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Laboratory Policy

• Students must attend the lab section they have registered for.

• Labs start on time. Latecomers will not be allowed in the room once the
experiment has started.

• To get credit for a lab you must complete and turn in a lab report on time. If
you attend a lab session but fail to hand in a report on time you will receive
a grade of zero for that lab.

• Lab reports are to be typed using a word processor and are to be handed in
electronically on the Blackboard page for your section.

• Lab reports will be checked for plagiarism (copied work) by SafeAssign, a
program detects any similarities between your report and entries from a
database of books, articles, websites, & other lab reports.

• Labs can be made up only within one week of your scheduled lab session,
and only if there is a valid, documented reason for missing your lab.
Permission for makeup labs must be obtained in advance from your lab
instructor.
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Rules of Conduct & Safety in Labs
• Students are not permitted in the laboratory without an instructor. They shall wait in

the corridors until their instructor lets them in at the right time.

• Students should keep all personal belongings off the table and out of the walkways.
This will benefit the students have a clear work area, and prevent anyone around
them from tripping/falling.

• Students should report any accidents (breakage, malfunction, spills, etc), any unsafe
conditions (sparks, unusual odors), or any personal injuries (spill, breakage, etc.) to
the instructor without any delay.

• Students should report any damaged equipment they come across (eg. frayed cords,
exposed wires, cracked/dirty optics, etc) to the instructor immediately.

• Any chemicals in the laboratory are to be considered dangerous and students are
advised to handle them carefully, and let their instructor guide them on how to
dispose a chemical being used during an experiment.

• Students should never short the power output terminals (ie. connect the positive &
negative directly using a wire).

• Students should make sure that the current is turned off before any adjustments are
made in the circuit.

• Students should pull after grasping the plug instead of the cord when disconnecting
any electronic devices connected to any outlets.

• Students should handle optics very carefully, and take special care when usisng an
eyepiece to avoid personal injuries.

• Students should not toss any tools, supplies, or other equipment to anyone. They
should carefully hand said item to the recipient.

• Students should not climb to stand on any lab furniture.

• Students should  conduct themselves in a professional & responsible manner at all
times in the laboratory.

• Students should not eat or drink in labs. They can ask their instructor to be excused,
and then step outside if they feel the need to do so.

• Students should clean up their respective work areas before leaving a lab.

• Students will benefit from staying alert at all times during the lab!

~ Happy Experimenting! ~
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Writing a laboratory report 
OBJECTIVES 
The main way to communicate scientific information today is through articles and reports in 
scientific journals. Traditionally these were distributed in print, but can now be read in digital format 
as well, as shown in table 1. 

Resource Topics URL 

arXiv Physics, Mathematics, 
Computer Science 

http://arxiv.org/ 

NASA Scientific and Technical 
Information (STI) 

Astronomy, Aerospace 
Engineering 

www.sti.nasa.gov/STI-public-
homepage.html 

SOA/NASA Astrophysics 
Data System 

Astronomy, physics adswww.harvard.edu/ 

In college physics, you write a laboratory report for each experiment that contains the essential 
information about the experiment. For scientific information, a consistent format is helpful to the 
reader (and your lab instructor). Each laboratory report you turn in contains a subset of the sections 
found in a professional scientific publication for experimental topics, as shown in table 2. 

Table 1. A comparison of the sections of a laboratory report and a professional 
scientific publication 

Laboratory Report Professional Publication 

1. Name, date and title of the experiment 1. Cover page: name, date, and title

2. Abstract 2. Abstract

3. Introduction

4. Methods and procedure

3. Data 5. Raw data and graphs

4. Calculations and analysis 6. Calculations and analysis

7. Results

5. Conclusion 8. Discussion and conclusion

The content to include in each section is detailed below. Your lab instructor requires all five sections 
to evaluate your work, so be sure to include every section in every report.  
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A laboratory report must be typed. Photocopies of the manual are not accepted. Your laboratory 
instructor can tell you whether your laboratory report must be printed or can be delivered in a digital 
format such as email. 

ABSTRACT 
Describe in your own words what you did in the experiment and why. Your abstract should include 
one or two sentences each for Purpose, Methods and Conclusions. 

• Purpose: What physical principle or law does this experiment test?
• Methods: What apparatus did you use?  How did you analyze the data?
• Conclusions: Do your results support the physical law or principle?  You should describe

any significant experimental errors or uncertainties.

Note that the abstract should be no more than 5 or 6 sentences long, and should not include too 
much detail.  The goal of the abstract is to sum up the experiment quickly and succinctly. 

DATA 
The data section includes all the raw data you collected in the laboratory without any calculation or 
interpretation. At a minimum, include the following information: 

• A copy of the data table with all fields and rows filled with measurements.
• Any drawings or sketches you were required to make in the laboratory. You must deliver

drawings with a printed lab report. You can take a digital photograph of your drawings and
import it to a document as needed.

CALCULATIONS AND ANALYSIS 
In the calculations and analysis section, you write out all of your calculations and results as explained 
in the instructions for the experiment.  Be sure to answer all of the questions in the lab manual.  
Include the following information as instructed: 

• The equations you used to make all calculations
• Tables of calculated values
• Graphs of the raw data or calculated values
• Average values, uncertainty, and % uncertainty calculations
• Error and % error calculations

CONCLUSION 
In the conclusion section, interpret the results you obtained by analyzing the data. Include the 
following information: 

• Do your data and calculations support the physical principle or law being tested?
• What are the important sources of experimental error and uncertainty?
• Are there ways you could have improved your experimental results?
• Also answer any specific questions posed by your lab instructor.
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Introduction: Measurement and 
uncertainty 

No physical measurement is ever completely precise. All measurements are subject to some 
uncertainty, and the determination of this uncertainty is an essential part of the analysis of the 
experiment. 

Experimental data include three components: 1) the value measured, 2) the uncertainty, and 3) the 
units.  For example a possible result for measuring a length is 3.6 ± 0.2   !.  Here 3.6 is the 
measured value, ±0.2 specifies the uncertainty, and ! gives the units (meters). 

ERRORS AND UNCERTAINTIES 
The accuracy of any measurement is limited. An uncertainty is our best estimate of how accurate a 
measurement is, while an error is the discrepancy between the measured value of some quantity and 
its true value. Errors in measurements arise from different sources: 

a) A common type of error is a blunder due to carelessness in making a measurement, for example
an incorrect reading of an instrument. Of course these kinds of mistakes should be avoided.

b) Errors also arise from defective or improperly calibrated instruments. These are known as
systematic errors.  For example, if a balance does not read zero when there is no mass on it, then all
of its readings will be in error, and we must either recalibrate it, or be careful to subtract the empty
reading from all subsequent measurements.

c) Even after we have made every effort to eliminate these kinds of error, the accuracy of our
measurements is still limited due to so-called statistical uncertainties. These uncertainties reflect
unpredictable random variations in the measurement process: variations in the experimental system,
in the measuring apparatus, and in our own perception! Since these variations are random, they will
tend to cancel out if we average over a set of repeated measurements. To measure a quantity in the
laboratory, one should repeat the measurement many times. The average of all the results is the best
estimate of the value of the quantity.

d) Besides the uncertainty introduced in a measurement due to random fluctuations, vibrations, etc.,
there are also so-called instrumental uncertainties which are due to the limited accuracy of the
measuring instruments we use. For example, if we use a meter stick to measure a length, we can, at
best, estimate the length to within about half of the smallest division on the stick or 0.5 millimeters.
Beyond that we have no knowledge. It is important to realize that this kind of uncertainty persists,
even if we obtain identical readings on repeated trials.

CALCULATING AVERAGES 
There are several important steps we will follow to help us quantify and control the errors and 
uncertainties in our laboratory measurements. 
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Most importantly, in order to minimize the effect of random errors, one should always perform 
several independent measurements of the same quantity and take an average of all these readings.  
In taking the average the random fluctuations tend to cancel out.  In fact, the larger the number of 
measurements taken, the more likely it is that random errors will cancel out. 

When we have a set of ! measurements !!, !!, ⋯ , !! of a quantity !, our best estimate for the value 
of ! is the average value !, is defined as follows. 

Average value: ! =  !!!!!!⋯!!!! (0.1) 

The average value is also known as the mean value.  Note that when making repeated measurements 
of a quantity, one should pay attention to the consistency of the results. If one of the numbers is 
substantially different from the others, it is likely that a blunder has been made, and this number 
should be excluded when analyzing the results. 

REPORTING ERRORS 
Quite often in these labs one has to compare a value obtained by measurement with a standard or 
generally accepted value. To quantify this one can compute the percent error, defined as follows. 

Percent error: % !""#" =  !"#$%&"' !"#$% ! !""#$%#& !"#$%
!""!"#!$ !"#$%  × 100 (0.2) 

Sometimes one has to report an error when the accepted value is zero.  You'll encounter this 
situation in experiment 3.  The procedure to follow is described at the end of that experiment. 

