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Introduction 

Solving problems is an inherent part of the physics course that requires a more active 

approach than just reading the theory or listening to lectures. Making only the latter, the 

student can have an illusion of having understood the material but it is not the case until 

s/he becomes able to apply one’s knowledge to solving problems that is, working actively 

with the material. 

The main purpose of our Introductory Physics course, for the majority of our students, is to 

acquire a conceptual understanding of physics, to develop a scientific way of thinking. The 

latter means relying on the scientific definitions, simple logic, and the common sense, 

opposed to making wild assumptions at every step that leads to wrong results and loss of 

points. 

PHY166 and PHY167 courses are algebra based, while PHY168 and PHY169 are calculus 

based. Both types of courses require that problems are solved algebraically and an algebraic 

result, that is, a formula is obtained. Only after that the numbers are plugged in the 

resulting formula and the numerical result is obtained. One should understand that physics 

is mainly about formulas, not about numbers, thus the main result of problem solving is the 

algebraic result, while the numerical result is secondary. 

Unfortunately, most of the students taking part in our physics courses reject algebra and try 

to work out the solution numerically from the very beginning. Probably, bad teachers at the 

high school taught the students that problem solving consists in finding the “right” formula 

and plugging the numbers into it. This is fundamentally wrong. 

There are several arguments for why the algebraic approach to problem solving is better 

than the numeric approach. 

1. Algebraic manipulations leading to the solution are no more difficult than the 

corresponding operations with numbers. In fact, they are easier as a single symbol, 

such as a, stands for a number that usually requires much more efforts to write 

without mistakes. 

2. Numerical calculations are for computers, while algebraic calculations are for 

humans. Computers do not understand what they are computing, and they are 

proceeding blindly along prescribed routes. The same does a human trying to 

operate with numbers. However, the human forgets what do these numbers stand 

for and loses the clue very soon. If a human operates with algebraic symbols, s/he is 

not losing the clue as the symbols speak for themselves. For instance, a usually is an 

acceleration or a distance, m usually is a mass, etc. 

3. The value of a formula is much higher than that of the numerical answer because the 

formula can be used with another set of input values while the numerical result 

cannot. In all more or less intelligent devices formulas are implemented that work as 

“black boxed”: one supplies the input values and collects the output values. 

4. Formulas allow analysis of their dependence on the input values or parameters. This 

is important for understanding the formula and for checking its validity on simple 



particular cases in which one can obtain the result in a simpler way. This is 

impossible to do with numerical answers. Actually, one can hardly understand them.  

Probably, the reasons given above are sufficient to abandon attempts to ignore the 

algebraic approach, especially as the absence of the algebraic result does not give a full 

score, even if the numerical answer is correct. 

In this collection, the reader will find some exemplary solutions of Introductory Physics 

problems that show the efficient methods and approaches. It is recommended to read my 

collection of math used in our course, “REFRESHING High-School Mathematics”. 

This collection of physics problems solutions does not intend to cover the whole 

Introductory Physics course. Its purpose is to show the right way to solve physics problems. 

Here some useful tips. 

1. Always try to find out what a problem is about, which part of the physics course is in 

question 

2. Drawings are very helpful in most cases. They help to understand the problem and 

its solution 

3. Write down basic formulas that will be used in the solution 

4. Write comments in a good scientific language. It will make the solution more 

readable and will help you to understand it. Solution that consists only of formulas 

and numbers is not good. 

5. Frame your resulting formulas. This shows to the grader that you really understand 

where your results are.  



Physics part I 



Kinematics 

Vectors, coordinates, displacement, distance, velocity, speed, acceleration, projectile 

motion, etc. 

1. Professor’s way to work 

A professor going to work first walks 500 m along the campus wall, then enters the campus 

and goes 100 m perpendicularly to the wall towards his building, after that takes an elevator 

and mounts 10 m up to his office. The trip takes 10 minutes. 

Calculate the displacement, the distance between the initial and final points, the average 

velocity and the average speed. 

 

Solution: The total trajectory can be represented by three vectors going from 0 to 1, then 

from 1 to 2, then from 2 to 3. The displacement is the vector sum of the three displacement 

vectors: 

𝐝 = 𝒓01 + 𝒓12 + 𝒓23. 

It is convenient to choose the coordinate axes xyz that coincide with these three mutually 

orthogonal vectors, as shown in the figure. Then, using, for any vector 

𝐫 = (𝑟𝑥, 𝑟𝑦, 𝑟𝑧), 

one writes 

𝒓01 = (0,500,0) m,    𝒓12 = (100,0,0) m,     𝒓23 = (0,0,10) m. 

The addition of these vectors is performed as follows: 

𝐝 = (0 + 100 + 0, 500 + 0 + 0, 0 + 0 + 10) = (100,500,10) m. 

The distance 𝑑 between the initial and final points is the magnitude of the displacement 𝐝: 

𝑑 = |𝐝| = √𝑑𝑥
2 + 𝑑𝑦

2 + 𝑑𝑧
2 = √1002 + 5002 + 102 

= √10000 + 250000 + 100 = √260100 = 510 m. 

The trajectory length (the way length) is given by 
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𝑤 = 𝑟01 + 𝑟12 + 𝑟23 = 500 + 100 + 10 = 610 m 

and it is longer than the distance. Now, the average velocity is 

𝐯 =
∆𝐫

∆𝑡
=

𝐝

∆𝑡
=

(100,500,10)

10 × 60
= (0.167, 0.833, 0.017) m/s. 

The magnitude of the average velocity is 

𝑣 = |𝐯| =
𝑑

∆𝑡
=

510

10 × 60
= 0.85 m/s. 

The average speed is 

𝑠 =
𝑤

∆𝑡
=

610

10 × 60
= 1.02 m/s. 

One can see that 𝑠 ≥ 𝑣, as it should be. 

2. A 2D walker 

A walker goes 1000 m the direction 30 degrees North of East, then 2000 m in the South-

West direction. The trip takes 30 minutes. 

Find the displacement, way length, average velocity and average speed. 

 

Solution: The displacement is given by 

𝐝 = 𝒓01 + 𝒓12, 

where  

𝒓01 = (𝑟01,𝑥, 𝑟01,𝑦) = (𝑟01 cos 30°, 𝑟01 sin 30°) = (1000
√3

2
,  1000

1

2
) = (500√3,  500) m 

and 
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𝒓12 = (𝑟12,𝑥, 𝑟12,𝑦) = (−𝑟12 cos 45°, −𝑟12 sin 45°) = (−2000
√2

2
, − 2000

√2

2
)

= (−1000√2,  − 1000√2, ) m. 

Better is to write 

𝒓12 = (𝑟12,𝑥, 𝑟12,𝑦) = (𝑟12 cos 125°, 𝑟12 sin 125°) = (2000 (−
√2

2
) ,  2000 (−

√2

2
))

= (−1000√2,  − 1000√2, ) m 

that gives the same result. Now, 

𝐝 = (𝑟01,𝑥 + 𝑟12,𝑥, 𝑟01,𝑦 + 𝑟12,𝑦) = (500√3 − 1000√2,  500 − 1000√2)

≈ (−548.2, −914.2) m 

The distance is given by 

𝑑 = |𝐝| = √𝑑𝑥
2 + 𝑑𝑦

2 = √(−548.2)2 + (−914.2)2 ≈ 1066 m 

The length of the trajectory is 

𝑤 = 𝑟01 + 𝑟12 = 1000 + 2000 = 3000 m. 

The velocity: 

𝐯 =
∆𝐫

∆𝑡
=

𝐝

∆𝑡
=

(−548.2, −914.2)

30 × 60
= (

−548.2

30 × 60
,

−914.2

30 × 60
) = (… , … ) m/s. 

The magnitude of the average velocity: 

𝑣 = |𝐯| =
𝑑

∆𝑡
=

1066

30 × 60
= 0.59 m/s. 

The average speed: 

𝑠 =
𝑤

∆𝑡
=

3000

30 × 60
= 1.67 m/s > 𝑣. 

3. Motion with constant acceleration 

A car started moving from rest with a constant acceleration. At some moment of time, it 

covered the distance 𝑥 and reached the speed 𝑣. Find the acceleration and the time. 

Solution. The formulas for the motion with constant acceleration read 

𝑣 = 𝑎𝑡,      𝑥 =
1

2
𝑎𝑡2, 

where we have taken into account that the motion starts from rest (all initial values are 

zero). If 𝑣 and 𝑥 are given, this is a system of two equations with the unknowns 𝑎 and 𝑡. This 

system of equations can be solved in different ways.  



