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8 – Rotational motion of solid objects 

Kinematics of rotations 

In this Lecture we call „solid objects“ such extended objects that are rigid 

(nondeformable) and thus retain their shape. In contrast to point objects that are 

characterized by their position in the space, extended solid objects are 

characterized by both position and orientation. These objects can move as the 

whole and change their orientation (that is, rotate) at the same time.  

The simplest case of rotational motion is rotation around a fixed axis, like rotation of 

a door around a hinge. In this case each point of the object performs circular 

motion studied in Lecture 5. If the object does not have a fixed axis of rotation (like 

an arbitrary object thrown into the air) its rotation can be very complicated, with the 

rotation axis permanently changing its direction with time. It can be shown that very 

small (infinitesimal) rotations can be considered as rotations around some fixed 

axis.  

We will mostly speak about rotations around fixed axis here, leaving general 

rotations for more advanced physics courses. 
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Rotational velocity and acceleration  

Rotational velocity 

(angular velocity):  t







Rotational acceleration 

(angular acceleration):  t







(t is the time elapsed. For finite t this is 

the average angular velocity, for very 

small t this is the instantaneous angular 

velocity, as usual) 

Motion with constant angular acceleration  

2

00

0
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1
tt

t







 (Similar to the translational 

motion with constant 

acceleration) 

Similarities between translational and rotational motion (kinematics) 

Position: x Orientation:  

Displacement: x Rotational displacement:  

Velocity: v Angular velocity:  

Acceleration: a Angular acceleration:  
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Relation between the linear and angular velocities 

For objects rotating around an axis, the linear velocity v increases 

with the distance from the axis: 

v  r  

That is, the object cannot be characterized by a unique linear velocity but 

it can be characterized by a unique angular velocity 

. 
v2 

r1 

v1 

r2 

Similarly the relation between the linear and rotational accelerations has the form 

a  r  
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Statics of rotations 

In the mechanics of translational motion, two forces balance each other if 

their sum is zero 

In the mechanics of rotational motion, two forces balance each other if the 

sum of their torques is zero, in other words, if the two torques balance each 

other.  

Definition of torque (from the textbook): Product of the force and the lever arm 

. 
Axis 

F 
Application 

point 
r 

r^ 
90° 

Lever arm 

t  Fr^ F r sinj 

j 

One should assign a sign 

to the torque: Torques 

rotating counterclockwise 

are positive and torques 

rotating clockwise are 

negative. Having different 

signs, torques can balance 

each other 

- Force with a greater lever arm has a stronger effect! 
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x 

z 

More convenient definition of the torque  

t  F^r  F r  sinj 

j 

The unit of torque: N m (but not J). 

This result is the same as on the preceding page. 

Here we call 𝑟 lever arm. 
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Work-energy principle for the rotational motion and the condition of rotational equilibrium 

The concept of the torque follows from the work-energy principle: The solid object is 

balanced if its displacements and rotations result in a zero work of applied forces. 

Indeed, if the work is nonzero, then displacements or rotations accompanied by the 

work will result in the change of its kinetic energy, that is, the object will accelerate or 

decelerate and thus it is unbalanced.   

For translational displacement it obviously follows from this principle that the sum of all 

forces should be zero. For rotations it follows that the sum of all torques should be 

zero. The proof is the following:   

F 

r2 

j 

. r 

r1 

 

For a small rotation , the application 

point of the force makes a linear 

displacement r  r that is 

perpendicular to r, so that the work done is 

If several forces are applied, then the work is 

since  is the same for all forces. The work will 

be zero if  
0...21 tt - the rotational equilibrium condition 

∆𝑊 = 𝐹∆𝑟 cos 90° − 𝜑 = 𝐹∆𝑟 sin𝜑 = 𝐹𝑟 sin𝜑 ∆𝜃 = 𝜏∆𝜃 

90° − 𝜑 

∆𝑊 = 𝜏1 + 𝜏2 +⋯ ∆𝜃 
𝑟1 = 𝑟2 = 𝑟 
∆𝑟 ≅ 𝑟∆𝜃 
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Center of mass and stability 

Center of mass (CM), also called center of gravity, is a point about which gravitational forces 

applied to different parts of the object produce no torque. That is, if we choose an axis going 

through or a pivot point in CM, the object will be balanced. One can consider gravitational force as 

applied to CM, so that its lever arm is zero and the torque vanishes. The object does not rotationally 

accelerate around ist own CM under the influence of gravitational force and it only can have linear 

(translational)  acceleration. If we now choose another pivot point that does not coincide with CM, 

then the torque will be nonzero, the lever arm being defined by the distance between CM and the 

pivot point. The position of CM is given by  

system a of mass    total     where
1

 
i

i

i

ii mMm
M

rr

CM is important, in particular, for the analysis of the stability of solid objects with respect to 
tipping. If, as the result of a small rotation away from the initial position, CM goes up, the 

object is stable. Indeed, such a rotation leads to the increase of the potential energy and thus 

it is impossible without violation of the energy conservation law. On the contrary, if a small 

rotation leads to CM going down, then the object is unstable. In this case the decrease of the 

potential energy is compensated for by the increase of the kinetic energy, and the object will 

rotationally accelerate away from the initial position. See illustration on the next page. 