CALCULATING UNCERTAINTIES 
To estimate the uncertainty associated with our best estimate of !, we begin by examining scatter of 
the measurements about the mean !. Specifically, we start by determining the absolute value of the 
deviation of each measurement from the mean:  

Deviation: Δ!!  =  !! − ! (0.3) 

Next we have to compare the deviation to the systematic or reading uncertainty due to limited 
accuracy of the instrument used. If this systematic uncertainty ! is bigger than the deviation Δ!! , 
then the result of our measurements can be written as 

! ±  ! (0.4) 

If, however, the deviation is larger than the systematic or reading error, then we must determine 
how big the random uncertainty in our measurements is.  This is given by the standard deviation, 
defined as follows. 

Standard deviation: ! =  (∆!!)! ! (∆!!)! ! ⋯ ! (∆!!)!
! ! !  (0.5) 

The standard deviation has the following meaning: if we were to make one single additional 
measurement of the quantity !, there is 68% probability of obtaining a value which lies between 
! −  ! and !  +  !.  The uncertainty in the average value ! is smaller (that's the whole point of
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taking an average!).  In fact the uncertainty in ! is the standard deviation divided by the square root 
of the number of measurements: 

Uncertainty in !: ! =  !! (0.6) 

Sometimes it is useful to express this as a percent uncertainty, defined as one hundred times the 
uncertainty divided by the average value. 

% uncertainty in !: % !"#$%&'(!"# =  !!  × 100 (0.7) 

EXAMPLE 

To illustrate the calculation of ! and the associated uncertainty !, suppose we are measuring the 
length of a stick and have obtained, in five separate measurements, the results tabulated below. 

Length ! (cm) Deviation ∆! (cm) (∆!)! 

54.84 0.43 0.1849 

53.92 0.49 0.2401 

54.46 0.05 0.0025 

54.55 0.14 0.0196 

54.30 0.11 0.0121 

sum: 272.07 sum: 0.4592 

From this information we can calculate 

Average:  ! =  !"!.!" !"
!  =  54.41 !" 

Standard deviation:  ! =  !.!"#$
!  =   0.3388 !" 

Uncertainty:   ! =  !!  =  !.!!""!  =  0.1515 !" 

Thus our final result for the length is 54.41 ±  0.15 !". 

SIGNIFICANT FIGURES 
A number expressing the result of a measurement, or of computations based on measurements, 
should be written with the proper number of significant figures, which just means the number of 
reliably known digits in a number. The number of significant figures is independent of the position 
of the decimal point, for example 2.163 cm, 21.63 mm and 0.02163 m all have the same number of 
significant figures (four). 
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In doing calculations, all digits which are not significant can be dropped. (It is better to round off 
rather than truncate). A result obtained by multiplying or dividing two numbers has the same 
number of significant figures as the input number with the fewest significant figures. 

EXAMPLE 
Suppose that we want to calculate the area of a rectangular plate whose measured length is 11.3 cm 
and measured width is 6.8 cm. The area is found to be 

Area = 11.3 !" × 6.8 !" =  76.84 !!! 

But since the width only has two significant figures we can round to two figures and report that the 
area is 77 !!!. 

GRAPHING, SLOPE AND INTERCEPTS 
In almost every laboratory exercise, you plot a graph based on the data measured or calculated. A 
graph lets you visualize the relation between two physical quantities. In plotting a graph, use the 
following steps: 

1. Arrange the data into a table with two columns listing the values for the two measured or
calculated quantities. For example, the first column could list the values for time and the second
column could list the values for the average velocity.

2. Decide which of the two quantities to plot along each axis. Graphs have two perpendicular axes,
the x-axis and the y-axis and by convention you plot the independent quantity along the x-axis
and the dependent quantity along the y-axis.

3. Choose the scale for each axis to cover the range of variation of each quantity. You should
choose the scale so that the final curve spans the largest area possible on the graph paper.

4. Label each axis with the quantity plotted on that axis and the units used.
5. Mark the main divisions along each axis.
6. Mark each data point on the graph using the values in each row of the data table. Data points

must align with the value of each quantity on their respective axes. Make each data point clearly
visible on the graph.

7. Fit and draw a smooth curve through the data points so that the curve comes as close as
possible to most of data points. Do not force the curve to go exactly through all the points or
through the origin of the coordinate system. The fact that not all points lie along the fitted curve
just indicates that measurements are subject to some uncertainty.

In many cases the fitted curve is a straight line. The best straight line fit has nearly the same number 
of data points above and below the line. The equation for a straight line is given by 

Straight Line (0.8) 

The quantity b is the intercept: it is the value of y when x = 0. The quantity m is the slope of the 
curve. Given two points on the straight line, { , }, called basis points, the 
slope is defined as the ratio of the change in y to the change in x between these points, as shown in 
equation 0.9.  

bmxy +=

bmxy += 11 bmxy += 22
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Slope (0.9) 

Basis points are NOT experimental points.  They should be chosen as far from each other as 
possible to increase the precision of m, as shown in figure 0.1. 

Figure 0.1 Choosing the correct basis points to calculate the slope 
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PLOTTING USING A COMPUTER 
After you have some experience making plots by hand, it's easier and more accurate to let a computer 
do the work.  Any standard spreadsheet or plotting software should work.  The steps might depend 
on the type of software you're using.  But in Excel, for example, you would start by entering your data 
in two columns.  The first column gives the x values and the second column gives the corresponding 
y values.  Select the data you want to plot, then 

• Charts → Scatter → Marked Scatter will produce a plot of your data
• Chart Layout → Trendline → Linear Trendline will add a best-fit line to your plot
• To see the equation of the best-fit line go to Chart Layout → Trendline → Trendline

Options... then in the dialog box that appears go to Options and check "Display equation on
chart".

Here's a screenshot of a typical Excel plot.
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PRACTICE CALCULATIONS 
1. The accepted value of the acceleration due to gravity on Earth is ! =  980 !"/!!.  When trying
to measure this quantity, we performed an experiment and got the following five values for !.

Trial ! (!"/!!)
1 1004 

2 992 

3 978 

4 985 

5 982 

a) Find the average value and standard deviation of our measurements of !.

b) Find the uncertainty in our average value for !.

c) What is the percent error in our measurement of !?

2. A box is moving along a frictionless inclined plane.  Experimental measurements of velocity at
various times are given below.

time  ! (!) velocity  ! (!/!) 
0 0 

1 5.2 

2 10.1 

3 14.8 

4 19.9 

5 25 

a) Plot a graph of ! versus !. Can the data be represented by a straight line? (You can use the graph
paper on the next page.)

b) Calculate the slope.

c) What physical quantity does this slope represent?

d) From your estimate of the slope, what would the velocity be at ! =  10 !?
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Introduction: Units and conversions 
Every measurement requires a choice of units.  It's important to keep track of the units you're using, 
and to know how to convert between different common units.  Here are a few examples. 

The SI unit of length is the meter (m).  But we sometimes measure lengths in centimeters (cm) or 
millimeters (mm).  The conversions are 

1 ! =  100 !" =  1000 !! 

For example 70 !" is the same as 0.7 !, because 

70 !" =  70 !" × 1 !
100 !"  =  0.7 ! 

The SI unit of mass is the kilogram (kg), but we sometimes measure mass in grams (g).  The 
conversion is 

1 !" =  1000 ! 

For example 150 ! is the same as 0.15 !", because 

150 ! =  150 ! ×  1 !"
1000 !  =  0.15 !" 

It's also important to recognize the difference between mass (measured in kilograms) and weight 
(measured in Newtons).  Weight is another name for the force of gravity.  It's given by the formula 
! =  !" where ! is the mass and ! =  9.8 !/!! is the acceleration due to gravity.  For example
a mass of 150 ! has a weight of 1.47 Newtons, because 150 ! is the same as 0.15 !" and

! =  0.15 !" × 9.8 !/!!  =  1.47 !" !/!!  =  1.47 !
Note that we had to convert the mass to kilograms in order to get the right answer in Newtons! 
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Experiment 1: Acceleration due to free-fall
OBJECTIVES 
Acceleration is the rate at which the velocity of an object changes over time. An object’s acceleration 
is the result of the sum of all the forces acting on the object, as described by Newton’s second law. 
Under ideal circumstances, gravity is the only force acting on a freely falling object. In this lab, you 
measure the displacement of a freely falling object, calculate the average velocity of a falling object at 
set time intervals, and calculate the object’s acceleration due to gravity. The objectives of this 
experiment are as follows: 

1. To measure the displacement of a freely falling object
2. To test the hypothesis that the acceleration of a freely falling object is uniform
3. To calculate the uniform acceleration of a falling object due to gravity, g

THEORY 
The movement of the ball occurs in one dimension. Let’s describe this dimension with a coordinate 
y , that increases downward as the ball falls. The instant when the ball is released is considered to be 
the initial time t = 0 . The position of the ball at a time t is given by 

Position y(t) = y0 + v0t +
1
2
gt2. (1.1) 

For this to be true, the acceleration g must be a constant. 