First method. For instance, one can express the time from the first equation, 𝑡 = 𝑣/𝑎, and 

substitute it to the second equation, 

𝑥 =
1

2
𝑎 (

𝑣

𝑎
)

2

=
𝑣2

2𝑎
. 

From this single equation for 𝑎 one finds 

𝑎 =
𝑣2

2𝑥
. 

Now, one finds the time as 

𝑡 =
𝑣

𝑎
=

𝑣

𝑣2/(2𝑥)
=

2𝑥

𝑣
. 

Second method. Also, one can relate 𝑥 to 𝑣 as follows 

𝑥 =
1

2
𝑎𝑡 × 𝑡 =

1

2
𝑣𝑡. 

After that one finds 

𝑡 =
2𝑥

𝑣
, 

and, further, 

𝑎 =
𝑣

𝑡
=

𝑣

2𝑥/𝑣
=

𝑣2

2𝑥
. 

4. A car trip (1D motion) 

A car starts from the place with an acceleration 2 m/𝑠2 and is accelerating during 10 

seconds, then travels with the same speed for 30 seconds, then decelerates at the rate 

3 m/𝑠2  until stopping. Show the graph 𝑣(𝑡). Calculate the total time of the trip and the 

distance covered in each interval and the total distance covered by two methods: 1) 

Calculation of the area under the line 𝑣(𝑡); 2) Using the formula for the distance in the 

motion with constant acceleration.  

 

Solution: First, we introduce missing notations: 𝑎1 = 2 𝑚/𝑠2, 𝑡1 = 10 𝑠, ∆𝑡2 ≡ 𝑡2 − 𝑡1 =

30 𝑠, 𝑎3 = −3 𝑚/𝑠2. The time dependence of the car’s velocity is shown in the figure. In 

the interval 1 the car accelerates according to the formula 

Interval 1: 𝑣 = 𝑣0 + 𝑎1𝑡 = 𝑎1𝑡, 

v 

t 0 t1 t2 t3 

v1 

1 2 3 



where we take into account that the initial velocity is zero: 𝑣0 = 0. At the end of the first 

time interval, 𝑡 = 𝑡1, the velocity reaches the value  

𝑣1 = 𝑎1𝑡1. 

This expression is an instance of the formula above.  

The velocity remains the same in the second interval of motion: 

Interval 2: 𝑣 = 𝑣1. 

The time at the end of the second interval is 

𝑡2 = 𝑡1 + ∆𝑡2 = 10 + 30 = 40 𝑠. 

In the third interval, the car decelerates according to 

Interval 3: 𝑣 = 𝑣1 + 𝑎3(𝑡 − 𝑡2) 

(this is the velocity formula with shifted time as the motion starts at 𝑡 = 𝑡2 rather than at 

𝑡 = 0). At the end of the motion the car stops that is described by the instance of the 

formula above with 𝑣 = 0, that is, 

0 = 𝑣1 + 𝑎3(𝑡3 − 𝑡2) 

that defines 𝑡3. One obtains 

∆𝑡3 ≡ 𝑡3 − 𝑡2 = −
𝑣1

𝑎3
= −

𝑎1𝑡1

𝑎3
= −

𝑎1

𝑎3
𝑡1 

and, further, 

𝑡3 = 𝑡2 + ∆𝑡3 = 𝑡1 + ∆𝑡2 + ∆𝑡3 = 𝑡1 + ∆𝑡2 −
𝑎1

𝑎3
𝑡1. 

This is the analytical or symbolic or algebraic answer or formula for the total time. (This 

result will not be used, however). In this formula, the result is expressed through the 

quantities given in the formulation of the problem (this has to be checked each time before 

submitting the solution for grading!). Now, substituting given numbers, one obtains 

𝑡3 = 10 + 30 −
2

−3
10 = 10 + 30 +

20

3
= 46.7 𝑠. 

The preparatory work done, let us now find the total distance covered. Using the first 

method, we find it as the area under the curve 𝑣(𝑡) that consists of two triangles and one 

rectangle, see the figure. The parameters of them have been calculated above. So we write 

∆𝑥 = ∆𝑥1 + ∆𝑥2 + ∆𝑥3 =
1

2
𝑡1𝑣1 + ∆𝑡2𝑣1 +

1

2
∆𝑡3𝑣1. 

Here we must substitute the expressions for the quantities that are not given in the problem 

formulation: 𝑣1 and ∆𝑡3. We prefer not to factor 𝑣1 to keep the contributions of each 

interval separately. The result reads 



∆𝑥 =
1

2
𝑎1𝑡1

2 + ∆𝑡2𝑎1𝑡1 +
1

2
(−

𝑎1

𝑎3
𝑡1) 𝑎1𝑡1 

or, finally, 

∆𝑥 =
1

2
𝑎1𝑡1

2 + ∆𝑡2𝑎1𝑡1 −
1

2

𝑎1
2

𝑎3
𝑡1

2. 

This is our symbolic answer for the distances covered in the motion. 

Substituting the numerical values from the problem’s formulation, one obtains 

∆𝑥 =
1

2
2 × 102 + 30 × 2 × 10 −

1

2

22

(−3)
102 = 100 + 600 + 66.7 = 766.7𝑚. 

Now, let us find the total distance covered using the formula for the displacement in the 

motion with a constant acceleration 

∆𝑥 ≡ 𝑥 − 𝑥0 = 𝑣0∆𝑡 +
1

2
𝑎(∆𝑡)2 

in the form appropriate to each of the motion intervals. One has 

∆𝑥 = ∆𝑥1 + ∆𝑥2 + ∆𝑥3 =
1

2
𝑎1𝑡1

2 + 𝑣1∆𝑡2 + [𝑣1∆𝑡3 +
1

2
𝑎3(∆𝑡3)2] 

=
1

2
𝑎1𝑡1

2 + 𝑣1∆𝑡2 + [𝑣1 +
1

2
𝑎3∆𝑡3] ∆𝑡3. 

Substituting here the expressions for 𝑣1 and ∆𝑡3, one obtains 

∆𝑥 =
1

2
𝑎1𝑡1

2 + ∆𝑡2𝑎1𝑡1 + [𝑎1𝑡1 +
1

2
𝑎3 (−

𝑎1

𝑎3
𝑡1)] (−

𝑎1

𝑎3
𝑡1) 

=
1

2
𝑎1𝑡1

2 + ∆𝑡2𝑎1𝑡1 + [𝑎1𝑡1 −
1

2
𝑎1𝑡1] (−

𝑎1

𝑎3
𝑡1) 

=
1

2
𝑎1𝑡1

2 + ∆𝑡2𝑎1𝑡1 +
1

2
𝑎1𝑡1 (−

𝑎1

𝑎3
𝑡1) 

=
1

2
𝑎1𝑡1

2 + ∆𝑡2𝑎1𝑡1 −
1

2

𝑎1
2

𝑎3
𝑡1

2 

that coincides with the result obtained by the first method (the red formula). 

5. Rocket motion (1D) 

A rocket starts vertically up and moves with the acceleration 20 𝑚/𝑠2 during 20 seconds. 

Then it continues its motion ballistically. Find the maximal height reached and the 

corresponding time. Find the time of hitting the ground and the corresponding speed. 

Solution. First, we introduce the notations: the duration of the first stage (powered motion) 

𝑡1 = 20 𝑠, the acceleration in the first stage 𝑎 = 20 𝑚/𝑠2. The initial velocity is zero.  



We choose the origin of time 𝑡 = 0 and put the origin of 𝑧-axis (directed up) at zero, so that 

the initial conditions are 𝑧0 = 0 and 𝑣0 = 0. The formulas for the motion with a constant 

acceleration at the first stage are 

𝑣 = 𝑎𝑡,     𝑧 =
1

2
𝑎𝑡2. 

At the end of the first stage, 𝑡 = 𝑡1, the velocity and the height read 

𝑣1 = 𝑎𝑡1,     𝑧1 =
1

2
𝑎𝑡1

2. 

These are the initial conditions for the motion on the second stage. The formulas for the 

motion with the constant acceleration −𝑔 on the second (ballistic) stage are 

𝑣 = 𝑣1 − 𝑔(𝑡 − 𝑡1)     𝑧 = 𝑧1 + 𝑣1(𝑡 − 𝑡1) −
1

2
𝑔(𝑡 − 𝑡1)2. 

Note that the second stage begins at 𝑡 = 𝑡1, thus we use the formulas with shifted time. The 

highest point can be found from the condition 𝑣 = 0 that yields the equation for the time at 

which the maximal height is reached: 

0 = 𝑣1 − 𝑔(𝑡𝑚𝑎𝑥 − 𝑡1). 

