
5 – Circular motion, Planets, Gravity

Centripetal acceleration

v

ac

v

ac

R – curvature radius
R

RR

Let v = |v| = const. Then v can only change direction.

- Curvature center

For any point of a smooth curve one 

can can define curvature center and 

curvature radius

In general there are both 

centripetal acceleration and 

acceleration along the velocity

v1

v2

Dv = v2-v1

Magnitude of the centripetal acceleration

- Acceleration perpendicular to the velocity

r1 r2

v1

v2

q

q

From similarity

of triangles:

|Δ𝐯|

𝑣
=

|Δ𝐫|

𝑅

Dr = r2-r1

q<<1

a^v – centripetal acceleration, 

directed toward 

the curvature center

𝑎𝑐 =
|Δ𝐯|

Δ𝑡
=

𝑣

𝑅

|Δ𝐫|

Δ𝑡
=

𝑣

𝑅
𝑣 =

𝑣2

𝑅

PHY166 Fall 2021

𝐯 =
∆𝐫

∆𝑡
,  𝑣 ≡ 𝐯 =

|∆𝐫|

∆𝑡

𝐚 =
∆𝐯

∆𝑡
,  𝑎 ≡ 𝐚 =

|∆𝐯|

∆𝑡

𝑣1 = 𝑣2 = 𝑣, 𝑟1 = 𝑟2 = 𝑅

Thus

We use
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Radians

Angles q and Dq can be measured in 

• degrees 

• revolutions (360°) (used in engineering)

• radians (used in physics)

Radian is such an angle, for which the 

length of the arc is equal to the radius. In 

other words, the angle in radians is given by 

L/R and it is dimensionless. Revolution 

corresponds to L=2pR, thus 360°=2p 

radians. That is,

R

L=R

1 radian = 360°/(2p)=57.3°

In radians, q = L/R  (no unit!)

Full circle: q = 2pR/R = 2p = 360°

Thus

sin 𝜃 ≅ tan 𝜃 ≅ 𝜃
cos 𝜃 ≅ 1 − 𝜃2/2

  for 𝜃 ≪ 1

Useful formulas (for q in radians):
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Angular velocity is the rate of change of the angle with time: 
tD

D
=

q


Angular velocity

R

R

∆𝑟 = 2𝑅 sin
∆𝜃

2
≅ 𝑅∆𝜃Dq/2

Dq/2

Displacement due to rotation

for 𝜃 ≪ 1

Relation between the angular and linear velocities

Thus  𝑎𝑐 =
𝑣2

𝑅
=

𝑅𝜔 2

𝑅
= 𝜔2𝑅   - another formula for the centripetal acceleration 

o

𝑣 =
∆𝑟

∆𝑡
=

𝑅∆𝜃

∆𝑡
= 𝑅

∆𝜃

∆𝑡
= 𝑅𝜔, or 𝜔 =

𝑣

𝑅

If a vector 𝐑 is rotated by a small angle ∆𝜃, the change of the vector (the displacement of its end 

point) ∆𝐫 is proportional to ∆𝜃, so that ∆𝑟 = 𝑅∆𝜃. This can be derived by approximating the small 

arc by a straight line and considering the two triangles with one angle equal to 90°, as shown

can be derived using the displacement-rotation relation above: 
x

n

q

y

qcos

qsin
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Angular velocity, frequency, period

The angular velocity 𝜔 is defined as

𝜔 =
∆𝜃

∆𝑡
,

where 𝜃 is the rotation angle in radians. The frequency of rotations 𝑓 is defined as the number 

of rotations per second, 

𝑓 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠

∆𝑡
 (𝑠𝑝𝑒𝑐𝑖𝑎𝑙 𝑢𝑛𝑖𝑡: 𝐻𝑒𝑟𝑡𝑧 𝐻𝑧 ).