If the ball is released from rest, the initial velocity is zero: v0 = 0 . Therefore, 

Position y(t) = y0 +
1
2
gt2.  (1.2) 

ACCEPTED VALUES 
The acceleration due to gravity varies slightly, depending on the latitude and the height above the 
earth’s surface. In this experiment the change in height of the falling object is negligible and can be 
approximated as 0 km for its entire descent. The acceleration due to gravity at 40˚ 52’ 21” N latitude 
(the latitude of Lehman College) and 0 km altitude is  

g = 9.802 m / s2. (1.3) 

15



APPARATUS 
The setup, depicted in Figure 1.1, is composed of the following parts: 

• electromagnet
• steel ball
• ruler

• mobile photogate
• timer
• power supply

• paper cup

The power supply provides an output of 5V to an electromagnet. When the switch is in the on 
position, the electromagnet can hold the steel ball under it. Once the timer is set to the off position, 
current stops circulating through the electromagnet, and the ball starts falling. 

The sudden change in the current circulating through the magnet produces, following Lenz’s law, a 
short current peak that propagates through the red wire in Figure 1.1. Part of this wire is placed in 
parallel to the wire attaching the unused photogate to the timer (blue wire in Figure 1.1). The cur- 
rent in the blue wire produces a magnetic field around it. The red wire, when sufficiently close to the 
blue one, is affected by this magnetic field, which induces a current on it. This current, in the form 
of a short peak, is interpreted by the timer as an interruption of the photogate, triggering the timer.  

Using these principles, the setup allows to have a precise account of the initial time, since the timer 
starts counting when the ball is released. The second trigger of the timer happens when the ball goes 
through the photogate. In this moment, the timer stops counting. Therefore, the timer indicates the 
time (in seconds) it took the ball to go from the top position to the photogate. 

Moving the photogate to different heights and measuring the time the ball takes to fall will provide 
the information necessary to measure the acceleration of gravity. 

Figure 1.1 Experimental setup 
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PROCEDURE 
1. Adjust the top clamp (the one holding the magnet) in such a way that, with the ruler standing on

the table, the center of the ball is at about the same height as the zero of the ruler (see Fig. 1.2).
2. Turn on the timer by moving the switch to the pulse mode.

3. Adjust the height of the bottom clamp (the one holding the photogate) to around 10 cm below
the magnet.

4. Align the photogate with the electromagnet so that the ball will pass through the photogate while
falling. To do so, you can rotate the clamp around the vertical rod, and adjust the photogate
along the horizontal rod. To check that the alignment is correct, hold the top of the ruler right
below the magnet so that it doesn’t touch the table, and make sure that the ruler goes through
the photogate (see Fig. 1.3).

5. Measure the position of the photogate, and record it on the table as a value for y .

6. Switch on the magnet, and place the ball under it, making sure that it remains there.

7. Hold a paper cup right below the photogate to catch the ball when it falls.

8. While paying attention to the timer, switch the magnet off. The ball will fall. Three outcomes are
possible:

a. the timer starts and stops immediately, showing a really small value (like 0.0001). In
this case, disregard this value, press reset and measure again,

b. the timer doesn’t start when the magnet is switched off, but it starts later when the
ball goes through the photogate. Therefore, the timer keeps running after the ball has
fallen. In this case, press reset and measure again,

c. the timer starts when the magnet is switched off, and stops when the ball goes
through the photogate. In this case, record the time on the table as a value for t ;

Figure 1.2 Setup for the magnet holder. Figure 1.3 Alignment of the photogate.
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9. Move the photogate to a position around 10 cm below the previous position.
10. Measure again: repeat steps 4 to 9 until there is no more space to keep the paper cup under the

photogate (around 80 cm).

TROUBLESHOOTING 
If the timer never starts when the switch is changed to the off position, it could be due to several 
reasons. First, check that when it is in the on position, the electromagnet is able to hold the ball. If 
this is not the case, it is possible that there is a short in the circuit. Turn the power supply off and 
ask your instructor for help. If the magnet is able to hold the ball, but the timer doesn’t start when 
switched off, a possible solution is to connect the red and black power cables to the front of the 
power supply, rather than to the back, and selecting a bit higher voltage (around 6 V). 

DATA 
Position 
y  (cm) 

Time 
t  (s) 

 time-squared 
t2  (s2) 

18



CALCULATION AND ANALYSIS 
1. Fill in the right column of the data table calculating the square of each time value. For simplicity,

you can do this on a spreadsheet computer software.
2. Using a spreadsheet software, make a plot of distance vs time squared for the points in the

second and third columns of the table. Assign distance ( y ) to the vertical axis, and time squared
( t2 ) to the horizontal axis.

3. make a fit of the plotted data to a straight line using the spreadsheet software.
4. Find the slope and the intercept of the best fit straight line. A general straight line is given by

y = ax + b , where a is the slope and b the intercept. Comparing this equation to (1.2), find y0 

and g from the slope and the intercept of the fit.
5. Calculate the percent difference between the value you obtained for g and the accepted value

(1.3).
6. Describe the meaning of y0 and whether or not the value you obtained agrees with your

expectations.
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Experiment 2: Static Equilibrium 
OBJECTIVES 
When all the external forces acting on object do not accelerate the object, the object is in a state of 
mechanical equilibrium. If the object is also at rest, the object is in a state of static equilibrium. In 
this experiment, you arrange sets of forces to put an object into static equilibrium, measure the 
vector quantities of these forces, and calculate the net force acting upon an object in equilibrium. 
The objectives of this experiment are as follows: 

1. To measure vector quantities for forces using the force table
2. To calculate the net force on an object using vector addition
3. To test the hypothesis that an object in equilibrium has no net force acting upon it

THEORY 
According to Newton's second law of motion, an object accelerates in direct proportion to the net 
force acting on it. An object in static equilibrium is not moving, so has an acceleration of zero, and 
the net force on the object is also zero. Therefore, the necessary condition for equilibrium is that 
the vector sum of all external forces acting on the object is zero, as shown in equation 2.1. 

Equilibrium !!"!#$  =  !!!  =  0 (2.1) 

In this experiment, you apply forces to an object in two dimensions until it is in static equilibrium, 
measure the vector forces, and calculate the vector sum. All forces are applied in the plane (two 
dimensions), so one can project the forces on the x- and y-axes as shown in equations 2.2.  

2-D Equilibrium
0

0
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,,
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==

∑

∑

i
yiytotal
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xixtotal

FF

FF
(2.2) 

To decompose a force vector into its x and y components, it is convenient to choose the x-axis 
along the direction ϕ = 0˚ and the y-axis along the direction ϕ = 90˚. Then the components of 
the forces are shown in the pair of equations 2.3. 

Component Forces iiyiiixi FFFF φφ sin,cos ,, ==  (2.3) 

ACCEPTED VALUES 
The accepted value for the sum of the forces on an object in equilibrium is 0. 

APPARATUS 
• Horizontal force table
• four pulleys
• one metal ring
• four cords

• four weight hangers
• a degree scale
• Assortment of known

weights.
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THE FORCE TABLE 
A force table consists of a circular platform supported by a heavy tripod base. The circular platform 
has a graduated degree scale around its rim and a small peg located directly in the center. Four cords 
are attached to a metal ring placed over a peg in the center of the platform and the cords are 
connected over pulleys to weight hangers, as shown in Figure 2.1. 

Figure 2.1 An assembled force table 

Tension forces are applied to the ring by varying the total mass on each weight hanger and moving 
the pulleys to change the direction in which each force acts. The ring is in a state of static 
equilibrium when it is over the peg but not touching the peg, as shown in figure 2.2. 

Figure 2.2  Overhead view of ring and peg positions for system in and not in equilibrium 
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PROCEDURE 
1. Mount a pulley at 0˚ and have a mass of 250 g to the cord running over it. Remember: the total 

hanging mass is the mass of the hanger plus any additional masses that are added to it. 
2. Mount a second pulley at 60˚ with a total of 350 g.
3. Holding a third cord in your hand, find the general direction in which a third force should act in 

order to balance the system (by tugging away from the previously hanged weights). Screw the 
pulley in place and add weights to the holder after running it over the pulley. Adjust the hanging 
mass and/or the position of the pulley to bring the system is in static equilibrium  (see Figure 
2.2). 

4. Record masses, angles and forces in the data sheet labeled Trial 1.
5. Repeat step 1 through 4 using a 45˚ angle between the two loads. Record your results in the data 

sheet labeled Trial 2.
6. Set up four pulleys and suspend unequal loads on the cords running over them. Arrange the 

system so that it is in equilibrium, and record the masses and angles. Do not have any two cords 
form an angle of 180˚. Record your results in the data sheet labeled Trial 3.

7. Suppose you place a mass, m = 300 g, at ϕ = 210˚ mark. Compute the masses ma and mb you 
would place at 0˚ and 90˚ to balance mass m. Try it, and see if your solution is correct. Report 
what masses you had to place at 0˚ and 90˚ to balance the mass at 210˚.