The solution is  

𝑡𝑚𝑎𝑥 − 𝑡1 =
𝑣1

𝑔
=

𝑎𝑡1

𝑔
=

𝑎

𝑔
𝑡1 

and, finally, 

𝑡𝑚𝑎𝑥 =
𝑎

𝑔
𝑡1 + 𝑡1 = (

𝑎

𝑔
+ 1) 𝑡1. 

Substituting the numbers, one obtains 

𝑡𝑚𝑎𝑥 = (
20

9.8
+ 1) 20 = 60.8 𝑠. 

Now one can calculate the maximal height: 

𝑧𝑚𝑎𝑥 = 𝑧1 + 𝑣1(𝑡𝑚𝑎𝑥 − 𝑡1) −
1

2
𝑔(𝑡𝑚𝑎𝑥 − 𝑡1)2. 

Substituting here the quantities found above and simplifying, one obtains 

𝑧𝑚𝑎𝑥 =
1

2
𝑎𝑡1

2 + 𝑎𝑡1

𝑎

𝑔
𝑡1 −

1

2
𝑔 (

𝑎

𝑔
𝑡1)

2

 

=
1

2
𝑎𝑡1

2 +
𝑎2

𝑔
𝑡1

2 −
1

2

𝑎2

𝑔
𝑡1

2 

=
1

2
𝑎𝑡1

2 +
1

2

𝑎2

𝑔
𝑡1

2 =
1

2
(1 +

𝑎

𝑔
) 𝑎𝑡1

2. 

Substituting the numbers, one obtains 



𝑧𝑚𝑎𝑥 =
1

2
(1 +

20

9.8
) 20 × 202 = 12163 𝑚 = 12.2 𝑘𝑚. 

At the third stage, the rocket falls with the acceleration −𝑔 from the height 𝑧𝑚𝑎𝑥. The 

formulas for its velocity and height at this stage are 

𝑣 = −𝑔(𝑡 − 𝑡𝑚𝑎𝑥),       𝑧 = 𝑧𝑚𝑎𝑥 −
1

2
𝑔(𝑡 − 𝑡𝑚𝑎𝑥)2 

(also formulas with shifted time). The final time (of hitting the ground) 𝑡𝑓  is determined by 

𝑧 = 0. This gives the equation (an instance of the general formula) 

0 = 𝑧𝑚𝑎𝑥 −
1

2
𝑔(𝑡𝑓 − 𝑡𝑚𝑎𝑥)

2
. 

From here one finds 

𝑡𝑓 − 𝑡𝑚𝑎𝑥 = √
2𝑧𝑚𝑎𝑥

𝑔
= √

2

𝑔

1

2
(1 +

𝑎

𝑔
) 𝑎𝑡1

2 = √(1 +
𝑎

𝑔
)

𝑎

𝑔
𝑡1. 

This will be needed to find the final velocity. For 𝑡𝑓 itself one obtains 

𝑡𝑓 = 𝑡𝑚𝑎𝑥 + √(1 +
𝑎

𝑔
)

𝑎

𝑔
𝑡1 = (

𝑎

𝑔
+ 1) 𝑡1 + √(1 +

𝑎

𝑔
)

𝑎

𝑔
𝑡1. 

Substituting the numbers, one obtains 

𝑡𝑓 = (
20

9.8
+ 1) 20 + √(1 +

20

9.8
)

20

9.8
20 = 60.8 + 49.8 = 110.6 𝑠. 

(Is it obvious that it takes a longer time for the rocket to reach the highest point than to fall 

back to the initial level? To understand this, sketch the function 𝑧(𝑡).) 

Now, the final velocity can be found from the velocity formula: 

𝑣𝑓 = −𝑔(𝑡𝑓 − 𝑡𝑚𝑎𝑥) = −𝑔√(1 +
𝑎

𝑔
)

𝑎

𝑔
𝑡1 = −√(1 +

𝑎

𝑔
) 𝑎𝑔𝑡1 = −√(𝑎 + 𝑔)𝑎𝑡1. 

Substituting the numbers, one obtains 

𝑣𝑓 = −√(20 + 9.8)20 × 20 = 488 𝑚/𝑠. 



6. Tennis serve (Giancoli Chapter 3) 

 

 

Solution. First, we define the coordinate axes and introduce missing notations. The origin of 

the coordinate system is at the server’s position, 𝑧-axis up and 𝑥-axis to the right. The initial 

height (serve height) 𝑧0 = 2.5 𝑚, the height of the net 𝑧1 = 0.9 𝑚, the height of the ground 

(the reference height) 0 𝑚, distance server-net 𝑥1 = 15 𝑚. Find 𝑣0𝑥. 

First, use the 𝑥- and 𝑧-formulas to find 𝑣0𝑥: 

𝑥 = 𝑣0𝑥𝑡,        𝑧 = 𝑧0 −
1

2
𝑔𝑡2. 

The instance of these general formulas corresponding to the ball passing just above the net 
reads 

𝑥1 = 𝑣0𝑥𝑡1,        𝑧1 = 𝑧0 −
1

2
𝑔𝑡1

2. 

This is a system of two equations with two unknowns: 𝑣0𝑥 and 𝑡1. The second equation is 

autonomous (contains only one unknown), so it can be solve to give 

𝑡1 = √
2(𝑧0 − 𝑧1)

𝑔
. 

Then, from the first equation one finds  

𝑣0𝑥 =
𝑥1

𝑡1
= 𝑥1√

𝑔

2(𝑧0 − 𝑧1)
. 

Substituting the numbers into this formula, one obtains 

𝑣0𝑥 = 15√
9.8

2(2.5 − 0.9)
= 26.3

𝑚

𝑠
. 

Now we can find the distance from the server at which the ball lands. We use the instances 

of the general formulas above corresponding to the ball hitting the ground: 



𝑥2 = 𝑣0𝑥𝑡2,        0 = z = 𝑧0 −
1

2
𝑔𝑡2

2. 

One finds 𝑡2 from the second equation: 

𝑡2 = √
2𝑧0

𝑔
. 

From this formula, one can find the numerical value of 𝑡2 that is the total time of the 

motion. Substituting the formula for 𝑡2 into the first equation, one obtains 

𝑥2 = 𝑣0𝑥𝑡2 = 𝑥1√
𝑔

2(𝑧0 − 𝑧1)
√

2𝑧0

𝑔
= 𝑥1√

𝑧0

𝑧0 − 𝑧1
. 

Substituting the numbers, one obtains 

𝑥2 = 15√
2.5

2.5 − 0.9
= 18.75 𝑚. 

Now 𝑥2 − 𝑥1 = 18.75 − 15 = 3.75 𝑚 that is well below 7 𝑚. Thus, the ball is “good”. 

7. Dropping a package from a copter into a moving car (Giancoli Chapter 3) 

 

 

Solution: First, we must introduce missing notations: the height of the copter ℎ = 78 𝑚, the 

speed of the copter 𝑣 = 215
𝑘𝑚

ℎ
= 215 ×

1000

3600
= 59.9𝑚/𝑠, the speed of the car 𝑢 =

155
𝑘𝑚

ℎ
=

155

3.6
= 43.1𝑚/𝑠. Find the angle 𝜃. 

There are two solutions to this problem, in the laboratory frame and in the moving frame of 

the car.  



Solution in the laboratory frame. Put the origin of the coordinate system on the ground 

below the copter. The initial 𝑥-coordinate of the car(when the package is dropped) is 𝑥𝑐,0. If 

it is found, then the angle 𝜃 can be expressed as 

tan 𝜃 =
ℎ

𝑥𝑐,0
. 

The formulas for the motion of the package and the car have the form 

𝑧𝑝 = ℎ −
1

2
𝑔𝑡2,        𝑥𝑝 = 𝑣𝑡,      𝑥𝑐 = 𝑥𝑐,0 + 𝑢𝑡. 

When the package lands into the car, the following conditions are fulfilled: 

𝑧𝑝 = 0,     𝑥𝑝 = 𝑥𝑐. 

Substituting these into the general equations, one obtains their instance 

0 = ℎ −
1

2
𝑔𝑡2,           𝑣𝑡 = 𝑥𝑐,0 + 𝑢𝑡. 

This is a system of two equations with two unknowns. The first equation is autonomous and 

yields the fall time 

𝑡 = 𝑡𝑓 = √
2ℎ

𝑔
. 

Substituting this into the second equation, one obtains 

𝑥𝑐,0 = (𝑣 − 𝑢)𝑡𝑓 = (𝑣 − 𝑢)√
2ℎ

𝑔
. 

Now for the angle one obtains 

𝜃 = arctan (
ℎ

𝑣 − 𝑢
√

𝑔

2ℎ
) = arctan (

1

𝑣 − 𝑢
√

𝑔ℎ

2
). 

