \right)$
d) $\lim_{x \to 0} \left(\frac{\ln(1+x)}{x^2} - \frac{1}{x} \right)$