REPORTING % ERROR WHEN THE ACCEPTED VALUE IS ZERO 
In this experiment, the accepted value of the total force is zero. If you could measure all the forces 
on the ring with perfect precision, you would find that the net force vanishes. If zero is inserted into 
our initial % Error equation (0.2), the result is undefined because the denominator is zero. Due to 
experimental errors and measurement uncertainties, the calculated net force isn’t zero. A useful way 
to characterize the accuracy of our measurements is to divide the magnitude of net force, |Ftotal|, by 

∑
i

iFthe sum of the magnitudes of all the individual forces, , multiplied by 100% as shown in 

equation 2.4. 

% Discrepancy  =
∑
i

i

total

F
F

×100% (2.4) 

The quantities appearing in this formula are 

Magnitude of Net Force 02 2
x,total + Fy ,total ≈=total FF (2.5) 

!!Individual Magnitude Sum  !  =  !!!! (2.6) 

4. Calculate the % discrepancy of the force calculations using equation 2.4.
5. Repeat steps 2 through 4 using data from trials 2 and 3.
6. In procedure 7, was the system in equilibrium? Justify your results by explicitly showing your

calculations.
7. What are the sources of experimental error in this experiment? Do any of these factors help the

ring achieve static equilibrium?

CALCULATION AND ANALYSIS 
1. Draw a picture showing the three forces for Trial 1.  (This is sometimes called a free body

diagram.)  Be sure to label each vector’s direction and magnitude.
2. Calculate the component forces for each force vector, Fi,x and Fi,y, using equation 2.3.
3. Calculate |Ftotal| and ∑

i
iF  using equations 2.5 and 2.6, given below. 
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DATA 
Trial 1 

i      mi (grams) Fi = mi g 
(Newtons) ϕi (°) 

1 0.0 

2 60.0 

3 

Trial 2 

i      mi (grams) Fi = mi g 
(Newtons) ϕi (°) 

1 0.0 

2 45.0 

3 

Trial 3 

i      mi (grams) Fi = mi g 
(Newtons) ϕi (°) 

1 

2 

3 

4 
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Experiment 3: Newton’s Second Law 
OBJECTIVES 
Newton’s second law predicts that acceleration is a function of force and mass. To test this 
mathematical relationship, a good experiment must isolate each contributing component and vary it 
independently of the others. In this experiment, you measure the acceleration of an object by 
varying the force acting upon the object without changing its mass and by varying the object’s mass 
without changing the force. The objectives of this experiment are as follows: 

1. To measure the linear acceleration of objects acted on by external forces.
2. To predict the acceleration of an object by applying Newton’s Second law.
3. To test the predictions using calculations and graphical methods.

THEORY 
Newton’s second law in vector form is shown in equation 3.1. 

Newton’s second law amF !!
= (3.1) 

Here F
!

is the net force acting on an object, m is the mass of the object, and a! is its acceleration. If
the force is constant, as, for instance, the force of gravity, the object moves with constant 
acceleration. Newton’s second law also applies to systems of bodies considered as a whole, like two 
masses connected by a cord. Each of the objects in this experiment moves along a straight line. 
Thus it is sufficient to consider projections of the vectors on the direction of motion and we can 
remove the vector notation: F = ma. 

In this experiment we measure the acceleration of a system consisting of a glider moving along a 
nearly frictionless air track, and a falling/hanging mass tied to the glider via a cord. The net force on 
the system is exerted by the gravitational force acting on the hanging mass over a low-friction pulley. 
If you ignore friction, the acceleration of the system according to Newton’s second law is shown in 
equation 3.2.  

Acceleration of the glider 
M
mga = (3.2) 

Here m is the hanging mass, M is the total moving mass, and g is the free-fall acceleration due to 
gravity.  

The acceleration of an object is the rate of change in its velocity. If the velocity changes by an 
amount ∆v during a time ∆t, the average acceleration is shown in equation 3.3. 

Average acceleration 
t
va
Δ
Δ

= (3.3) 

Here ∆t = t2 − t1 and ∆v = v 2 −v 1 ≡ v (t2) −v (t1). If ∆t becomes very small, equation 3.3 gives the 
instantaneous acceleration at t2 ≅ t1. For the motion with constant acceleration that we study in this 
experiment, the average and instantaneous accelerations are the same.  
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In the experiment, the glider goes through two photo gates, G1 and G2, its flag interrupting the light 
path in the gates. The computerized system measures three time intervals, T1, T’, and T2, as depicted 
in figure 3.1. 

Figure 3.1 The motion of the glider flag through photo gates G1 and G2

Time interval T1 begins when the flag enters the first gate, G1. As the flag clears this gate, T1 ends and 
the second interval, T’, begins. Then, as the flag enters the second gate, G2, T’ ends and the third 
interval, T2, begins. It ends when the flag clears gate G2. 

From the length of the flag L measured in this experiment, you can calculate the average velocities 
of the glider crossing gates 1 and 2, as shown in equation 3.4. 

Average velocities 
2

2
1

1 ,
T
Lv

T
Lv == (3.4) 

For motion with constant acceleration the velocity changes linearly with time, so these average 
velocities coincide with instantaneous velocities in the middle of the time intervals T1 and T2. Thus 
the time interval ∆t corresponding to the velocity change ∆v = v 2 – v 1 is shown in equation 3.5.  

Elapsed time 21 2
1

2
1 TTTt ++ʹ=Δ (3.5) 

Therefore, the formula for experimentally determining the acceleration is the difference of the 
average velocities divided by the elapsed time, as shown in equation 3.6.  

Acceleration (experimental) 

⎟
⎠

⎞
⎜
⎝

⎛ ++ʹ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
Δ

Δ
=

21

12

2
1

2
1 TTT

T
L

T
L

t
va (3.6) 

ACCEPTED VALUES 
The expected value of the acceleration for all of the mass distributions in this experiment is the 
result of equation 3.2. For Part A, you change the masses of the falling/hanging object and the total 
moving mass, so obtain a different expected value for each setup. 

For Part B, the same force is acting in each case, and therefore Newton’s second law predicts that 
the product of the total moving mass M1 and its acceleration a1 is equal to the product of any other 
mass and its acceleration under the same conditions, as shown in equation 3.7.  
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Newton’s second law mgFaMaM === 2211 (3.7) 

APPARATUS 
• glider
• air track
• photo gates

• computer with PASCO
interface.

• cord

• pulley
• flags
• earth’s gravity

THE AIR TRACK AND GLIDERS 
In this experiment you measure the acceleration of a system consisting of a glider moving along a 
nearly frictionless air track, and a falling/hanging mass tied to the glider via a string, as shown in 
figure 3.2. 

Figure 3.2 System consisting of a glider on a nearly-frictionless air track connected to 
a hanging weight by a cord over a low-friction pulley 

The net force on the system is exerted by the gravitational force acting on the hanging mass. The 
glider is supported by a cushion of air coming out of the holes in the horizontal frame, so that 
friction is almost eliminated and can be neglected.  

The glider has two rods on which weights may be set. You should have four fifty gram weights 
(shiny cylinders) and five 5 gram weights (flat slotted disks). The slotted disks stay firmly on the 
glider if the fifty-gram weights are placed on top of them.  

Your experimental station also includes a pair of photo gates, connected to a computer, which 
function as an electric stopwatch. 

PROCEDURE 
PART A: ACCELERATION AS A FUNCTION OF FORCE WITH A CONSTANT MASS 
1. Measure the length of the flag, using the scale on the air track and record this as length of the

flag, L.
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2. Measure the mass of the weight hanger and record this value as the mass of the weight hanger,
mhanger.

3. Put two 50 gram weights, five 5 gram weights, the flag, the cord, and the weight hanger on the
glider, and weigh everything together. Record this as the total moving mass, M, in the data table
for Part A.

4. Place Photo gate G1 at 110 cm, and photo gate G2 at 160 cm. Make sure that G1 is connected to
“DIGITAL CHANNELS” input 1 of the interface, and G2 to input 2, respectively.

5. Place the glider on the air track. Turn on the blower and run the glider slowly through the gates.
Make sure that the flag blocks the light but does not hit the gates. Then turn off the blower

6. Turn on the PC with Interface turned ON and log in as “student” using the password provided
by the lab instructor.

7. From desktop click the icon “Newton Second Law”.
8. Move the glider to 100 cm on the air track.
9. Place two 5g weights and one 50 g weight onto the rods on each side of the glider.
10. Let the cord fall over the pulley at the end of the track and attach a 5 gram weight to the hanger,

as shown in figure 3.2.
11. Measure the motion of the glider with a 5 gram hanging/falling weight by performing the

following steps:
A. Click “Start” on the PC monitor: The system is ready to collect the data.
B. Hold the glider at 100 cm and turn on the air blower, wait for the pitch of the blower to

reach a stationary level.
C. Let the glider go. The times T1, T’, and T2, respectively, appear in the first row of the

table with columns labeled “Timer 1”, “Timer2”, and “Timer 3”. Be careful not to let the
glider bounce back into the second gate!