Substituting the numbers, one obtains 

𝜃 = arctan (
1

(59.9 − 43.1)
√

9.8 × 78

2
) = arctan(1.16) = 49°. 

Solution in the moving frame (frame of the car). The absolute velocity of the copter can be 

represented as 

𝑣 = 𝑣′ + 𝑢, 

where 𝑣′ is the relative velocity of the copter with respect to the car, 𝑣′ = 𝑣 − 𝑢. The origin 

of the coordinate axes in the moving frame, 𝑂′, is moving to the right with the velocity of 



the car 𝑢. At 𝑡 = 0 the origins of the laboratory and moving frames coincide, 𝑂′ = 𝑂. Thus 

the relation between the 𝑥-coordinate (absolute frame) and 𝑥′-coordinate (moving frame) is 

𝑥 = 𝑥′ + 𝑢𝑡 

or, conversely,  

𝑥′ = 𝑥 − 𝑢𝑡 

The formulas for the motion of the package in this frame have the form 

𝑧𝑝 = ℎ −
1

2
𝑔𝑡2,        𝑥′

𝑝 = 𝑣′𝑡.     

As for the car, it is at rest in its own frame: 

 𝑥′
𝑐(𝑡) =  𝑥𝑐,0. 

As in the first solution, one finds the fall time, 

𝑡𝑓 = √
2ℎ

𝑔
, 

and substitutes it into the condition: 

 𝑥′
𝑝(𝑡𝑓) =  𝑥′

𝑐(𝑡𝑓) 

or 

 𝑥′
𝑝(𝑡𝑓) = 𝑣′𝑡𝑓 = (𝑣 − 𝑢)√

2ℎ

𝑔
=  𝑥′

𝑐(𝑡𝑓) = 𝑥𝑐,0. 

The result for 𝑥𝑐,0 coincides with that obtained by the first method: 

𝑥𝑐,0 = (𝑣 − 𝑢)√
2ℎ

𝑔
. 

Then  

tan 𝜃 =
ℎ

𝑥𝑐,0
=

ℎ

𝑣 − 𝑢
√

𝑔

2ℎ
=

1

𝑣 − 𝑢
√

𝑔ℎ

2
, 

Wherefrom one finds 𝜃. 

8. Targeting angle (projectile motion) 

A cannon launches missiles with the initial speed 𝑣0. Find the targeting angles 𝜃 to hit the 

target at the distance 𝑑 at the same height as the cannon.  

Solution. The formulas for the projectile motion have the form 

𝑧 = 𝑣0𝑧𝑡 −
1

2
𝑔𝑡2,              𝑥 = 𝑣0𝑥𝑡. 



The origin of the coordinate system is put at the location of the cannon, thus 𝑥0 = 𝑧0 = 0. 

The distance between the cannon and the landing point is defined by the fall time (or final 

time or flight time) 𝑡𝑓: 

𝑑 = 𝑣0𝑥𝑡𝑓 . 

The time 𝑡𝑓 can be found from the first equation: 

0 = 𝑣0𝑧𝑡𝑓 −
1

2
𝑔𝑡𝑓

2 = 𝑡𝑓 (𝑣0𝑧 −
1

2
𝑔𝑡𝑓). 

The first solution to this equation, 𝑡𝑓 = 0, corresponds to the beginning of the motion and 

should be discarded. The landing time nullifies the expression in the brackets, 

𝑣0𝑧 −
1

2
𝑔𝑡𝑓 = 0, 

wherefrom 

𝑡𝑓 =
2𝑣0𝑧

𝑔
. 

Now 

𝑑 = 𝑣0𝑥𝑡𝑓 =
2𝑣0𝑥𝑣0𝑧

𝑔
. 

The components of the initial velocity can be expressed as 

𝑣0𝑥 = 𝑣0 cos 𝜃 ,       𝑣0𝑧 = 𝑣0 sin 𝜃, 

so that 

𝑑 =
2𝑣0

2 sin 𝜃 cos 𝜃

𝑔
=

𝑣0
2 sin 2𝜃

𝑔
, 

where the trigonometric identity sin 2𝜃 ≡ 2 sin 𝜃 cos 𝜃 was used. As the maximal value of 

the sine function is 1 and it is reached for the argument equal to 90°, one can see that 𝑑 

reaches its maximum for 𝜃 = 45°. One can rewrite 

𝑑 = 𝑑𝑚𝑎𝑥 sin 2𝜃 ,       𝑑𝑚𝑎𝑥 =
𝑣0

2

𝑔
. 

This is an equation for 𝜃 if 𝑑 has a prescribed value (the distance to the target). For the 

distance to the target 𝑑 > 𝑑𝑚𝑎𝑥  the target cannot be hit. For 𝑑 < 𝑑𝑚𝑎𝑥  the target can be hit 

in two different ways using two values of the targeting angle that satisfy 

sin 2𝜃 =
𝑑

𝑑𝑚𝑎𝑥
. 

These solutions are 

2𝜃1 = arcsin
𝑑

𝑑𝑚𝑎𝑥
      and   2𝜃2 = π − arcsin

𝑑

𝑑𝑚𝑎𝑥
 , 



that is, 

𝜃1 =
1

2
arcsin

𝑑

𝑑𝑚𝑎𝑥
      and   𝜃2 =

π

2
−

1

2
arcsin

𝑑

𝑑𝑚𝑎𝑥
 . 

The second solution is in radians, and 𝜋 radians corresponds to 180°. For instance, for 
𝑑

𝑑𝑚𝑎𝑥
=

1

2
 one has arcsin1

2
= 30° and 𝜃1 = 15° and 𝜃2 = 90° − 15° = 75°.  

 

One can check algebraically that the second expression is also a solution of the equation: 

sin 𝜙2 = sin(𝜋 − arcsin 𝑎) = sin(arcsin 𝑎) = 𝑎. 

 

9. Hitting an elevated target (projectile motion, Giancoli, Chapter 3) 

 

0 1 

1 

cos 

sin 

 

a<1 

Equation: sin  a 

Solutions: 

1  arcsina 

2   arcsina  



 

Solution. First, we introduce missing notations. The horizontal distance cannon-target 

𝑑 = 195 𝑚, the height of the target ℎ = 155 𝑚, the missile flight time 𝑡𝑓 = 7.6 𝑠. Find: 𝑣0, 

𝜃. 

The general formulas for the projectile motion have the form 

𝑧 = 𝑣0𝑧𝑡 −
1

2
𝑔𝑡2,              𝑥 = 𝑣0𝑥𝑡. 

The origin of the coordinate system is put at the location of the cannon, thus 𝑥0 = 𝑧0 = 0.  

The instance of these formulas, corresponding to the problem’s formulation (hitting the 

target), is 

ℎ = 𝑣0𝑧𝑡𝑓 −
1

2
𝑔𝑡𝑓

2,       𝑑 = 𝑣0𝑥𝑡𝑓 . 

From here, one finds the components of the initial velocity: 

𝑣0𝑥 =
𝑑

𝑡𝑓
,            𝑣0𝑧 =

ℎ + 1
2
𝑔𝑡𝑓

2

𝑡𝑓
.   

Now 

𝑣0 = √𝑣0𝑥
2 + 𝑣0𝑧

2 =

√𝑑2 + (ℎ + 1
2
𝑔𝑡𝑓

2)
2

𝑡𝑓
 

and the angle 𝜃 is the solution of the equation 

tan 𝜃 =
𝑣0𝑧

𝑣0𝑥
. 

This equation has only one solution 

𝜃 = arctan
𝑣0𝑧

𝑣0𝑥
= arctan

ℎ + 1
2
𝑔𝑡𝑓

2

𝑑
. 

Substituting the numbers, one obtains… 



10. Car jumping (Projectile motion, Giancoli, Chapter 3) 

 

Solution. First, we add missing notations. The horizontal distance 𝑑 = 20 𝑚, the initial 

height ℎ = 1.5 𝑚, the launching angle in (b) 𝜃 = 10°.  

We put the origin of the coordinate system at the foot of the “cliff” (below the end of the 

takeoff ramp at the level of the roofs of the standing cars). The formulas for the motion with 

a constant acceleration have the form 

𝑧 = ℎ + 𝑣0𝑧𝑡 −
1

2
𝑔𝑡2,              𝑥 = 𝑣0𝑥𝑡. 

When the jumping car clears the roof of the last standing car, one has (an instance of the 

formulas above) 

0 = ℎ + 𝑣0𝑧𝑡𝑓 −
1

2
𝑔𝑡𝑓

2,              𝑑 = 𝑣0𝑥𝑡𝑓 .        (1) 

(a) In this case 𝑣0𝑧 = 0 and 𝑣0𝑥 = 𝑣0. From the first equation one obtains 

𝑡𝑓 = √
2ℎ

𝑔
. 

