Partial derivatives & Vector calculus

Partial derivatives

Functions of several arguments (multivariate functions) such as f[x,y] can be differentiated with respect to each argument
of of
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etc. One can define higher-order derivatives with respect to the same or different variables
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For most of the functions mixed partial derivatives do not depend on the order of differentiation
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This holds if the mixed derivatives are continuous at a given point. For instance,

flx_, y_ 1 =xy;
0, f[x, y]

Oy f[x, yl
Oy,x£[x, ¥yl
Ox,yE[x%, ¥]
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= "Bad" functions

Multivariate series
Taylor series can be generalized for multivariate functions and the
flx_, y_] = Sin[x+y];
Series[f[x, y], {x, 0, 3}]
1 1

Sin[y] + Cos[y] x - — Sin[y] x? - — Cos[y] x° + O[x]4
2 6

Series[f[x, y]l, {x, 0, 3}, {y, 0, 3}]

y-—+0[y]*
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or, in the symmetric form



2| Mathematical_physics-04-Partial_derivatives_and_vector_calculus.nb

Normal[Series[f[x, y], {x, 0, 3}, {y, 0, 3}]1]
Expand [Normal [Series[f[x, y], {x, O, 3}, {y, 0, 3}11]

X x> 1 x?
-—+ — y2+ -—+ — y3
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X - —+y - - + - — 4+
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Exercise: Find a way to sort this polynomial in increasing powers of x, y.

Vector calculus

Physics makes use of vector differential operations on functions such as gradient, divergence, curl (rotor), Laplacian, etc.
In the current version of Mathematica realizations of these operations are new and not included in the main body of the
software. Instead, these functions are implemented in the optional VectorAnalysis package that has to be called before
performing these operations

Needs["VectorAnalysis "]

Unfortunately, this package seems to be inconvenient.

= Gradient

Gradient of a scalar funtion is a vector defined as
of of of

gradf=vf=e, —+e, — +e, — = {0,f, 0,f, O,f}
ox oy Oz

One can speak about the gradient operator defined as
o o] o]
V=e, —+e, —+€, —

ox oy Oz

that acts on scalar functions of vector arguments. An example of a gradient in physics is force F that is minus gradient of the
potential energy U[x,y,z] and similar for the electric field E that is minus gradient of the electric potential ¢

F= VU, E= V¢
Examples trying to use the Mathematica's VectorCalculus package:
Following Mathematica help:
Clear[x, y, z, U]

U=x%+ y2 +2z%;
Grad[U]

{0, 0, 0}
- a wrong output. An attempt of a standard usage

Ulx_, y_, z_]1 =x>+y?+2?%;, (% 3d oscillator )

Flx_, y_, z_] =Grad[U[x, y, 2]]

{OI OI O}

- same wrong result. Still this command is working with a special naming choice



Mathematical_physics-04-Partial_derivatives_and_vector_calculus.nb |3

Grad[Xx2 +Yy? + Zzz]

{2Xx, 2Yy, 272z}

However, this naming restriction is inconvenient.

Fortunately, it is not difficult to program the gradient in Mathematica. To use the definition below, quit the kernel to
remove the VectorAnalysis package from the memory

43~ Grad[£_] := {0.£, OyE, 0, f}

Since x,y,z enters the definition of this function, the arguments of f should also be x,y,z. With any other notation for the
arguments of f, it won't work, in contrast to definitions of tru functions.
MyGrad works on expressions

Grad[x? +y? +2%] (x v?=2r x)
{2x%x, 2y, 22z}

This means

=2r

MyGrad also works on functions

Ulx_, y_, z_]1 =x>+y?+2?%; (% 3d oscillator )
Vix_, y_, z_] =x%;

Grad[U[x, y, z]]

Grad[V[x, y, z]]

(2%, 2y, 2z}
{4x*, 0, 0}

Mathematica has the symbol V but it seems it is only for typing
?Vv

Information::notfound : Symbol V not found. >

?E

E is the exponential constant ¢ (base of natural logarithms), with numerical value ~2.71828. >

I=-1

True

One can define a vector function that is the gradient of a scalar function. For the electric field of a point charge one has

kQ
¢[x_,y , 2] =—————; (% Coulomb potential of a point charge %)

'\/x2+y2+z2

EE[x_, y_, z_] = -Grad[¢[x, v, 2z]] (* Electric field of a point charge %)

kQx kQy kQz

’ ’ }
3/2 3/2

<x2+y2+22) (x2+y2+zz)