For symmetric objects such as a cube, CM is in the geometric center. 
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. 
CM 

. Pivot point 

. 

CM goes up, stable 

. 

. 

. 

CM goes down, unstable 

„Pisa tower“ 

FN 

mg mg 

Torque of the gravity force is 

positive. It is compensated for by the 

negative torque of the normal force. 

FN 

Torque of the gravity force negative. It is not 

compensated for by negative torque of the 

normal force: The two torques have the 

same sign! 

Pivot point 
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Rolling without slipping 

If a round object (a sphere, a cylinder) is rolling on a plane without 

slipping, the velocity of its lowest point that is in contact with the plane is 

zero. The velocity of any point of the body is the sum of two velocities:  

1) the velocity of the center vc due to its translational motion and  

2) the velocity vrot due to the rotation of the body around its center.  

The magnitude of the latter is vrot = R at the distance R from its center, 

while the directions are different. 

vc + vrot 

vc 

vc vrot 

At the contact point, the velocities are opposite and compensate each other, so that the total 

velocity is zero (the no-slipping condition). For their magnitudes one obtains 

 

 𝑣𝑐 = 𝑣𝑟𝑜𝑡 = 𝜔𝑅.  
 

At the top of the rolling body, the two velocities are parallel and thus adding up: 

 

 𝑣𝑡𝑜𝑝 = 𝑣𝑐 + 𝑣𝑟𝑜𝑡 = 2𝑣𝑐 = 2𝜔𝑅. 
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Example 

The displacement of the person is  
 

𝐿 = 𝑣𝑡𝑜𝑝∆𝑡 = 2𝑣𝑐∆𝑡.  
 

The displacement of the center of the spool is 

 

𝑑𝑐 = 𝑣𝑐∆𝑡 = 𝐿/2. 
 
The length of the unwound rope is just the difference 𝐿 − 𝑑𝑐 = 𝐿 − 𝐿/2 = 𝐿/2. 
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Newton‘s second law for the rotational motion Axis of rotation 

mi 
𝑟𝑖,⊥ 

To obtain Newton’s second law for the solid body rotating around a 

fixed axis, we split the body into small pieces of masses 𝑚𝑖 and 

introduce the distances 𝑟𝑖,⊥ between each elementary mass and 

the axis of rotation, drawing perpendiculars from each elementary 

mass to the axis. 

 

For each elementary mass, we write Newton’s second law for their 

tangential accelerations:  

𝐹𝑖 = 𝑚𝑖𝑎𝑖 . 
One can express all tangential accelerations via the angular 

acceleration 𝛼 that is the same for the whole solid body: 

𝑎𝑖 = 𝛼𝑟𝑖,⊥. Next, we multiply Newton’s second law by 𝑟𝑖,⊥ to 

express it in terms of the torques: 

𝜏𝑖 = 𝐹𝑖𝑟𝑖,⊥ = 𝑚𝑖𝑟𝑖,⊥
2𝛼. 

Now, we sum over all elementary masses to obtain Newton’s second law for the rotational motion: 

𝜏 = 𝜏𝑖
𝑖

= 𝐼𝛼, 𝐼 ≡ 𝑚𝑖𝑟𝑖,⊥
2

𝑖

. 

Here 𝜏 is the total torque exerted on the system from external forces and 𝐼 is the moment of 

inertia of the body with respect to the given rotation axis. 

Rotational dynamics 
If the torques acting on a body are unbalanced, that is, the total torque is nonzero, the body will 

rotationally accelerate. This is governed by the second Newton´s law for rotations. 
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Practical formulas for calculating moments of inertia with respect to  

different axes 

𝐼𝑥 = 𝑚𝑖(𝑦𝑖
2+𝑧𝑖

2

𝑖

),           𝐼𝑦 = 𝑚𝑖(𝑧𝑖
2+𝑥𝑖

2

𝑖

),           𝐼𝑧 = 𝑚𝑖(𝑥𝑖
2+𝑦𝑖

2

𝑖

),  

With respect to the x, y, and z axes :  

For a flat body in the 𝑥𝑦 plane one has 𝑧𝑖 = 0, thus 

y 

z 

x 
. 

yi 

zi 

𝑟𝑖,⊥ 

mi 

z 

x 

y 
. 

zi 

xi 

𝑟𝑖,⊥ 

mi 

x 

y 

z 
. 