Substituting this into the second equation, one obtains 

𝑣0 =
𝑑

𝑡𝑓
= 𝑑√

𝑔

2ℎ
. 

Substituting the numbers, one obtains 

𝑣0 = 20√
9.8

2 × 1.5
= 36 𝑚/𝑠. 

(b) In this case 

𝑣0𝑥 = 𝑣0 cos 𝜃 ,       𝑣0𝑧 = 𝑣0 sin 𝜃, 

so that the general formulas at the clearing point, (1), take the form 



0 = ℎ + 𝑣0 sin 𝜃 𝑡𝑓 −
1

2
𝑔𝑡𝑓

2,              𝑑 = 𝑣0 cos 𝜃 𝑡𝑓 . 

This is again a system of two equations with two unknowns: 𝑣0 and 𝑡𝑓. However, it is 

inconvenient to find 𝑡𝑓 from the first equation, as above, because here one needs to sole a 

full quadratic equation. Thus we apply a slightly different method. Since we do not need 𝑡𝑓, 

we can eliminate if from the second equation [ 𝑡𝑓 = 𝑑/(𝑣0 cos 𝜃) ] and substitute it into the 

first equation that yields 

0 = ℎ +
𝑣0 sin 𝜃

𝑣0 cos 𝜃
𝑑 −

1

2
𝑔 (

𝑑

𝑣0 cos 𝜃
)

2

. 

After simplification, one obtains the equation for the car’s speed 

0 = ℎ + 𝑑 tan 𝜃 −
𝑔𝑑2

2 cos2 𝜃

1

𝑣0
2 

that is a quadratic equation without the linear term 

(ℎ + 𝑑 tan 𝜃)𝑣0
2 −

𝑔𝑑2

2 cos2 𝜃
= 0. 

Its solution reads 

𝑣0 =
𝑑

cos 𝜃
√

𝑔

2(ℎ + 𝑑 tan 𝜃)
. 

For 𝜃 = 0, this formula simplifies to the solution obtained in (a). For small 𝜃, one can use 

sin 𝜃 ≅ 𝜃, tan 𝜃 ≅ 𝜃,   cos 𝜃 ≅ 1 −
1

2
𝜃2 ≅ 1, 

(𝜃 in radians) so that the value of 𝑣0 decreases with 𝜃 because of the tan 𝜃 term in the 

denominator. We have the angle, in radians, 

𝜃 = 10°
2𝜋

360°
= 0.175 ≪ 1, 

so that the angle is, indeed, small, and one can use the formulas for the small angles above. 

Substituting the numbers, one obtains, approximately, 

𝑣0 ≅ 20√
9.8

2(1.5 + 20 × 0.175)
= 20√

9.8

2(1.5 + 3.5)
= 19.80 𝑚/𝑠. 

Using the full expression yields 

𝑣0 =
20

cos 10°
√

9.8

2(1.5 + 20 tan 10°)
= 20.05 𝑚/𝑠. 



This is a serious decrease of the minimal speed in comparison to the case 𝜃 = 0. The reason 

is that the small tan 𝜃 is multiplied by the large 𝑑. 

11. Vertical motion with gravity ― full quadratic equation 

A person standing on the edge of a cliff throws a rock straight upwards with an initial speed 

of 9 m/s. The cliff stands at a height of 105 meters from the bottom of the ravine. (a) Sketch 

a plot of velocity versus time and position versus time for the motion of the rock. (b) What 

will be the maximum height the rock reaches? (c) How long will it take to reach the ground? 

(d) How fast will it be traveling when it reaches the ground?  

Solution: (a) Making a sketch is a guarantee of success in problem solving. 

 

 

b) Let us introduce missing notations. Initial velocity 𝑣0 = 9 𝑚/𝑠, the height of the bottom 

of the ravine ℎ = −105 𝑚. The reference level is the edge of the cliff. 

The time dependences of the velocity and displacement in the motion with constant 

acceleration 𝑎 = −𝑔 are given by the formulas 

v 

t 
0 

moving down moving up 

tmax tf 

t 

z 

0 

moving down moving up 

tmax tf 

h < 0 

zmax 



𝑣(𝑡) = 𝑣0 − 𝑔𝑡;          𝑧(𝑡) = 𝑣0𝑡 −
1

2
𝑔𝑡2.           (1) 

Finding the maximum of 𝑧(𝑡) directly from the second formula requires using the calculus. 

However, one can use the physical argument and point out that when the height reaches its 

maximum, the vertical velocity must vanish. Thus, from the first equation one obtains 

0 = 𝑣0 − 𝑔𝑡𝑚𝑎𝑥     ⟹     𝑡𝑚𝑎𝑥 =
𝑣0

𝑔
=

9

9.8
= 0.92 𝑠. 

After that, one finds the maximal height from the height formula substituting 𝑡 ⇒ 𝑡𝑚𝑎𝑥, that 

is, 

𝑧𝑚𝑎𝑥 ≡ 𝑧(𝑡𝑚𝑎𝑥) = 𝑣0𝑡𝑚𝑎𝑥 −
1

2
𝑔𝑡𝑚𝑎𝑥

2 = 𝑣0

𝑣0

𝑔
−

1

2
𝑔 (

𝑣0

𝑔
)

2

=
𝑣0

2

2𝑔
. 

Substituting numbers, one obtains 

𝑧𝑚𝑎𝑥 =
92

2 × 9.8
= 4.1 𝑚 

c) The time to reach the ground, that is, the fall time 𝑡𝑓, can be found from the height 

equation (1) substituting 𝑧 ⇒ ℎ: 

ℎ = 𝑣0𝑡𝑓 −
1

2
𝑔𝑡𝑓

2. 

This is a quadratic equation that can be rewritten into the canonical form 

𝑔𝑡𝑓
2 − 2𝑣0𝑡𝑓 + 2ℎ = 0. 

The two solutions of this equation are 

𝑡𝑓 =
1

𝑔
(𝑣0 ± √𝑣0

2 − 2𝑔ℎ). 

If 0 < ℎ < 𝑧𝑚𝑎𝑥, both solutions are positive and both make sense. The object thrown up 

crosses the level 𝑧 = ℎ twice. The smaller 𝑡𝑓 value (with minus) corresponds to crossing the 

level 𝑧 = ℎ moving up. The larger 𝑡𝑓 value (with plus) corresponds to crossing the level 

𝑧 = ℎ moving down. For ℎ < 0 the object crosses the level of the negative height only once. 

The negative solution for the time should be discarded on physical grounds (negative times 

are not acceptable). Substituting the numbers, one obtains 

𝑡𝑓 =
1

9.8
(9 + √92 + 2 × 9.8 × 105) = 5.64 𝑠. 

d) The velocity at the end of the fall can be obtained from the velocity equation (1) as 

𝑣(𝑡𝑓) = 𝑣0 − 𝑔
1

𝑔
(𝑣0 + √𝑣0

2 − 2𝑔ℎ) = −√𝑣0
2 − 2𝑔ℎ. 



This velocity is negative as it is directed down. The value given by the square root can be 

found from the energy conservation law in a shorter way. Substituting the numbers, one 

obtains 

𝑣(𝑡𝑓) = −√92 + 2 × 9.8 × 105 = −46.2
𝑚

𝑠
. 

12. Targeting angle for different heights (projectile motion) 

A missile launched from a cannon with the initial speed 𝑣0 targets an object at the linear 

distance 𝑑 from the cannon and at the height ℎ with respect to the cannon. Investigate the 

possibility of hitting the object and the launching angles. 

Solution (?). The formulas for the motion of the missile have the form (motion with constant 

acceleration) 

𝑧 = 𝑣0𝑧𝑡 −
1

2
𝑔𝑡2,              𝑥 = 𝑣0𝑥𝑡. 

The instance of these general formulas corresponding to hitting the target is 

ℎ = 𝑣0𝑧𝑡𝑓 −
1

2
𝑔𝑡𝑓

2,              𝑑 = 𝑣0𝑥𝑡𝑓 . 

From the first equation one finds 𝑡𝑓 as in the preceding problem, 

𝑡𝑓 =
1

𝑔
(𝑣0𝑧 ± √𝑣0𝑧

2 − 2𝑔ℎ). 