D. Remove the glider from the air track and replace it at 100 cm without disturbing the
photo gates. Do not stop the PC data acquisition after the glider crosses the two gates
and do not switch off the air blower.

E. Repeat runs described by steps C and D four times. Each time a new row in the table is
added. If one or more of the runs yields times substantially different from the results of
other runs, an error occurred. In this case clear the data sheets and repeat the experiment.

F. Record the average values for T1, T’, and T2 on your data sheet for part A.
G. To clear all entries, click “Stop”, and from “Experiment” menu click “Clear ALL Data

Runs”.
12. Repeat step 11 by increasing the hanging mass by transferring 5 gram weights from the glider to

the hanger. For each value of the mass on the hanger m = 5, 10, 15, 20, and 25 grams (plus the
mass of the hanger mhanger itself) make five runs.  Record the average times T1, T’, T2  in the data
sheet for Part A. Always transfer weights from the glider to the hanger so the total mass of the
system remains constant. When removing weights from the glider, ensure that the weights on
each side of the glider are approximately equal, otherwise the glider can slip off the air cushion
and add friction to your measurements.

PART B: ACCELERATION AS A FUNCTION OF MASS WITH CONSTANT FORCE 
1. Put two 50 gram weights, one 5 gram weight, the flag, the cord, and the weight hanger on the

glider, and weigh everything together. Record this as the total moving mass, M1, in the data
Section for Part B.
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2. Place the glider on the track. Place the 50 g weights on the rods, one on each side of the glider.
Let the cord fall over the pulley at the end of the track and attach a 5 gram weight to the hanger,
as shown in figure 3.2.

3. Measure the motion of the glider attached to a 5 gram hanging/falling weight using the same
procedure as Part A.  Do five runs, and record the average value of T1, T’, and T2 in the first row
of the data table for Part B.

4. Remove the two 50 gram weights from the glider. Calculate the resulting mass M2 using the value
of M1 and enter M2 in the data table for Part B.

5. Measure the motion of the glider attached to a 5 gram hanging/falling weight using the same
procedure as Part A.  Record the average values of T1, T’, T2 in the data table for Part B.

DATA 
PART A 

m  (g) T 1 (s) T'(s) T 2 (s) 

5 + mhanger 

10 + mhanger 

15 + mhanger 

20 + mhanger 

25 + mhanger 

PART B 

M(g) T 1 (s) T'(s) T 2 (s) 

M1=________ 

M2=________ 

CALCULATION AND ANALYSIS 
1. Calculate the acceleration for each of your five ! values using your data from Part A.  To do this

use equation 3.6 and the average values for T1, T’, and T2 recorded by the computer.
2. Calculate and record the accelerating force, F = mg, for each of your five m values.
3. Draw a graph of the accelerating force F versus the acceleration a, with a on the x-axis. Draw a

best fit straight line through the five points on your graph.
4. Find the slope of the straight line you fit to the points and compare it with the total mass of the

system M. By what percent does the slope differ from M?

5. Calculate the acceleration for your two ! values using your data from Part B.  To do this use
equation 3.6 and the average values for T1, T’, and T2 recorded by the computer.

6. Using the average acceleration a1 of the system with mass M1, and the average acceleration a2 for
mass M2 from Part B, calculate and compare M1a1 and M2a2. By what percent do the two values
differ?
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Experiment 4: Conservation Laws in Collisions 
OBJECTIVES 
The conservation laws for linear momentum and energy state that the total momentum and energy 
of an isolated system remain constant. This is true at all times in the system, even if some 
momentum or energy is transferred from one component of the system to another. In this 
experiment, you measure the motion and mass of a system comprised of colliding objects and 
calculate the energy and momentum of the system before and after the collision. The objectives of 
this experiment are as follows: 

1. To measure the motion of objects that undergo elastic and inelastic collisions
2. To calculate changes in energy and momentum in elastic and inelastic collisions
3. To test the conservation laws for linear momentum and energy

THEORY 
A conservation law states that a measurable property of an isolated physical system does not change 
with time. Two conservation laws are particularly important: conservation of linear momentum and 
conservation of energy 

CONSERVATION OF LINEAR MOMENTUM 
The law of conservation of linear momentum states that in a system where the sum of external 
forces is zero, the total momentum of a system does not change. In a system composed of n objects, 
the total momentum is given by the vector sum shown in equation 4.1.  

Total Momentum nn

n

i
ii vmvmvmvmp !

…
!!!

+++==∑
=

2211
1

(4.1) 

Here, mi and iv
!

 are the mass and velocity of object number i, respectively. As the objects interact
with one another, the individual velocities may change, but the total momentum p  remains constant. 
In this experiment, you study collisions between two objects. Before the collision suppose one 
object has mass m 1 and is moving at velocity iv1

!
 and the other object has mass m 2 and is moving at 

velocity iv2
!

.  After the collision their velocities are fv1
!

 and fv2
!

.  The law of conservation of
momentum predicts that the total momentum is the same before and after the collision, as shown 
in equation 4.2.  

Conservation of Momentum ffii vmvmvmvm 22112211
!!!!

+=+ (4.2) 

Velocities are vector quantities, with direction as well as magnitude. In this experiment they act 
along a straight line so they have components only along one axis.  However velocity in one 
direction (e.g. to the right) must be taken as positive while a velocity in the opposite direction must 
be taken as negative.  
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CONSERVATION OF ENERGY 

The kinetic energy of an object of mass m moving at speed v!  is defined as
2

2
1 vm ! . Speed is the 

magnitude of the velocity vector; both speed and kinetic energy are scalar quantities. The law of 
conservation of energy states that the total energy of an isolated system is constant, but this does not 
imply that the kinetic energy is constant. In a collision, the objects may be deformed or set into 
vibration. Then some or all of the kinetic energy is converted into heat or other forms of energy.  

You study two kinds of collisions in this experiment: collisions which are nearly elastic (only a small 
fraction of the kinetic energy is lost), and inelastic collisions, in which a large fraction of the kinetic 
energy is lost. By using a rubber band so that the gliders bounce away from each other with little loss 
of kinetic energy, we obtain (nearly) elastic collisions. In an elastic collision the total kinetic energy 
does not change, as shown in equation 4.4.  

Energy in Elastic Collisions fi KEKE = (4.4) 

Here KEi and KEf are the initial and final kinetic energies, as shown in equations 4.5 and 4.6. 

Initial Kinetic Energy 
2

222
12

112
1

iii vmvmKE !!
+= (4.5) 

Final Kinetic Energy 
2

222
1

2

112
1

fff vmvmKE !!
+= (4.6) 

If we fix a system so that the objects stick together after colliding, we obtain the maximum possible 
loss in kinetic energy. The initial and final kinetic energies for an inelastic collision when one object 
has no initial velocity ( 02 =iv

!
) are shown in equations 4.7 and 4.8. 

Initial Kinetic Energy 
2

112
1

ii vmKE !
= (4.7) 

Final Kinetic Energy ( ) 2

212
1

ff vmmKE !
+= (4.8) 

!!!

To calculate the percent kinetic energy lost in any collision, use equation 4.9. 

Percent Kinetic Energy Lost %!!!"#$ = !!! ! !!! × 100 (4.9) 

Here, KEi and KEf are the energies calculated in equations 4.5 through 4.8. 

In an inelastic collision, two objects stick together and become one combined object. Momentum 
is still conserved, but the calculation changes to meet the new condition as shown in equation 4.3. 

p  for Inelastic Collisions fi 2 2im1v
!
1 +m v

!
= (m1 +m2 )v

!
(4.3) 

Here, before the collision one object has mass m 1 and is moving with velocity v!1i  and the other
!
2i .  After the collision the combined mass is

1 2

object has mass m 2 and is moving with velocity v
(m +m )  and the velocity is v! f .
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ACCEPTED VALUES 
In this experiment the mass and velocity values depend on the experimental conditions, so there is 
no single accepted value. The accepted value of the total energy in a collision is the kinetic energy of 
the objects before colliding KEi, given in equation 4.5 (elastic) or equation 4.7 (inelastic).  

For momentum, you measure the masses of the objects and test to what degree the velocities 
support the law of conservation of momentum. For an inelastic collision when one object has no 

initial velocity ( v! = 0), we can rearrange equation 4.3 algebraically to compare the ratio of the2i

initial and final masses to the initial and final velocities, as shown in equation 4.10. 

Ratio for Inelastic Collisions 
)( 21

1

1 mm
m

v
v

i

f

+
=!

!
(4.10) 

Here, the ratio of the masses before and after the collision ( )21

1
mm
m
+ is the accepted value to test the

law of conservation of momentum.  

For an elastic collision, we can rearrange equation 4.2 algebraically to compare the ratio of the initial 
and final masses to the initial and final velocities, as shown in equation 4.11.  

