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6 – Work and Energy 

Work - The concept following from the analysis of simple mechanical devices 

Lever 
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Pulley 

• Simple machines allow to gain in force: 

achieve a greater output force with a smaller input force 

input 

output 

input 

output 

• Gaining in force one loses in displacement 

Work = force  displacement is conserved: (work input) = (work output) 

• Concept of work: 
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Pull 

Unit of work: J(oule) = N(ewton) m = kg m2/s2 

Force perpendicular to the displacement 

does not produce work as cos 𝜃 = 0! 

Ffr 

Definition of Work for a constant force 

F 

d 

- force 

- displacement 

Example: 

q 

q 

Definition: 

Work is negative, if cosq <0 

mg 

FN 

m = 50 kg,  F = 100 N,  Ffr = 50 N 

   q = 37°,  d = 40 m 

Work done by each force - ? 

Solution 

(dot-product of two vectors) 

𝑊 = 𝐹𝑑𝑑 = 𝐹𝑑𝐹 = 𝐹𝑑 cos 𝜃 = 𝐅 ∙ 𝐝 

In components:  𝑊 = 𝐅 ∙ 𝐝 = 𝐹𝑥𝑑𝑥 + 𝐹𝑦𝑑𝑦 

𝑊𝐺 = 𝑚𝑔𝑑 cos 90° = 0;       
𝑊𝑁 = 𝐹𝑁𝑑 cos 90° = 0;  
𝑊𝑝𝑢𝑙𝑙 = 𝐹𝑑 cos 𝜃 = 100 𝑁 × 40 𝑚 × cos 37° = 3200 𝐽 

𝑊𝑓𝑟 = 𝐹𝑓𝑟𝑑 cos 180° = 50 𝑁 × 40 𝑚 × −1 = −2000 𝐽 
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Power - Rate of doing work 

Unit of power: W(att) 

W = J(oule) /s = kg m2/s3 

Car: 

For 𝑃 =  𝑐𝑜𝑛𝑠𝑡 one has 𝐹 =
𝑃

𝑣
, so that the maximal acceleration 𝑎 =

𝐹

𝑚
=
𝑃

𝑚𝑣
 decreases with 

the speed   

Infinitesimal work and total work 

If the force is not constant but changes from point to point, one has to consider the infinitesimal 

work corresponding to an infinitesimal displacement ∆𝐫 → 𝟎: 

∆𝑊 = 𝐅 ∙ ∆𝐫 

The total work is the sum of all infinitesimal works along the trajectory: 

𝑊 = ∆𝑊𝑖
𝑖

= 𝐅𝑖 ∙ ∆𝐫 𝑖
𝑖

 

Instantaneous power: 𝑃 =
∆𝑊

∆𝑡
 

 

It can be expressed as 𝑃 =
𝐅∙∆𝐫 
∆𝑡
= 𝐅 ∙ 𝐯 
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(Mechanical) Energy - Work stored in a body or ability of a body to do work 

formsdifferent  -  ,
2

pot
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kin E
mv

E 

Work done Increase of energy 

Illustration for the linear motion with constant acceleration (𝑥0 = 𝑣0 = 0) 

In general:  

Work of external forces done on the way from position 1 to position 2  

equals the change of energy of the system 

Kinetic energy  

(function of the state) 

Mechanical energy = Kinetic energy + Potential energy 

E  =        Ekin            +       Epot 

𝑊 = 𝐹𝑥 = 𝑚𝑎 
1

2
𝑎𝑡2 =

𝑚 𝑎𝑡 2

2
=
𝑚𝑣2

2
 

Work 

(function of  

the process): 

𝑊12 = ∆𝐸 = 𝐸2 − 𝐸1 

Or 𝑊 = 𝐸𝑓 − 𝐸𝑖, where 𝐸𝑓 and 𝐸𝑖   are the final and initial total energies and 𝑊 is 

the work of the external forces on the system. 
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Potential Energy 

Work of the external force needed to bring a system from the reference state into another state 

quasistatically (v) 

Gravitational energy 

mg 

F 

1 

2 

d  h 

a = 0 F = mg 

Reference level 

𝐸𝑝𝑜𝑡 = 𝑊 = 𝐹ℎ = 𝑚𝑔ℎ 

Potential energy is defined up to an arbitrary constant that can be understood as the potential 

energy of the reference state 

mg 

F 

1 

2 

d  h/cosq 

Reference level 

𝐸𝑝𝑜𝑡 = 𝑊 = 𝐹𝑑 cos 𝜃 = 𝑚𝑔
ℎ

cos 𝜃
cos 𝜃 = 𝑚𝑔ℎ 

h 𝜃 
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Elastic energy (the energy of a deformed spring) 