As one rotations corresponds to 2𝜋 radians, the number of rotations in the angle ∆𝜃 is given 

by ∆𝜃/ 2𝜋 . Thus

𝑓 =
∆𝜃/ 2𝜋

∆𝑡
=

1

2𝜋

∆𝜃

∆𝑡
=

𝜔

2𝜋

and 𝜔 = 2𝜋𝑓. The period 𝑇 of rotations is defined as the time needed for one rotation, that is,

𝑇 =
∆𝑡

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠
=

1

𝑓
=

2𝜋

𝜔
.
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Centripetal forces - Forces that create centripetal acceleration such as

tension of a string, friction of tires against the road, etc., 

play the role of centripetal forces.

cc maF =
R

v
mFc

2

=

A stone on a string: 

tension force T plays 

the role of the 

centripetal force

.
T v

𝐯

𝐚𝑐 , 𝐅𝑓𝑟

A car on a curved road: 

friction force Ffr plays 

the role of the centripetal force

𝐹𝑓𝑟 = 𝑚
𝑣2

𝑅
≤ 𝜇𝑠𝐹𝑁 = 𝜇𝑠𝑚𝑔

R

Driving is possible if the traction condition

 𝑣 ≤ 𝜇𝑠𝑅𝑔 is satisfied, otherwise skidding 
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Ferris wheel

mg

FN

mg

FN

z
z

cN mamgF =−

)( cN agmF +=

cN mamgF −=−

At lower point: At upper point

)( cN agmF −=

Larger pressure on seat

(apparent weight)

Smaller pressure on seat

(apparent weight)

ac

ac
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mg

TTy

Tx

y

x

mg

T
Ty

Tx

Smaller angular velocity

Larger angular velocity, larger q:

L – length of the pendulum, T – tension of the string

Conic pendulum (rotating with the angular velocity  around the vertical axis)

q

L

L

R

q

𝑇 cos 𝜃 − 𝑚𝑔 = 0 →  𝜃 = arccos
𝑚𝑔

𝑇
“y”:

“x”: 𝑇 sin 𝜃 = 𝐹𝑐 = 𝑚𝜔2𝑅 = 𝑚𝜔2𝐿 sin 𝜃  →  𝑇 = 𝑚𝜔2𝐿 (if sin 𝜃 ≠ 0)

Thus  𝜃 = arccos
𝑚𝑔

𝑚𝜔2𝐿 
= arccos

𝑔

𝜔2𝐿 
= arccos

𝜔𝑐
2

𝜔2 
, 

under the condition 𝜔 ≥ 𝜔𝑐 = 𝑔/𝐿.

For 𝜔 ≤ 𝜔𝑐 the solution is 𝜃 = 0,  𝑇 = 𝑚𝑔 (check!)

q
p/2

c
0

R

𝑇𝑥 = 𝑇 sin 𝜃  is the centripetal force

Newton’s second law:
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mg

Car on a banked road

FN

Ffr

ac
z

x

Both friction force and normal force

contribute to Fc:

q
qq

qq

cossin

sincos

2

2

R

v
mFmg

R

v
mFmg

fr

N

=+

=+−“z“

“x“

qq

qq

cossin

sincos

2

2

R

v
mmgF

R

v
mmgF

fr

N

+−=

+=
Optimal angle: Ffr = 0

Rg

v2

tan =q

Traction condition: 𝐹𝑓𝑟 ≤ 𝜇𝑠𝐹𝑁

−𝑔 sin 𝜃 +
𝑣2

𝑅
cos 𝜃 ≤ 𝜇𝑠 𝑔 cos 𝜃 +

𝑣2

𝑅
sin 𝜃

𝑣2 cos 𝜃 − 𝜇𝑠 sin 𝜃 ≤ 𝑔𝑅 sin 𝜃 + 𝜇𝑠 cos 𝜃

𝑣2 1 − 𝜇𝑠 tan 𝜃 ≤ 𝑔𝑅 tan 𝜃 + 𝜇𝑠

𝑣2 ≤ 𝑔𝑅
tan 𝜃 + 𝜇𝑠

1 − 𝜇𝑠 tan 𝜃
 for 𝜇𝑠 tan 𝜃 < 1 For 𝜇𝑠 tan 𝜃 > 1 the traction condition

is satisfied for any speed!  