Ratio for Elastic Collisions 
v2 f − v2i
v1i − v1 f

=
m1
m2

(4.11) 

Since !!! and !!! are negative we can multiply numerator and denominator by (-1) and write this as 

Ratio for Elastic Collisions 
2

1

11

22

m
m

vv

vv

fi

if
=

+

+
(4.12) 

Hence the ratio of the masses 
2

1
m
m  is the accepted value to test the law of conservation of momentum. 

APPARATUS 
• Air track
• 2 gliders
• weights

• photo-gates
• elastic and inelastic

bumpers

• 2 metal flags
• computer with PASCO

interface

COLLIDING GLIDERS ON AN AIR TRACK 
The colliding objects in this experiment are gliders, mounted on an air track to minimize friction. 
The photo gates are used to measure the speed of the gliders, as in experiment 3. You use the 
inelastic bumpers for inelastic collisions, and the elastic bumpers for nearly elastic collisions. 

The inelastic bumpers stick together when two gliders collide. The pin on one glider sticks in the 
wax-filled hole on the other, as shown in figure 4.1. The flag is used to measure the speed of a glider 
before and after the collision by timing its passage through the photo gates. 
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Figure 4.1 Gliders fitted with the inelastic bumpers and one flag 

The elastic bumper prevents the loss of energy due to heat and vibration when two gliders collide. 
The bumper is attached to one glider only, as shown in figure 4.2. The flags are used to measure the 
speed of both gliders before and after the collision by timing their passage through the photo gates. 

Figure 4.2 Gliders fitted with flags and one elastic bumper 

PROCEDURE 
PART A: INELASTIC COLLISION 
1. Attach the flag to one glider and the inelastic bumpers to both gliders.
2. Weigh the two gliders individually. Record the mass of the glider with the flag as m 1 and the

mass of the other glider as m 2 in the data table for Part A.
3. Measure the length of the flag and record it as L in the data table for Part A.
4. Adjust the height of the photo-gates so that the light is blocked by the flag, not by the entire

body of the glider.
5. Place the photo-gates at about 70 and 130 cm.
6. Place the glider with the flag on the air track. Turn on the blower and run the glider slowly

through the gates. Make sure that the flag blocks the light but does not hit the gates. Then turn
off the blower

7. Turn on your computer.
8. Double-click the icon labeled “Conservation of energy” in your desktop.
9. Set up the two gliders as shown in figure 5.3 with glider m 1 to the right or left of both photo-

gates and glider m 2 between the photo-gates.
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Figure 4.3 The initial and final motion of the gliders in an inelastic collision 

10. Choose “Start” on the computer interface.
11. Turn on the air track blower.
12. Release glider m 2 (without moving it) and push glider m 1 towards glider m 2 at a moderate speed.

Be sure you have finished pushing before the flag enters the photo-gate. Glider m 1 should strike
glider m 2 and stick to it, and the two gliders together should pass through the second photo-gate.
Be sure the gliders collide after the flag has passed through the first photo-gate, and that the
gliders do not bounce back between the photo-gates.

13. Repeat step 12 four more times.
14. Choose “Stop” on the computer interface.
15. Record the values for T1 and T2 for all five trials from the computer in the data table for Part A.

PART B. ELASTIC COLLISION

1. Remove the inelastic bumpers and set them aside.
2. Attach a flag and elastic bumper to the glider without a flag.
3. Weigh each glider and record the mass of the one with the bumper as m 1 and the other as m 2 in

the data table for Part B.
4. Measure the length of the flags and record them as L1 and L2 in the data table for Part B.
5. Place the photo-gates near 90 and 160 cm.
6. Place the gliders on the air track. Turn on the blower and run the gliders slowly through the

gates. Make sure that the flag on glider m 1 blocks photo-gate 1 and the flag on glider m 2 blocks
photo-gate 2. Then turn off the blower.

7. Place the gliders as in the upper diagram in figure 5.4, with glider m 1 to the right of both photo-
gates and glider m 2 to the left of both photo-gates.
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Figure 4.4 The initial and final motion of the gliders in an elastic collision 

8. Turn on the blower and choose “Start” on the computer interface.
9. Push the gliders towards each other so that they collide between the gates. Be sure you have

stopped pushing them before they enter the gates. The computer records the time it takes for
each glider to pass through the photo-gates, both before (i) and after (f) the collision. The
computer records the passage of the gliders before the collision in one row and the passage of
the gliders after the collision in the next row. Record the data from the first row as T1i and T2i in
the data table for Part B. Record the data from the second row as T1f and T2f.

10. Without choosing “Stop” on the computer, repeat procedure 9 four more times so that the
gliders collide a total of five times, which the computer records in a total of 10 rows.

11. Choose “Stop” on the computer interface.
12. Record the data from each pair of rows on the computer into the data table for Part B. Record

the data from the first row of each pair as T1i and T2i and the data from the second row of each
pair as T1f and T2f.
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DATA 
Part A: Inelastic Collision 

m 1(g) = ____________ 

m 2(g) = ______________ 

=+ 21

1
mm
m

______________ 

L(m) = ____________ 

i  T 1i(s) Tf(s) 

1 

2 

3 

4 

5 

Part B: Elastic Collision 

m 1(g) = ____________ 

m 2(g) = ____________ 

=
2

1
m
m  ____________ 

L1(m) = ____________ 

L2(m) = ____________ 

i  T 1i(s) T 2i(s) T 1f(s) T 2f(s) 

1 

2 

3 

4 

5 
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CALCULATION AND ANALYSIS 
1. For inelastic collisions, calculate the values of v 1i and v f by dividing the length of the flag L by the

time it took for the flag to pass through the photo-gate, T1i and Tf, and then calculate
i

f

V
V

1
for all

five of your trials.

2. Calculate the average (mean) of the five values 
i

f

V
V

1
, the deviation of each value, the uncertainty 

of the average (mean), and the percent uncertainty for the average (mean) using equations 0.1, 
0.3, 0.6 and 0.7. 

3. Compare your average value of
i

f

V
V

1
with the accepted value of ( )21

1
mm
m
+ . Calculate the percent

error of your calculation using equation 0.2. Is the % error less than or greater than the % 
uncertainty? Does the experimental evidence support the conservation of momentum? 

4. For ONE of your collisions, calculate the kinetic energy of m 1 before the collision and the
kinetic energy of m 1+m 2 after the collision. Calculate the percentage of the initial kinetic energy
lost in the collision, as shown in equation 4.9.

5. For each of the five elastic collisions studied, calculate the values of v 1i, v 1f, v 2i, and v 2f by dividing
the length of the flags L1 and L2 by the time it took for the flag to pass through the photo-gate,

T1i, T2i, T1f . and T2f. Then calculate the value of
fi

if

vv

vv

11

22

+

+  for all five of your trials.

6. Calculate the average (mean) of your five values of 
fi

if

vv

vv

11

22

+

+ , the deviation of each value, the 

uncertainty of the average (mean), and the percent uncertainty for the average (mean). 

7. Compare your average value of 
fi

if

vv

vv

11

22

+

+  with the accepted value 
2

1
m
m . Calculate the percent error 

of your calculation using equation 0.2. Is the % error less than or greater than the % uncertainty? 
Does the experimental evidence support the conservation of momentum? 

8. For ONE of your collisions, calculate the kinetic energy of the two masses before and after the
collision, using the definition of the kinetic energy. Calculate the percentage of the initial kinetic
energy lost in the collision, as shown in equation 4.9.

9. How does this compare with what happened in the inelastic collision?
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Experiment 5: Rotational Equilibrium 
OBJECTIVES 
When the forces acting on an object do not make the object rotate, the object is in a state of 
rotational equilibrium. In this experiment you arrange forces that put an object into rotational 
equilibrium. You measure the vector quantities of these forces, calculate the torques exerted by these 
forces, and calculate the net torque acting on the object. The objectives of this experiment are as 
follows: 

1. To measure the forces on an object in rotational equilibrium
2. To calculate the torques exerted by these forces
3. To test the hypothesis that an object in rotational equilibrium has no net torque acting on it

THEORY 
An object is rigid if its shape remains unchanged when forces are applied. A rigid object is in 
translational equilibrium when it has no linear acceleration.  This was studied in Experiment 2. 
A rigid object is in rotational equilibrium when it has no angular acceleration. Therefore, to be in 
equilibrium, two conditions must be satisfied. 

1. As described by Newton’s second law, the vector sum of the forces acting on the object and
labeled by the index i must be zero, as shown in equation 5.1.

Translational Equilibrium 0==∑
i

itotal FF  (5.1) 

If all the forces Fi are applied in a plane, then one can project the forces on the x and z axes 
as shown in equation 5.2. 

2-D Translational Equilibrium
0

0

,,

,,

==

==

∑

∑

i
ziztotal

i
xixtotal

FF

FF
(5.2) 

Here the x-axis is horizontal and the z-axis is vertical. 