(x2 +y?+ 22) 372
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Divergence

Divergence of a vector is a scalar defined by

on, OA, 0A,
+ +
ox oy Oz

divA =V - A=

divergence can be represented by the operator
o] o] o]
Ve, —+e, — +€, —
Ox oy Oz
same as the gradient operator above. The only difference between them is that gradient acts on scalars and divergence acts
on vectors.

in61]:= Div[Avec_] := OxAvec[[1l]] + dyAvec[[2]] + 8,Avec[[3]]

Examples

Div[{x, y, z}]

3

Fvec[x_,y_, z_] = {xzr v, zz};
Div[Fvec[x, y, z]1]

2xX+2y+2z

Fvec[x ,y , z_] = {y, x, xy};
Div[Fvec[x, y, z]1]

0

= Laplacian

Laplacian is a second-order vector differential operation. Laplacian of a scalar f is defined as div grad f and denoted by A or
V2

Af=divgradf =V -V £ =V?f
From this definition follows

8°f ©8°f 08°f
Af = + +
ox® ay? 0z?

The Laplace operator

o2 o2 ok
+ +

ox? 9ay? az?

A =V%=

can be obtained by squaring the gradient / divergence operator above.
Laplace[f_] := Ox,xf +0y,yf +08;,,f

Example
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flx ,y_,z_]-= x? +y2 +z%;

Laplace[f[x, y, z]]
6

Laplacian of a vector is defined in components through Laplacians of the components as

AR = e, ADj + e, AR, + @3 ARy

In60]:= LaplaceVec[Avec_] := {ax,xAvec[ [1]] + 8y,yAvec[[1]] + 0., Avec[[1]],
Ox,xAvec[[2]] + Oy, yAvec[[2]] + 0., Avec[[2]],
Ox,xAvec[[3]] + 0y, yAvec[[3]] + 9, ,Avec[[3]] }

u Curl (rotor)

Curl of a vector is a vector defined by

e, e, e,
curlAzdet[ Ox Oy 0. =V xA
A, A, A,

In62]:= Curl[Avec_] :=
{ayAvec[[3]] - 9,Avec[[2]], O,Avec[[1l]] - OxAvec[[3]], OxAvec[[2]] —ayAvec[[l]]}
Examples
Curl[{x, y, z}]
{0, 0, 0}

Curl[{y, -x, 0}]

{O/ Or _2}

m Repeated first-order differential vector operations

Repeated vector differential operations satisfy some identities that are similar to repeated vector products if one uses the V
operator and considers it as a vector.

= Double curl

Similarly to the double vector product Ax(BxC) = B (A-C) - C (A‘B), one has
curl curlA=Vx (VxA) eV (V -A) -V?A =grad (divA) -AA
Note that here the vector A is always rightmost because the differential operators are acting on it. Check this identity
Avec[x_, y_, z_] = {Avecx([x, y, z], Avecy[x, y, 2], Avecz[x, y, 2]},

Curl[Curl[Avec[x, y, z]]]

{—Avecx(o’o’z) [x, v, 2] - Avecx (0:2:0) [x, v, 2] +Avecz (10D [x, v, 2] +Avecy(1’1’0) [x, v, 2],
~avecy 9 %2) [k, v, 2] +Avecz OV [x, v, z] + Avecx 110 [k, vy, z] - Avecy ¥ %0 [k, vy, z],
Avecy(o’l’l) [x, v, 2] - Avecz(0:2:0) [x, v, 2] + Avecx (10 1) [x, vV, 2] - Avecz (2:0:0) [x, ¥, z]}
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Grad[Div[Avec[x, y, z]]]

{Avecz(l’o’l) [x, v, 2] +Avecy(1’1’o) [x, v,
Avecz OV [x, v, z] + Avecy %% 9 [x, vy,
Avecz (992 [x, v, z] + Avecy VD) [x, vy,

LaplaceVec[Avec[x, y, z]]

{Avecx(o’o’z) [x, v, 2] +Avecx (020 [%x, v,
Avecy (%2 [x, y, z] + Avecy %% 9 [x, vy,
avecz %2 (%, v, z] +Avecz (020 [x, v,

Curl[Curl[Avec[x, y, z]]] == Grad[Div[Avec[x, y, 2z]]] - LaplaceVec[Avec[x, vy, z]]

True

= Divergence of a curl

(of a solenoidal field) is zero
divcurlA=V - (VxA) =0

Check this identity

Div[Curl[Avec[x, y, z]]]

0

m  Curl of a gradient

(of a potential field) is also zero
curlgrad f =V x (Vf) =0

Check this identity

Curl[Grad[£f]]

{OI OI O}

= Gradient of a divergence

This one seems to be not expressible via other operations
graddivA =V (V -A) =°?