For ℎ > 0, there are two positive-time solutions. The smaller time (with the – sign in the 

formula) corresponds to hitting the target while moving upward. The larger time (with the + 

sign in the formula) corresponds to hitting the target while moving downward. For ℎ < 0, 

there is only the second solution. The solutions exists only for 𝑣0𝑧
2 > 𝑔ℎ, otherwise, the 

missile cannot reach the required height. The time of the motion should satisfy the second 

equation above, 

𝑑 = 𝑣0𝑥𝑡𝑓 =
𝑣0𝑥

𝑔
(𝑣0𝑧 ± √𝑣0𝑧

2 − 2𝑔ℎ). 

Substituting 

𝑣0𝑥 = 𝑣0 cos 𝜃 ,       𝑣0𝑧 = 𝑣0 sin 𝜃, 

one obtains the equation for the targeting angle 𝜃 

𝑑 =
𝑣0 cos 𝜃

𝑔
(𝑣0 sin 𝜃 ± √𝑣0

2 sin2 𝜃 − 2𝑔ℎ). 

For ℎ = 0, this equation simplifies and one obtains the well-known formula from which one 

finds 𝜃. In this case, the missile can hit the target only moving downward, so, using the 

solution of the quadratic equation with the sign (+), one obtains the known result 



𝑑 =
𝑣0 cos 𝜃

𝑔
(𝑣0 sin 𝜃 + 𝑣0 sin 𝜃) =

2𝑣0
2 sin 𝜃 cos 𝜃

𝑔
=

𝑣0
2 sin(2𝜃)

𝑔
 

In the general case, this is a complicated trigonometric equation for 𝜃 that does not have an 

analytical solution and has to be solved numerically. 

13. Boat in the river (relative motion, Giancoli, Chapter 3) 

 

 

Solution. The speed of the boat with respect to water is 𝑣′ > 𝑢, where 𝑢 is the speed 

of the water. The velocity of the boat in the laboratory system is 

𝐯 = 𝐯′ + 𝐮. 

a) The boat goes along the river. When it is going upstream, its absolute velocity is 

𝑣 = 𝑣′ − 𝑢. When the boat goes downstream, its absolute velocity is 𝑣 = 𝑣′ + 𝑢. The 

distances are 𝑑 = 𝐷/2 upstream and the same downstream. The total trip time is given by 

𝑡𝑡𝑜𝑡,𝑎 = 𝑡𝑢𝑝 + 𝑡𝑑𝑜𝑤𝑛 =
𝑑

𝑣′ − 𝑢
+

𝑑

𝑣′ + 𝑢
=

𝐷

2
(

1

𝑣′ − 𝑢
+

1

𝑣′ + 𝑢
) 

        =
𝐷

2

𝑣′ + 𝑢 + 𝑣′ − 𝑢

𝑣′2 − 𝑢2
=

𝐷𝑣′

𝑣′2 − 𝑢2
. 

If the boat is traveling in a motionless water (a lake or a sea), then 𝑢 = 0 and the time of the 

trip is given by the obvious formula 

𝑡𝑡𝑜𝑡 =
𝐷

𝑣′
. 

One can see that this time is shorter than in the case (a).  

b) The boat goes straight across the river, as shown in the sketch. In this case, it is essential 

to consider the velocities as vectors. Projected onto the coordinate axes, the expression for 

the absolute velocity reads 

u 

v’ 

v 

 

x 

y 



𝑣𝑥 = 𝑣′
𝑥 + 𝑢𝑥 = −𝑣′ sin 𝜃 + 𝑢 

𝑣𝑦 = 𝑣′𝑦 + 𝑢𝑦 = 𝑣′ cos 𝜃 

The condition that the boat crosses the river straight is 𝑣𝑥 = 0. From this, using the first 

equation, one obtains 

0 = −𝑣′ sin 𝜃 + 𝑢   →    sin 𝜃 =
𝑢

𝑣′
. 

Now from the second equation one obtains 

𝑣𝑦 = 𝑣′√1 − sin2 𝜃 = 𝑣′√1 − (
𝑢

𝑣′
)

2

= √𝑣′2 − 𝑢2. 

Now the total time of the trip is 

𝑡𝑡𝑜𝑡,𝑏 =
𝐷

𝑣𝑦
=

𝐷

√𝑣′2 − 𝑢2
. 

What time is longer? Both are diverging if 𝑣′ → 𝑢 but 𝑡𝑡𝑜𝑡,𝑎 diverges stronger. Thus, in the 

limit of a slow boat, 𝑡𝑡𝑜𝑡,𝑎 > 𝑡𝑡𝑜𝑡,𝑏. In the limit 𝑣′ ≫ 𝑢, both times become 𝐷/𝑣′. Then, most 

probably, 𝑡𝑡𝑜𝑡,𝑎 ≥ 𝑡𝑡𝑜𝑡,𝑏 holds always. To investigate the problem thoroughly, one can 

consider 

(
𝑡𝑡𝑜𝑡,𝑎

𝑡𝑡𝑜𝑡,𝑏
)

2

=

𝑣′2

(𝑣′2
−𝑢2)

2

1

𝑣′2
−𝑢2

=
𝑣′2

𝑣′2 − 𝑢2
≥ 1. 

Thus, indeed, 𝑡𝑡𝑜𝑡,𝑎 ≥ 𝑡𝑡𝑜𝑡,𝑏 holds always. 

14. Airplane flying in the wind (relative motion, Giancoli, Chapter 3) 

 



 

Solution.  

a) Velocity of the airplane with respect to the air: 

𝐯′ = (0, −600)
𝑘𝑚

ℎ
. 

Velocity of the air (of the wind): 

𝐮 = (100 cos 45° , 100 sin 45°) = (
100

√2
,
100

√2
)

𝑘𝑚

ℎ
. 

Absolute velocity of the airplane: 

𝐯 = 𝐯′ + 𝐮 = (
100

√2
, −600 +

100

√2
) = (70.7, −529.3) 

𝑘𝑚

ℎ
. 

b) Let the considered time of the flight be 𝑡𝑓 = 10 𝑚𝑖𝑛 =
10

60
ℎ =

1

6
ℎ. We put the origin of 

the coordinate system to the point of departure. Intended position: 

𝐫𝑖𝑛𝑡𝑒𝑛𝑑𝑒𝑑 = 𝐯′𝑡𝑓 . 

Actual position: 

𝐫𝑎𝑐𝑡𝑢𝑎𝑙 = 𝐯𝑡𝑓 . 

Displacement from the intended position: 

𝐝 = 𝐫𝑎𝑐𝑡𝑢𝑎𝑙 − 𝐫𝑖𝑛𝑡𝑒𝑛𝑑𝑒𝑑 = (𝐯 − 𝐯′)𝑡𝑓 = 𝐮𝑡𝑓 . 

Substituting numbers, one obtains 

𝐝 = (
100

√2
,
100

√2
)

1

6
= (11.8,11.8) 𝑘𝑚. 

Distance from the intended point: 
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𝑑 = |𝐝| = √𝑑𝑥
2 + 𝑑𝑦

2 =
100

6
√(

1

√2
)

2

+ (
1

√2
)

2

=
100

6
√

1

2
+

1

2
=

100

6
= 16.7 𝑘𝑚. 



Dynamics: Newton’s laws 

15. Two masses on a massless block 

A massless cord goes over a massless block, and the masses 𝑚1 and 𝑚2 are suspended at 

the ends of the cord. Find the acceleration of the masses and the tension of the cord. 

 

Solution. To write down Newton’s second law for both masses, it is essential to choose the 

positive direction of motion that is down for one of the masses and up for the other, as 

shown on the sketch. As the block and the cord are massless, the tension forces on both 

sides of the cord are the same. As the masses are connected by the cord, their acceleration 

is the same. The equations of motion for the masses (Newton’s second law), with explicit 

signs, are as follows 

𝑚1𝑔 − 𝑇 = 𝑚1𝑎 

−𝑚2𝑔 + 𝑇 = 𝑚2𝑎. 

This is a system of two linear equations with two unknowns: 𝑎 and 𝑇. Adding these 

equations, one can eliminate 𝑇 that yields 

(𝑚1 − 𝑚2)𝑔 = (𝑚1 + 𝑚2)𝑎. 

Thus 

𝑎 =
𝑚1 − 𝑚2

𝑚1 + 𝑚2
𝑔. 

If 𝑚1 > 𝑚2, the acceleration is positive and the masses are accelerating in the directions 

indicated in the sketch. If 𝑚2 = 0, then 𝑎 = 𝑔, as expected. If 𝑚1 = 0, then 𝑎 = −𝑔, as 

expected. 