2. The sum of the torques acting on the object and labeled by the index i must be zero, as shown in
equation 5.3.

Rotational Equilibrium 0==∑
i

itotal ττ  (5.3) 

Here the torque due to the force Fi about a pivot point O is defined by 

Torque iiOi rF ⊥= ,,τ (5.4) 

In this formula ir is the length of the lever arm, defined as the distance between the pivot point 
O and the application point Ai of the ith force, and ⊥,iF is the component of Fi  perpendicular to 

the vector ir.  This is illustrated in figure 5.1. The torque condition is true for every pivot point
O. Since the choice of pivot point is arbitrary, you can use one that is convenient for calculation.
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If the force tends to rotate the object counterclockwise the torque is considered positive. If the force 
tends to rotate the object clockwise the torque is considered negative. If ϕ is the angle between the 
force vector iF

!
and lever arm, then the component of the force in the direction perpendicular to ir

is given by equation 5.5. 

Perpendicular force !!,! =  !!  sin! (5.5) 

The center of gravity of an object is the point, inside or outside the object, where the net force of 
gravity on all the particles of which the object is composed acts. Since one of the forces always 
acting on an object is gravity, you must measure the mass of an object and the location of its center 
of gravity in order to verify the equilibrium conditions above. 

ACCEPTED VALUES 
As in Experiment 2, the accepted value for the sum of the torques on an object in equilibrium is 0.  
A useful way to characterize the accuracy of our measurement is to divide the magnitude of the net 
torque by the sum of the magnitudes of the individual torques multiplied by 100%, as shown in 
equation 5.6.  

 (5.6) 

In the numerator you add all the torques first, then take the absolute value.  In the denominator you 
take the absolute values first, then add. 

APPARATUS 
• A rigid object
• 2 spring balances (0-2000 g)

• assortment of weights
(hook type)

• knife edge
• balance

The rigid object used in this experiment consists of a metal bar with four pivoted hooks mounted 
along the bar, two on each side, with protractors to indicate the angles the forces on the hook make 
with the major axis of the bar as shown in figure 5.2.  We choose the pivot point O to be on the left 
end of the bar. 

i

!
Figure 5.1 The torque due to a force F about a pivot point O 

%100y Discrepanc% ×=
∑
i

i

total

τ

τ
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Figure 5.2 The components of the rigid bar with protractors to measure force angles 

PROCEDURE 
1. Balance the rigid object over a knife edge and measure the distance from the left end of the

object to the knife edge. Record the result as the length lever arm r0.
2. Weigh the rigid object using your balance and record the result as the mass of the rigid object m0

in the data table.
3. Check each spring balance with nothing attached. If they do not read zero, turn the adjustment

screws until the spring balances all read zero.
4. Support the rigid object by the two spring balances so that each balance pulls vertically on one

of the two pivoted hooks nearest the ends of the bar as shown in figure 5.3. Record the forces
acting on the rigid object in the data sheet for Part A. Measure the distances from the left end
which enables you to calculate the lever arms and thus the torques.

Figure 5.3 The force vectors for Part A which tests the gravitational force only 

5. Support the rigid object as in step 4 and add weights to the other two pivoted hooks so that all

the external forces acting are vertical and the bar horizontal as shown in figure 5.4. Attach masses
that exceed 400 g with one sufficiently different from the other so that the spring balance
readings differ by at least 300 g. Record all forces and distances in the data sheet for Part B.
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Figure 5.4 The force vectors for Part B which tests two vertically hanging weights 

6. Repeat step 5 with the two upward forces pointing outward as shown in figure 5.5. Again, both
hanging masses should differ by at least 300 g. Record angles between the upward forces and the
bar, all forces, and all distances in the data sheet for Part C.

Figure 5.5 The force vectors for Experiment 3 which tests two angled upward forces 

DATA 

m 0(g)= __________ 

Part A 

i  mi (g) Fi (N) ϕi (°) r i (cm) 

0 

1 

2 
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Part B 

i  mi (g) Fi (N) ϕi (°) r i (cm) 

0 

1 

2 

3 

4 

Part C 

i  mi (g) Fi (N) ϕi (°) r i (cm) 

0 

1 

2 

3 

4 

CALCULATION AND ANALYSIS 
1. Explain why the center of gravity of the object is located directly above the knife edge position

found in procedure 1.
2. Calculate the sum of the torques on the rigid object for Parts A and B.  Remember: counter-

clockwise torques are positive and clockwise torques are negative.
3. Calculate the % discrepancies of the torques for Part A and B using equation 5.6.
4. Calculate the sum of the horizontal and vertical forces for Part C using equations 5.2.
5. Calculate the sum of the torques on the rigid object for Part C.
6. Calculate the % discrepancies of the torques for Part C using equation 5.6.
7. Would it be possible to achieve equilibrium with only one of the two upward forces vertical and

the other at an angle to the vertical? Use a diagram as part of your answer.
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Experiment 6: Archimedes’ Principle 
OBJECTIVES 
Archimedes discovered that you can measure the volume of a geometrically irregular solid by 
measuring the displacement of a liquid in which the solid is completely submerged. When scientists 
quantified the force of buoyancy, they discovered that you can find the density of an irregular object 
by comparing the weight of the liquid displaced by a submerged object with the apparent loss in the 
weight of an object. In this experiment, you measure the displacement of liquids by submerged and 
floating objects and measure the buoyancy force of liquids on submerged objects. The objectives of 
this experiment are as follows: 

1. To measure the liquid displaced by floating and submerged objects
2. To test Archimedes’ law
3. To calculate the density of liquids, solid objects that sink, and solid objects that float

THEORY 
Archimedes’ law states that an object immersed in a liquid is buoyed up by a force equal to 
the weight of the liquid displaced by the object as shown in equation 6.1. 

Archimedes’ Law VgF Lb ρ= (6.1) 

Here ρL is the density of the liquid and V is the volume of the object, so that ρLV is the mass of the 
displaced liquid. This law can measure the density of an irregular solid object ρobj if the density of the 
liquid ρL is known. Weigh the object in the standard way (without the liquid) determining its weight 
as a function of density as shown in equation 6.2.  

Weight (standard) VgmgW objρ== (6.2) 

Then weigh the object while immersed in a liquid to determining its apparent weight as shown 
in equation 6.3.  

Apparent Weight (in liquid) VgFWW Lobjbapp )( ρρ −=−= (6.3) 

Dividing equation 6.3 by equation 6.2 eliminates V, which might be difficult to measure directly, and 
results in the relation shown in equation 6.4.  

Ratio of Apparent Weight 
to Standard Weight Lapp

W

W

ρ
ρ

−= 1
(6.4) 

obj

Solving equation 6.4 for ρobj yields a formula for the density of the object, as shown in equation 6.5. 

Density of a solid 
app

Lobj WW
W
−

= ρρ (6.5) 

Equation 6.5 can also calculate the density of the liquid, such as ethanol, once the density of the 
submerged object is known, as shown in equation 6.6.  
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Density of a liquid 
W
WW app

objL

−
= ρρ (6.6) 

In this experiment, you weight the object in two different liquids, water and ethanol, thus it is 
convenient to label the symbols by the indices W and E. Then equation 6.5 becomes 

Density of a solid, using water 
Wapp

Wobj WW
W

,−
= ρρ (6.7) 

Substituting equation 6.7 in 6.6 gives a formula for the density of ethanol. 

Density of Ethanol 
Wapp

Eapp
WE WW

WW

,

,

−

−
= ρρ (6.8) 

An object which floats in a liquid displaces a weight of the liquid equal to its own weight. If the 
object is elongated with length L and constant cross-sectional area S, its volume is V = LS and its 
mass is ρobjV.  If the object is floating in a vertical position and the length of its submerged part is 
Lsub, the volume of the displaced liquid is Vsub = LsubS and the mass of displaced liquid is ρLVsub.  So 
for a floating object ρobjV = ρLVsub which algebraically yields equation 6.10.  

Density of a solid, floating 
L
Lsub

Lobj ρρ = (6.10) 

In the equations above, it is convenient to measure all the weights in grams instead of Newtons 
because the acceleration of gravity g cancels in all cases. 

ACCEPTED VALUES 
The accepted value when testing Archimedes’ Law in Part A is the weight of the water displaced by 
the submerged solid object.  

The accepted values for the density of the liquids and solids analyzed in this lab at 20˚C and in an 
atmosphere of 1 bar of pressure are as follows: 

• Water: ρL = 998.21 kg/m3

• Ethanol: ρL = 789.3 kg/m3

• Aluminum: ρobj = 2698.9 kg/m3

APPARATUS 
• metal object
• platform balance 

(supported above 
the table by a stand)

• overflow can
• metal can
• ethanol
• wooden dowel

• thread (attached to 
metal object)

• meter stick
• graduated cylinder
• beaker
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Figure 6.1 An overflow can directs displaced liquid into a beaker 

Table 6.1 is for steps 1-5 (for the metal object),  while Table 6.2 is for steps 6-10 (for the wooden block)

1. Hang the object from the hook under the left pan of the balance using the thread. Measure the 
object’s weight and record the result as the object weight, W (g) on Table 6.1.

2. Arrange the overflow can and the beaker so that water can flow from the spout of the overflow 
can into the beaker. Pour water into the can until it overflows. When the water has stopped 
dripping from the spout, weigh the beaker with the water in it and record the result as the initial 
weight of the beaker, Wb,i (g).