Grad[Div[Avec[x, y, z]]]

{Avecz(l’o’l) [x, v, 2] +Avecy(1’1’o) [x, v,
avecz O (%, v, z] +Avecy(0’2’o) [x, v,
avecz %2 (%, v, z] +Avecy(0’1’1) [x, v,

= Differential vector operations on two objects

= Gradient of a product of two scalars
grad (¢ ¥) =V (oY) = VY +yY Vo

Check this identity

calculus.nb

z] + Avecx

z] + Avecx

z] + Avecx

z] + Avecx

z] + Avecy

z] + Avecz

z] + Avecx
z] + Avecx

z] + Avecx

(2:0.9) (%, v, 2],
GO 0x, y, 2],
(10 [x, v, Z]}
(2:0.9) (%, v, 2],
200 1, y, 21,
@00 [, v, 21}

Q,WO)[
H,LO)[

H,Wl)[

X, Yy 2],
X, Y, 2]

X, Y, 2]

— ~
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Grad[¢[x, v, z] ¥[x, vy, 2]] == ¢[x, y, 2] Grad[¥([x, y, 2z]] +Grad[é[x, vy, 2]] ¥[x, vy, 2]

True

= Divergence and curl of a product of a vector and a scalar

div (¢ A) =V - (¢A) =0V -A+VO-A
curl (pA) =Vx (¢A) =0 VxA+VdxA

Check these identities

= Divergence of a vector product
div (AxB) =V - (AxB) = (VxA) -B-A .- (VxB)
Check this identity

Avec[x_, y_, z_] = {Avecx[x, y, 2], Avecy[x, y, z], Avecz[x, y, 2]};
Bvec[x , y_, z_] = {Bvecx[x, y, z], Bvecy[x, y, z], Bvecz[x, y, z]};
Simplify[
Div[Cross[Avec|[x, y, z], Bvec[x, y, z]]] =
Curl[Avec[x, y, z]].Bvec[x, y, z] - Avec[x, y, z] .Curl[Bvec[x, y, z]]

True

Potential and its gradient
Force and electric field are negative gradients of the potential energy and electric potential, respectively:
F=-VU, E=-Vo.

Gradient is perpendicular to the equipotential lines and it shows the direction of the strongest increase of the potential. (Thus
the force shows the direction of the strongest decrease of the potential. This is natural because all systems tend to decrease
their energy and the forces are developed accordingly to this). To prove this, consider an equipotential surface

Ulx, v, 2] =Uo

that goes through the point ry = {xo, yo, Z0}. Expanding the potential around r( up to the first order, one obtains
Ulx, y, 2] =Ug+U; (x-%0) +Uj (Y-Yo) +U; (2-20) .

Together with the preceding formula this yields the equation of the plane tangential to the equipotential surface at ry
U (x- %) +Uy (y-vyo) +U; (z2-20) =0,

where V=0, V. Any vector r within this plane can be represented in the form

r

o +p,
where

P =@ (x-x)+ey (Y-vo)+e; (z-2g).
One can see that p is perpendicular to the gradient because

p-VU= (eX (x-%0) +ey (Y-Yo) +€; (z—zo)) . (eXU;+eyU;+eZU’Z>

= UL (x-%0) +U, (Y-Yo) +U, (z-20) =0.

As an example consider the electric potential created by two charges put at (0,0,0) and (a,0,0). In the (x,y) plane (z=0) the
potential has the form
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Inftie)= Q1 =1; Q= -1; a=1;
Q1 Q2
v[x—l Y_] = +
((x-a)2+y?)

(xz +y2)1/2
Plot3D[V[x, v], {x, -2, 2+a}, {y, -2, 2}, PlotRange » {-5, 5}]

;
1/2

Out[118]= -2

2 =5

Out[103]=

The electric field in the (x,y) plane is given by.

Inf44:= EE[x_, y_] = -Grad[V[x, y]]

-l+x X y y
Out[44]= {— + - + Py }

((—1+x)2+y2)3/2 (x2+y2)3/2, ((—l+x)2+y2>3/2 (x2+y2)

Lines of the electric field are shown in the StreamPlot where we plot only x- and y-components
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Inf106]:= LinesE = StreamPlot[{EE([x, y][[1]], EE[x, y][[2]]},
{x, -2, 2+a}, {y, -2.5, 2.5}, VectorPoints -» 10];

Combine the two plots

In[105]:= Show[EquipotentiallLines, LinesE]

Out[105]=

-2

Lines of electric field should be perpendicular to the equipotential lines because they show the direction of the strongest
decrease of the electric potential. However, it seems that Mathematica is not sufficiently precise in plotting to see it.