Tension force can now be found from one of the equations, for instance, from the first one: 

𝑇 = 𝑚1𝑔 − 𝑚1𝑎 = 𝑚1𝑔 (1 −
𝑚1 − 𝑚2

𝑚1 + 𝑚2
) = 𝑚1𝑔

𝑚1 + 𝑚2 − 𝑚1 + 𝑚2

𝑚1 + 𝑚2
 

m
1
 

m
2
 

m1g 

m2g 

T 

T 

+ 

+ 



and, finally, 

𝑇 =
2𝑚1𝑚2

𝑚1 + 𝑚2
𝑔. 

This formula is symmetric in 𝑚1 and 𝑚2, as it should be. If one of the masses is small, 

tension force is also small, as expected. If 𝑚1 = 𝑚2 = 𝑚, then 

𝑇 =
2𝑚2

𝑚 + 𝑚
𝑔 = 𝑚𝑔, 

as expected. 

16. Dangling watch in the airplane (Giancoli, chapter 4) 

 

Solution. First, we introduce missing notations: deviation angle 𝜃 = 25°, takeoff time 

𝑡𝑓 = 18 𝑠.  

Newton’s second law for the dangling watch reads 

𝑚𝐠 + 𝐅𝑇 = 𝑚𝐚. 

In projections onto the axes this becomes 

"x":   𝐹𝑇 sin 𝜃 = 𝑚𝑎 

"z":     𝐹𝑇 cos 𝜃 − 𝑚𝑔 = 0. 

From the second equation one finds the tension force: 

𝐹𝑇 =
𝑚𝑔

cos 𝜃
. 

Substituting this into the first equation, one finds the acceleration: 

x 

z 



𝑎 =
𝐹𝑇 sin 𝜃

𝑚
=

𝑚𝑔

cos 𝜃

sin 𝜃

𝑚
= 𝑔 tan 𝜃. 

Now the takeoff speed can be found as 

𝑣𝑓 = 𝑎𝑡𝑓 = 𝑔 tan 𝜃 𝑡𝑓 . 

Substituting the numbers, one obtains 

𝑣𝑓 = 9.8 × tan 25° × 18 = 82.3
𝑚

𝑠
= 82.3

1
1000

𝑘𝑚

1
3600

ℎ𝑜𝑢𝑟
= 82.3 × 3.6

𝑘𝑚

ℎ
= 296 

𝑘𝑚

ℎ
. 

17. Pulling a block with friction 

A worker is pulling a block at the angle 𝜃 to the horizontal without acceleration. The mass of 

the block is 𝑚, the coefficient of dry friction is 𝜇. What is the value of the force 𝐹 the worker 

is applying? What is the optimal value of 𝜃?  

 

Solution: As the acceleration of the block is zero (the motion is quasistatic), Newton’s 

second law has the form of the equilibrium condition 

𝐅𝑡𝑜𝑡𝑎𝑙 = 𝑚𝐠 + 𝐅𝑁 + 𝐅𝑓𝑟 + 𝐅 = 𝟎. 

As the block is moving, the friction force is given by 𝐹𝑓𝑟 = 𝜇𝐹𝑁. Components x,z of this 

equation (with explicit signs) are  

"x": − 𝜇𝐹𝑁 + 𝐹 cos 𝜃 = 0 

"z": − 𝑚𝑔 + 𝐹𝑁 + 𝐹 sin 𝜃 = 0. 

This is a system of two equations with two unknowns: 𝐹 and 𝐹𝑁. There are many ways to 

solve this system of linear algebraic equations. As we do not need 𝐹𝑁, we can eliminate it by 

multiplying the second equation by 𝜇 and then adding the two equations. This yields a single 

equation for 𝐹: 

−𝜇𝑚𝑔 + 𝐹 cos 𝜃 + 𝜇𝐹 sin 𝜃 = 0. 

The solution of this equation reads 

F FN 
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𝐹 =
𝜇𝑚𝑔

cos 𝜃 + 𝜇 sin 𝜃
.                     (1) 

For 𝜃 = 0 one has the obvious result 𝐹 = 𝜇𝑚𝑔. Increasing 𝜃 from zero leads to the 

increasing of the denominator as, for small 𝜃, one has cos 𝜃 ≅ 1 − 𝜃2/2 and sin 𝜃 ≅ 𝜃. This 

leads to decreasing the applied force. Thus, to minimize the force, one has to use some 

nonzero pulling angle 𝜃. The physics of this is the following: the vertical component of the 

pulling force decreases the normal reaction force and thus the friction force.  

To find the optimal condition for pulling, one can transform the denominator to a single 

trigonometric function with the help of the following trick. 

cos 𝜃 + 𝜇 sin 𝜃 = √1 + 𝜇2 (
1

√1 + 𝜇2
cos 𝜃 +

𝜇

√1 + 𝜇2
sin 𝜃). 

Here the coefficients in front of cos 𝜃 and sin 𝜃 can be interpreted as sine and cosine of an 

angle 𝜑, as the sum of their squares is one. For instance 

cos 𝜑 =
1

√1 + 𝜇2
,        sin 𝜑 =

𝜇

√1 + 𝜇2
. 

Then, using the formula 

cos 𝜑 cos 𝜃 + sin 𝜑 sin 𝜃 = cos(𝜃 − 𝜑), 

one obtains 

cos 𝜃 + 𝜇 sin 𝜃 = √1 + 𝜇2 cos(𝜃 − 𝜑) ,       𝜑 = arccos
1

√1 + 𝜇2
 

and can rewrite our final result, Eq. (1), as 

𝐹 =
1

√1 + 𝜇2

𝜇𝑚𝑔

cos(𝜃 − 𝜑)
.  

Thus, the minimal value of the pulling force 𝐹 is reached for 𝜃 = 𝜑 and is given by 

𝐹𝑚𝑖𝑛 =
𝜇𝑚𝑔

√1 + 𝜇2
< 𝜇𝑚𝑔. 

For example, for 𝜇 = 1 one has 𝐹𝑚𝑖𝑛 = 𝜇𝑚𝑔/√2 = 0.71𝜇𝑚𝑔 that is achieved for  

𝜃 = 𝜑 = arccos
1

√2
= 45°. 

In this case, the beneficial effect of pulling at the angle to the horizontal is substantial.  

For 𝜇 = 1/2 one has 𝐹𝑚𝑖𝑛 = (2/√5)𝜇𝑚𝑔 = 0.89𝜇𝑚𝑔 that is achieved for 

𝜃 = 𝜑 = arccos
2

√5
= 26.6°. 

In this case, the gain is smaller.  



For 𝜇 = 0.1, the gain is very small, 𝐹𝑚𝑖𝑛 = 0.995𝜇𝑚𝑔, that is, 0.5%. The corresponding 

pulling angle reads 

𝜃 = 𝜑 = arccos 0.995 = 5.7°. 

18. Pulling a block uphill with friction 

A worker is pulling a block of mass 𝑚 up a slope with the angle 𝜃. The pulling force is 

applied parallel to the slope. The friction coefficients are 𝜇 and 𝜇𝑠. What pulling force has to 

be applied to set the block in motion? What pulling force is needed to stationary pull the 

block uphill? Calculate the forces for 𝑚 = 30 𝑘𝑔, 𝜃 = 10°, friction wood on wood. 

 

Solution: In the absence of acceleration (quasistatic regime) Newton’s second law has the 

form  

𝐅𝑡𝑜𝑡𝑎𝑙 = 𝑚𝐠 + 𝐅𝑁 + 𝐅𝑓𝑟 + 𝐅 = 𝟎. 

Components x,z of this equation (with explicit signs) are  

"x":    𝐹𝑓𝑟 − 𝐹 + 𝑚𝑔 sin 𝜃 = 0 

"z":    𝐹𝑁 − 𝑚𝑔 cos 𝜃 = 0. 

If the pulling force is too small and the block is not moving, then from the first equation one 

obtains 

𝐹𝑓𝑟 = 𝐹 − 𝑚𝑔 sin 𝜃, 

or, for the pulling force, 

𝐹 =  𝐹𝑓𝑟 + 𝑚𝑔 sin 𝜃. 

From the second equation follows 𝐹𝑁 = 𝑚𝑔 cos 𝜃. The friction force satisfies 𝐹𝑓𝑟 ≤ 𝜇𝑠𝐹𝑁. 

The block begins to move when the friction force reaches its maximal value, 

𝐹𝑓𝑟 = 𝜇𝑠𝐹𝑁 = 𝜇𝑠𝑚𝑔 cos 𝜃. 

Substituting this into the formula for 𝐹, one obtains  

𝐹 = 𝑚𝑔(sin 𝜃 + 𝜇𝑠 cos 𝜃). 
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One can see that the worker has to work both against gravity and against friction. For wood 

on wood, 𝜇𝑠 = 0.4 and 𝜇 = 0.2. Numerically, the force required to start the block moving is 

𝐹 = 30 × 9.8 × (sin 10° + 0.4 cos 10°) = 294 × (0.174 + 0.394) = 167 𝑁. 

