# Experiment #17: Refraction

#### **OBJECTIVES**

The transmission of light across a boundary between two media is accompanied by a change in both the speed and wavelength of the wave. This can result in a change of direction at the boundary, a phenomenon known as refraction. In this experiment you measure the change in direction of light beams as they refract or reflect at a boundary to determine the index of refraction of a transparent object. The objectives of this experiment are as follows:

- 1. To measure the angles of incidence and refraction at a boundary between media
- 2. To observe total internal reflection at a boundary between media
- 3. To calculate the critical angle of a boundary between media

#### THEORY

The index of refraction is a property of transparent substances that has been independently discovered several times, but is attributed to Willebrord Snellius whose name is associated with the law (you can't make this stuff up). Mathematically, Snell's law describes the relationship between the angle of incidence of a beam of light as it intersects a new transparent medium and the angle of refraction as enters that transparent medium.



Figure 6.1: Refraction overview

Snell's law quantifies the relationship that is observed in Figure 6.1:

$$n_1 \cdot \sin \theta_1 = n_2 \cdot \sin \theta_2 \tag{6.1}$$

where  $n_1$  is the index of refraction of medium 1,  $n_2$  is the index of refraction medium 2,  $\theta_1$  is the angle that the light ray makes with respect to the normal in medium 1,  $\theta_2$  is the angle that the light ray makes with respect to the normal in medium 2.

The index of refraction of any medium  $(n_i)$  is the ratio of the speed of light in vacuum (c) to the speed of light in that medium  $(v_i)$ , as shown in equation 6.2.

$$n_i = \frac{c}{v_i} \tag{6.2}$$

where  $c = 3.00 \times 10^8 \text{ m/s}$  (the accepted value for the speed of light in vacuum, a constant). A very good approximation for the refractive index of air is 1.00, i.e.  $n_{air} = 1.00$ .

On observation, it can easily be seen that as light travels from a lighter medium to a denser one (i.e.  $n_1 < n_2$ ), the refracted light ray bends *towards* the normal. Conversely, when light travels from a denser medium to a lighter one (i.e.  $n_1 > n_2$ ), the refracted light ray bends *away* from the normal. But

when you think about it, how much "away from the normal" is possible? One can only get as far as 90° without leaving the medium! When the refracted ray exceeds 90°, it's not refraction anymore, instead light is reflected back into the same medium it started from, and this phenomenon is known as **total internal reflection**. Note that this <u>only</u> happens for light traveling from a denser medium to a lighter one (see figure 6.2 below).



## ACCEPTED VALUES

The glass used in this experiment is made of Lucite. The accepted value for the refractive index of Lucite is **1.50**. The mystery media have no accepted value for their refractive indices. It is up to the experimenter to determine their values!

| Medium           | Measurement                                                 | Magnitude (°) | Refractive index |  |
|------------------|-------------------------------------------------------------|---------------|------------------|--|
| Air              | Angle of incidence $(40^{\circ} < \theta_i < 60^{\circ})$   |               |                  |  |
| Glass            | Angle of refraction                                         |               | IIa-             |  |
| Air              | Angle of incidence ( $60^{\circ} < \theta_i < 90^{\circ}$ ) |               |                  |  |
| Glass            | Angle of refraction                                         |               | n <sub>b</sub> = |  |
| Glass            | Critical Angle (0c)                                         |               | n <sub>c</sub> = |  |
| Air              | Angle of incidence $(\theta_i)$                             |               | <b>10</b> –      |  |
| Mystery Medium A | Angle of refraction                                         |               | n <sub>A</sub> = |  |
| Air              | Angle of incidence $(\theta_i)$                             |               |                  |  |
| Mystery Medium B | Angle of refraction                                         |               | IIB=             |  |

# ANALYSIS

- 1. Use equation 6.1 to calculate the refractive index of glass in the first three scenarios on the data table  $(n_a, n_b, and n_c)$ .
- 2. Find the average experimental value for the refractive index of Lucite, n.
- 3. Calculate the error (as a percentage) in your average experimental value calculated above.
- 4. Calculate the speed of light in Lucite.
- 5. Use equation 6.1 to calculate the refractive index of "Mystery A" and "Mystery B" media.

Click on this link to start your experiment on refraction:

https://phet.colorado.edu/sims/html/bending-light/latest/bending-light en.html

## Tutorial for the online applet

#### **Bending Light**



Select the first option available: "Intro"



| Material                                   | Air                                                       |       |       |  |
|--------------------------------------------|-----------------------------------------------------------|-------|-------|--|
| Index of Refraction (n) 1.00               |                                                           |       |       |  |
| Air                                        | Air<br>Water<br>Glass<br>Mystery A<br>Mystery B<br>Custom | /ater | Glass |  |
| Material                                   | Water                                                     |       |       |  |
| Index of Refraction (n)<br>Air Water Glass |                                                           |       |       |  |
|                                            |                                                           |       |       |  |

Make sure the top material is "Air", while the bottom one is "Glass". The bottom one will be "Water" by default, the examples on this tutorial will show measurements for light traveling from Air to Water. Make sure the measurements you take are from Air to Glass (and glass to air for the critical angle measurement).

You will also have to switch to two additional media (Mystery A and Mystery B) after you get a hang of the layout of this applet.



Click and drag out the protractor from the side panel on the bottom left corner of your screen.

Make sure the "Normal" is checked. The normal line is a line that is perpendicular to the surface where light is entering from one medium to another.

#### All angles are measured from the normal line.

The angle of incidence  $(\theta_i \text{ or } \theta_1)$  is the angle of the incoming ray.

The angle of refraction  $(\theta_r \text{ or } \theta_2)$  is the angle of the refracted (bent) ray.

You can turn the laser on by hitting the red switch on it. You can click and drag the body of the laser emitter to adjust the angles as needed (take the measurements according to what the data table states).

Here is an example of light with an angle of incidence of 50° and an angle of refraction that is 35°.

To calculate the refractive index of the second medium, we rearrange Snell's Law to solve for  $n_2$ :



Now you have all the instructions you need to begin the experiment!