F -kx 

F
 

distance/deformation 

Work 

x 

kx 

k – stiffness of the spring 

x – elongation/kompression, 𝑥 ≡ 𝑋 − 𝑋0 
𝑋0 - the length of the free spring 

𝑋 – the length of the deformed spring 

Hooke’s law for the spring: 𝐹𝐻𝑜𝑜𝑘𝑒 = −𝑘𝑥 

𝑋0   X 𝐸𝑝𝑜𝑡 = 𝑊 = 𝐹 𝑥𝑖 ∆𝑥𝑖
𝑖

 

𝐹 + 𝐹𝐻𝑜𝑜𝑘𝑒 = 𝑚𝑎 = 0  →  𝐹 = 𝑘𝑥 (external force) 

- area under the curve 𝐹(𝑥) 

∆𝑥𝑖 

𝐹 𝑥𝑖  

𝐸𝑝𝑜𝑡 =
1

2
𝑥 𝑘𝑥 =

𝑘𝑥2

2
 



Conservation of Energy 

In the absence of dissipation (friction) the total energy of an isolated system is conserved: 

constkinpottot  EEEE

Energies of the two different kinds can be transformed into each other: 

  - potential energy can be released into kinetic energy 

  - kinetic energy can be absorbed into potential energy 
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Example: free fall from the height ℎ  
Show that the total energy is conserved, 𝐸𝑓 = 𝐸𝑖. 
 

Initial state: 𝐸𝑝𝑜𝑡 = 𝑚𝑔ℎ and 𝐸𝑘𝑖𝑛 = 0, 𝐸𝑖 = 𝑚𝑔ℎ 

Final state: 𝑧 = 0, 𝐸𝑝𝑜𝑡= 𝑚𝑔𝑧 = 0, 𝐸𝑘𝑖𝑛 =
𝑚𝑣2

2
 

 

𝑣 = −𝑔𝑡,  𝑧 = ℎ −
1

2
𝑔𝑡2, 𝑧 = 0 → 𝑡2 =

2ℎ

𝑔
  

 

𝐸𝑓 = 𝐸𝑘𝑖𝑛 =
𝑚𝑣2

2
=
𝑚𝑔2𝑡2

2
=
𝑚𝑔2 2ℎ/𝑔

2
= 𝑚𝑔ℎ = 𝐸𝑖. 

That is, initial energy is equal to the final energy 

𝐸𝑖 = 𝐸𝑓 
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mghE potential
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Oscillations! 

Problem 

At 1: m=0.5 kg, h=12 cm, v=0  

Speed at 2 ? 

Solution 

,02,pot1,kin

2,pot2,kin2

1,pot1,kin1







EE

EEE

EEE

thus, the energy conservation has the form 

2

2

2
2,kin1,pot

mv
EmghE 

m/s 53.1m 12.0m/s 8.922 2

2  ghv

But here 

Energy  

conservation 

in general: 

Pendulum 
(an example of energy conservation) 

Mathematical treatment of the pendulum problem and describing its harmonic (sinusoidal) 

motion requires calculus. This is because the Newton’s second law in this case is not an 

algebraic equation but a differential equation. 
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Problem 

A dart of a mass 0.100 kg is pressed against the spring of a toy dart 

gun. The spring with spring stiffness k = 250 N/m is compressed 6.0 cm 

and released. If the dart detaches from the spring when the spring is 

reaching ist natural length (x=0) what speed does the dart acquire? 

Known: m = 0.1 kg,   k = 250 N/m,   x1 = -6 cm = -0.06 m 

To find: v2 - ?  

Solution: 
The total energy of the system spring + dart is conserved 

State 1: Deformed spring, potential energy 

State 2: Flying dart, kinetic energy  

m

k
x

m

kx
v

mv
kxEE 1

2

1
2

2

22

121
22

1


  xxxxx   12/122/122

More accurately: 

||2 xx General analytical result 
Plugging numbers: 

m/s 35006.02500 06.0
kg 1.0

N/m 250
m 06.02 v

Check units separately: OK  m/s, 1/sm
kg

m/m/s kg
 m

kg

N/m
m 2

2