3. Place the beaker and its contents back under the spout. While keeping the object hung from the 
balance, lower the object by a thread into the water in the overflow can until it is completely 
immersed. When all the water displaced by the object has flowed into the beaker, weigh the 
beaker with the water in it and record the result as the final weight of the beaker, Wb,f (g)

4. Adjust the apparatus so that the object isn’t touching the sides or bottom of the overflow can. 
Measure the apparent weight of the object when immersed in water and record the result on 
Table 6.1 under Wapp,W (g).

5. Set the overflow can aside and dry the object. Under the instructor’s supervision, fill the 
metal can with ethanol. Measure the apparent weight of the object when completely immersed 
in ethanol, Wapp,E and record your result under Wapp,E (g). Under the instructor’s 
supervision (once again), pour the ethanol back into the ethanol bottle and close the bottle.

6. Measure the length of the wood block and record the result on Table 6.2 as the total length of 
the block, Ltotal (cm) .

7. Measure and record the width W (cm) and the height H (cm) of the wood block.
8. Measure and record the mass m (g) of the wood block.
9. Fill the graduated cylinder approximately to the halfway mark with water. Lower the wooden 

dowel into the water in the graduated cylinder until it floats.
10. Measure the length of the wood that is below the level of the water and record the result as the 

submerged length Lsub  (cm). Dispose of any remaining water to end the experiment.

PROCEDURE 
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DATA 
Part A: Testing Archimedes' Law 

W  (g) Wapp,W (g) Wb,i (g) Wb,f (g) 

Part B: Calculating the density of a solid object and ethanol 

W (g) W app,W (g) W app,E (g) 

Part C: Calculating the density of a floating object 

Ltotal (cm) W (cm) H  (cm) m (g) Lsub (cm) 

CALCULATION AND ANALYSIS 
−Wb,i, using the data1. Calculate the weight of the water displaced by the immersed object, Wb,f

from Part A.
2. Calculate the apparent loss of weight of the object when completely immersed in water,

W−Wapp,W, using the data from Part A.
3. Archimedes' Law predicts that the weight of the displaced water equals the apparent loss of

weight of the object.  Do your results support Archimedes' Law?
4. Calculate the density of the object ρobj using equation 8.7 and the data from Part B.
5. Calculate the % error in your result for ρobj.
6. Calculate the density of the ethanol ρE using equation 8.8 and the data from Part B.
7. Calculate the % error in your result for ρE.
8. Calculate the density of the wood block ρwood, float using equation 8.10 and the data from Part C.
9. Calculate the volume of the wood block using your data from Part C.  (Remember volume =

length × width × height.)
10. Calculate the density of the wood block !!""#,!"#$!%  = !

!"#$%& using your data from Part C. 

11. Using ρwood, actual as the accepted value, calculate the % error in your result for ρwood, float.
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Experiment 7: Simple Harmonic Motion 
OBJECTIVES 
Simple harmonic motion is the motion of an object that is subject to a force that is proportional to 
the object’s displacement. An object attached to a spring undergoes simple harmonic motion. The 
quantitative relationship between the spring force and the displacement is known as Hooke’s Law. 
In this experiment, you observe the oscillation of an object attached to a spring to test Hooke’s law 
and calculate the spring constant for the spring. The objectives of this experiment are as follows: 

1. To measure the period of oscillation of a mass-spring system
2. To test Hooke’s law with a spring
3. To calculate the spring constant for a spring

THEORY 
When a body is suspended from a spring, its weight causes the spring to elongate. The system is said 
to be in equilibrium when the object has a net acceleration of zero. The mass is suspended in its 
equilibrium position, as the force it exerts on the spring (its weight, FG) is equal to the force exerted 
by the spring(Fspring) on the mass. The force exerted by the spring is what is often called Hooke's law 
and it varies with its change in length:

Fspring −= k ∆x (7.1) 

where k is the spring constant, or the "stiffness" of the spring, measured in N/m, and ∆x (m) is the 
resultant extension (or compression) of the spring. 
When the hanging mass is slightly displaced from its equilibrium position, the system oscillates 
(moves back and forth, repeatedly) around that position with a period that is only dependent on the 
magnitude of the mass and the spring constant. This periodic motion is what is knows as simple 
harmonic motion*. The period T can be calculated using the equation below:  

m
T π2= (7.2) 

k
Thus, a plot of T2 vs. m for a given spring should be a straight line with a slope of 4!!/!. 

ACCEPTED VALUES

The accepted value for the spring constant is determined in Part A of the Procedure, where the 
extension of the spring is measured when known masses (easily converted into weights using 

                            

• Hooke's Law apparatus
• 'slotted weights

* A few specific conditions are necessary for motion to be considered "simple harmonic". See Giancoli (7th ed)   pg # 293.

(7.4) 

FG = mg) are suspended from it. By equating the spring force to the hanging weight at object at 
equilibrium, we obtain: 

FG = k ∆x
Thus, a plot of FG vs  ∆x  for a given spring should be a straight line with a slope of k.

APPARATUS 
• half meter stick
• platform balance

• computer with Pasco inte             rface
• stopwatch
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The spring is equipped with a distance scale, as shown in Figure 7.1, so that you can see the 
equilibrium point change as you change the weight of the object. The scale and pointer should 
be removed for Part B of the experiment.

Figure 7.1 Detail of the spring and scale of 
the Hooke’s law apparatus (Part A)

Figure 7.2 Photo-gate positioned to measure 
the motion of the object (Part B)

PART A
1. Adjust the pointer so that it is directing to readings on the scale of the Hooke’s law apparatus. 

Record the initial value, x0 (cm)
2. Add a 25 g weight to the hanger and record the new position of the pointer as the displaced 

equilibrium position x (cm) .
3. Repeat step #2 (above) until Table 7.1 is completed, by adding 25 g and recording the new 

equilibrium position for every increment in mass.

The computer interface measures motion through a photo-gate (aka light gate). The Hooke’s law 
apparatus hangs the object (weights) at the end of a spring, which cuts across the light path in the 
photo-gate on every downward swing, if positioned as shown above in Figure 7.2. 

PROCEDURE 

PART B
1. From the desktop choose the “Simple Harmonic Motion” icon.
2. Position the photo-gate so that it is just below the bottom of the mass. Start the system 

oscillating by gently pulling down on the mass and releasing it. Adjust the position of the 
photo-gate so that when the system is oscillating, the bottom of the mass interrupts the photo-
gate but does not pass completely through the gate. This way the bottom of the mass starts the 
timer and, when it completes one oscillation, stops the timer.

3. Stop the system oscillating and swing the photo-gate out of the way so that it does not 
interrupt the oscillating mass. Start the oscillations by gently pulling down on the mass and 
releasing it vertically. When the system is oscillating smoothly, with little sideways drift, swing 
the photo-gate in place under the spring so that the weights intercept the path of light every 
time the spring moves down to its lowest point.

4. Choose “Play” on the computer interface to start the computer collecting data. Choose “Stop” 
when the data table is completed on the monitor. Record the average period displayed at the 
bottom of the table in the data table for Part B.
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PART B (alternative)

1. If you're using a stopwatch: start the system oscillating by gently pulling down on the mass and releasing
it.  When the system is oscillating smoothly use a stopwatch to time 10 periods of oscillation.
Divide the time you measure by 10 and record it in the data table for Part B.

2. Repeat steps 8 through 10 if you're using a computer, or step 11 if you're using a stopwatch, with
masses of 125 g, 150 g, 175 g and 200 g. Increase the mass by sliding the appropriate slotted masses
on top of the 100 g hanging weight. For the 200 g trial you can use the 200 g hanging weight.

3. With a 200 g hanging weight, observe the oscillations for some time as the amplitude slowly
decreases.  Do you notice any change in the period, or does the period stay roughly constant?
Record your observation on the data sheet.

CALCULATION AND ANALYSIS 
1. Calculate the gravitational force FG due to each of the masses in the data table in Part A, using

the formula !! = !".
2. Draw a graph of the force FG (N) vs extension ∆x (m).
3. Calculate k graphically by taking the slope of the graph using equation 0.9.
4. Draw a graph of the period squared T2 versus the moving mass M using the data from Part B.
5. Find the slope of the graph using equation 0.9.
6. Calculate the % error of k calculated from Part B using k calculated from Part A as the

accepted value.
7. As the spring oscillates while you measure its period, the amplitude of the oscillation

decreases. Do you see any evidence that the period of oscillation changes as the amplitude
decreases? In other words, does the period depend on the amplitude (or vice versa)?
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DATA 
Table 7.1: Equilibrium point 

Added mass (g) x 0 (cm) 

0.0 0.00 

25.0 

50.0 

75.0 

100.0 

125.0 

150.0 

175.0 

200.0 

Table 7.2: Oscillation data 

Mas (g) Average T (s) 

100.0 

125.0 

150.0 

175.0 

200.0 
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