Idea: make 𝐹𝑁 contribute to 𝐹𝑐 and increase 𝐹𝑓𝑟
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Evolution of views on planetary motion

• Ancient Greeks

• Claudius Ptolemaeus (87-150, Egypt)

• Nicolaus Copernicus (1473-1543, Poland )

• Galileo Galilei (1564-1642, Italy)

• Tycho Brahe (1546-1601, Danmark)

• Johannes Kepler (1571-1630, Germany)

• Isaac Newton (1642-1727, England)

Naiv geocentric system

Also heliocentric system!

Elaborate geocentric system with math 

methods and epicycles

Earth

Revived the heliocentric system

Championed heliocentric system

by Copernicus, built telescopes

Collected lots of high-accuracy data 

On planet motion (without telescopes)

Obtained 3 laws of planetary motion 

from analysis of Tycho‘s data

Obtained the law of gravitation 

from Kepler‘s laws
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Planetary motion: Kepler‘s laws

1. The orbits of planets are ellipses

with the sun in one of the focuses

2.  The radius vector sweeps out

equal areas in equal time

3. T2/R3 = const for all planets of our solar system.

T – period of the motion

R – average distance from the sun

• •

•
•

•

•

•

(particular case: circle)
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Earth

Mountain

Planet motion - projectile motion!

Illustration from Newton´s „Principia“

Falling down

Newton‘s law of universal gravitation

Orbiting

F=mg ?
Large distances

Gravitational force should 

decrease with distance

Newton showed mathematically

that Kepler‘s laws follow from

the second Newton´s law with

2

21

r

mGm
F =

• •m1
m2

F12
F21

Attraction

2210 kg/mN10667.0 •= −G

Experiments by Cavendish (1731-1810)

Mass of the Earth:

2

E

E

R

Gmm
mg = kg 106.0 25

2

=
G

gR
m E

E

with RE = 6400 km
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Special case of Kepler´s third law for circular orbits

)(
2

2
Mm

R

v
m

R

mM
G <<=

R

M
Gv =2

Also,
T

R
v

p2
=

Eliminating 𝑣 from these two equations, one obtains

- the third Kepler´s lawThen for two objects rotating around the same center
3

2

2

2

3

1

2

1

R

T

R

T
=

(T = 1 year, R = 1.5×1011 m => M = 2.0×1030 kg)

𝑇2

𝑅3 =
4𝜋2

𝐺𝑀

m – mass of the Earth, M – mass of the Sun

𝐺
𝑀

𝑅
=

2𝜋𝑅

𝑇
2

It is more convenient to derive the 3-rd Kepler’s law using the angular velocity

𝐺
𝑚𝑀

𝑅2
= 𝑚𝜔2𝑅 𝜔2 𝑅3 = 𝐺𝑀 - this is already the third Kepler´s law!

Using 𝜔 =
2𝜋

𝑇
, one rewrites it as  

𝑅3

𝑇2 =
𝐺𝑀

4𝜋2
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Geosynchronous satellites

A satellite can have the period of its orbiting equal to that of the rotation of the Earth over its axis. 

If the satellite is orbiting in the equatorial plane, that it will have the same position on the sky. For 

this, the orbit radius should have a particular value

𝑅 =
𝑇2

4𝜋2 𝐺𝑀

1/3

With 𝑇 = 1 𝑑𝑎𝑦 = 24 × 3600 = 86400 s  and 𝑀 = 0.6 × 1025 𝑘𝑔 one obtains

𝑅 =
864002

4𝜋2 × 0.667 × 10−10 × 0.6 × 1025
1/3

= 4.23 × 107 𝑚 = 42300 𝑘𝑚. 
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