xi 

yi 

𝑟𝑖,⊥ 

mi 

𝐼𝑥 = 𝑚𝑖𝑦𝑖
2

𝑖

,           𝐼𝑦 = 𝑚𝑖𝑥𝑖
2

𝑖

,           𝐼𝑧 = 𝑚𝑖(𝑥𝑖
2+𝑦𝑖

2

𝑖

) = 𝐼𝑥 + 𝐼𝑦 ,  
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Expressions for I for typical symmetric bodies can be obtained with calculus: 

Rod of length l with axis through its end: 

Rod of length l with axis through center: 

Disc or solid cylinder around 

the symmetry axis z 

Ring or hollow cylinder of radius R 

around the symmetry axis  z: 

Solid sphere: 

Steiner theorem: the moment of inertia 𝐼𝐶𝑀 

with respect to the axis going through the CM 

is minimal; the moment of inertia with respect 

to any other axis parallel to the former is 

given by 

𝐼 = 𝐼𝐶𝑀 +𝑀𝑎
2, 

where 𝑎 is the distance between the axis and 

the CM. Example: for the rod 𝐼𝐶𝑀 = 𝑀𝑙
2/12. 

With respect to the rod’s end, with  

𝐼 = 𝐼𝐶𝑀 +𝑀
𝑙

2

2

=
1

3
𝑀𝑙2. 

𝐼 =
1

3
𝑀𝑙2 

𝐼 =
1

12
𝑀𝑙2 

𝐼𝑧 =
1

2
𝑀𝑅2 

𝐼𝑧 = 𝑀𝑅
2 

Disc around in-plane axes  x,y: 𝐼𝑥 = 𝐼𝑦 =
1

4
𝑀𝑅2 

Ring around in-plane axes  x,y: 𝐼𝑥 = 𝐼𝑦 =
1

2
𝑀𝑅2 

𝐼𝑥 = 𝐼𝑦 = 𝐼𝑧 =
2

3
𝑀𝑅2 Hollow sphere: 

𝐼𝑥 = 𝐼𝑦 = 𝐼𝑧 =
2

5
𝑀𝑅2 

Rectangle with sides  a and b 

around the ⊥ axis  z: 
𝐼𝑧 =
1

12
𝑀 𝑎2 + 𝑏2  

𝑙 

𝐼 =
1

3
𝑀𝑙2 𝐼 =

1

12
𝑀𝑙2 

CM 

𝑎 = 𝑙/2 

𝑎 = 𝑙/2 
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Angular momentum and its conservation 

For instance, the gravitational force acting upon the planets from the sun has a zero lever arm, so 

that the torque on the planets is zero and their angular momentum is conserved. This leads to 

Kepler´s second law. 

 

An interesting difference between translational and rotational motions is that, whereas the mass is 

constant, the moment of inertia I can be changed by changing the distances of masses from the 

axis. If the torque is zero and L is conserved, changing I results in the change of the angular 

velocity . However, strictly speaking, here it was not proven that the transformation above shown 

by ⇒ is valid when I changes. This can be easily proven within the calculus-based physics course. 

 

Newton’s second law for the rotational motion can be written as 

 

𝜏 = 𝐼
∆𝜔

∆𝑡
⇒
∆ 𝐼𝜔

∆𝑡
=
∆𝐿

∆𝑡
,           𝐿 ≡ 𝐼𝜔. 

 

Here 𝐿 is the angular momentum of the body. In the absence of the total torque, 𝜏 = 0, the 

angular momentum is conserved, 𝐿 = 𝑐𝑜𝑛𝑠𝑡. 
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Rotational kinetic energy Axis of rotation 

mi 
𝑟𝑖,⊥ 

The kinetic energy of the body rotating around a fixed axis 

can be written as the sum of kinetic energies of elementary 

masses and then transformed using the relation between the 

linear and angular velocity 𝑣 = 𝜔𝑟: 
 

𝐸𝑟𝑜𝑡 = 
𝑚𝑖𝑣𝑖

2

2
𝑖

=
1

2
 𝑚𝑖(𝜔𝑟𝑖,⊥)

2

𝑖

=
𝐼𝜔2

2
. 

 

In general, the total kinetic energy is the sum of the 

translational kinetic energy of the center of mass and the 

kinetic energy due to the rotation around the CM 

 

𝐸𝑘 = 𝐸𝑡𝑟 + 𝐸𝑟𝑜𝑡 =
𝑀𝑣𝐶𝑀

2

2
+
𝐼𝐶𝑀𝜔

2

2
. 
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Concept Translational motion Rotational motion 

Inertia m, M I 

Newton´s second 

law 

Momentum P  mv 

Kinetic energy 

maF  t I

IL 

2

2

1
mvEk 

2

2

1
IEk 

Corresponding concepts of translational (linear) and rotational (angular) motion 

in dynamics 