In this case, the contribution of the friction force is greater than that of gravity.  

If the block is moving, then the friction force is given by 𝐹𝑓𝑟 = 𝜇𝐹𝑁. In a similar way, one 

obtains 

𝐹 = 𝑚𝑔(sin 𝜃 + 𝜇 cos 𝜃). 

Numerically, the force required to pull the block stationary uphill is 

𝐹 = 30 × 9.8 × (sin 10° + 0.2 cos 10°) = 294 × (0.174 + 0.197) = 109 𝑁. 

In this case, the contributions of gravity and friction are comparable. 

19. Two boxes with different frictions on the incline (Giancoli, chapter 4) 

 

Solution. First, we introduce missing notations: 𝜇1 = 0.1, 𝜇2 = 0.2. 

In lecture notes, the formula for the acceleration of a block sliding on the incline was 

obtained: 

𝑎 = 𝑔(sin 𝜃 − 𝜇 cos 𝜃). 

In the case a), boxes are not connected by the string and move independently from each 

other. The acceleration of the block 1 is higher as it has less friction. 



In the case b), the solution is the same as in a) as the string does not resist shortening its 

length. As the acceleration of box 1 is higher than that of box 2, the distance between them 

will be decreasing until they come in contact. After that, they will be moving together as a 

system, and the regime changes. 

c) In this case, the distance between the boxes would increase with time but the string does 

not allow it. Thus, both boxes are moving as a system with a common acceleration. The 

shortest way to find the acceleration is to consider the motion of the system of two blocks 

along the x-axis parallel to the slope, as usual. In this solution, one does not have to consider 

the tension of the string. The projection of Newton’s second law onto this axis reads 

−𝐹𝑓𝑟,1 − 𝐹𝑓𝑟,2 + (𝑚1 + 𝑚2)𝑔 sin 𝜃 = (𝑚1 + 𝑚2)𝑎. 

Here, 

𝐹𝑓𝑟,1 = 𝜇1𝐹𝑁,1 = 𝜇1𝑚1𝑔 cos 𝜃,        𝐹𝑓𝑟,2 = 𝜇2𝐹𝑁,2 = 𝜇2𝑚2𝑔 cos 𝜃. 

Substituting this into the equation above and dividing by 𝑚1 + 𝑚2, one obtains the result 

𝑎 = 𝑔 (sin 𝜃 −
𝜇1𝑚1 + 𝜇2𝑚2

𝑚1 + 𝑚2
cos 𝜃). 

The fraction here is the effective friction coefficient for the system of two connected blocks: 

𝜇𝑒𝑓𝑓 =
𝜇1𝑚1 + 𝜇2𝑚2

𝑚1 + 𝑚2
. 

If the masses are equal to each other, 𝜇𝑒𝑓𝑓 is just the average of the two friction 

coefficients. In our case, 

𝜇𝑒𝑓𝑓 =
0.1 × 1 + 0.2 × 2

1 + 2
= 0.167. 



Circular motion 

20. A lamp dangling in a train (Giancoli, chapter 5) 

 

This problem uses the same idea as that of the dangling watch in the airplane above, thus, 

one can use the same drawing 

 

Let us introduce missing notations: 𝑅 = 235 𝑚, 𝜃 = 17.5°.  

Newton’s second law for the dangling lamp reads 

𝑚𝐠 + 𝐅𝑇 = 𝑚𝐚. 

In projections onto the axes this becomes 

"x":   𝐹𝑇 sin 𝜃 = 𝑚𝑎 

"z":     𝐹𝑇 cos 𝜃 − 𝑚𝑔 = 0. 

From the second equation one finds the tension force: 

𝐹𝑇 =
𝑚𝑔

cos 𝜃
. 

Substituting this into the first equation, one finds the acceleration: 

𝑎 =
𝐹𝑇 sin 𝜃

𝑚
=

𝑚𝑔
cos 𝜃 sin 𝜃

𝑚
= 𝑔 tan 𝜃. 

This is the centripetal acceleration due to the curvature of the train’s trajectory: 

𝑎𝑐 =
𝑣2

𝑅
. 

Equating these two expressions, one finds the train’s speed as 



𝑣 = √𝑅𝑔 tan 𝜃. 

Substituting the numbers, one obtains 

𝑣 = √235 × 9.8 × tan 17.5° = 27 𝑚/𝑠 = 27 × 3.6 𝑘𝑚/ℎ = 97 𝑘𝑚/ℎ. 

21. Two masses on a string (Giancoli, chapter 5) 

 

 

Solution. Let the tension force acting on 𝑚1 from the central part of the cord be 𝐹 and let 

the tension of the cord between the two masses be 𝑇. With the radial axis directed towards 

the center, Newton’s second law has the form 

𝑚1𝑎𝑐,1 = 𝑚1𝜔2𝑟1 = 𝐹 − 𝑇,          𝑚2𝑎𝑐,2 = 𝑚2𝜔2𝑟2 = 𝑇. 

From the second equation one immediately finds the value of 𝑇. Adding these equations, 

one eliminates 𝑇 and obtains the value of 𝐹: 

𝐹 = 𝑚1𝜔2𝑟1 + 𝑚2𝜔2𝑟2 = (𝑚1𝑟1 + 𝑚2𝑟2)𝜔2. 

The angular velocity 𝜔 is defined as 

𝜔 =
∆𝜃

∆𝑡
, 

where 𝜃 is the rotation angle in radians. The frequency of rotations 𝑓 is defined as the 

number of rotations per second,  

𝑓 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠

∆𝑡
. 



As one rotations corresponds to 2𝜋 radians, the number of rotations in the angle ∆𝜃 is given 

by ∆𝜃/(2𝜋). Thus 

𝑓 =
∆𝜃/(2𝜋)

∆𝑡
=

1

2𝜋

∆𝜃

∆𝑡
=

𝜔

2𝜋
 

and 𝜔 = 2𝜋𝑓. Thus, in terms of what in given in the problem’s formulation, the results have 

the form 

𝑇 = 𝑚2𝜔2𝑟2 = 𝑚2𝑟2(2𝜋𝑓)2 

and 

𝐹 = (𝑚1𝑟1 + 𝑚2𝑟2)(2𝜋𝑓)2. 

22. A car going over a hilltop 

A car is going over a hilltop with the curvature radius 𝑅 at speed 𝑣. Suddenly the driver sees 

an obstacle behind the hilltop and needs to brake. What is the maximal deceleration if the 

static friction coefficient is 𝜇𝑆? 

 

Solution. The maximal deceleration is set by the maximal friction force 𝐹𝑓𝑟,𝑚𝑎𝑥 = 𝜇𝑠𝐹𝑁. 

When the car is going over a hilltop, the normal force decreases so that it does not 

compensate for the gravity force, and this creates the centripetal force. For the projections 

of the forces on x-axis one has 

𝐹𝑁 − 𝑚𝑔 = −𝐹𝑐 = −𝑚
𝑣2

𝑅
 

(centripetal acceleration is directed down towards the center of curvature). From here one 

obtains 

𝐹𝑁 = 𝑚 (𝑔 −
𝑣2

𝑅
) < 𝑚𝑔. 

Now the maximal deceleration is given by 

𝑎𝑚𝑎𝑥 =
𝐹𝑓𝑟,𝑚𝑎𝑥

𝑚
=

𝜇𝑠𝐹𝑁

𝑚
= 𝜇𝑠 (𝑔 −

𝑣2

𝑅
). 

It is smaller than on the flat road, thus hilltops are dangerous. 
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23. The satellite (Giancoli, chapter 5) 

 

Solution. Let us introduce missing notations. The satellite’s mass 𝑚 = 5500 𝑘𝑔, the mass of 

the Earth 𝑀 = 0.6 × 1025 𝑘𝑔, the period of the satellite’s orbiting around the Earth 

𝑇 = 6200 𝑠. 

The gravitational force acting on the satellite is given by the gravitation law and plays the 

role of the centripetal force: 

𝐹 = 𝐺
𝑚𝑀

𝑅𝑠
2

= 𝑚𝑎𝑐 = 𝑚𝜔2𝑅𝑠, 

where 𝑅𝑠 is the radius of the satellite’s orbit. The angular velocity of the satellite’s rotation 

can be expressed via the orbiting period as follows: 

𝜔 = 2𝜋𝑓 =
2𝜋

𝑇
. 

Thus, one can solve task (b) of finding 𝑅𝑠. Canceling the satellite’s mass in the first equation, 

one obtains 

𝐺
𝑀

𝑅𝑠
2

= 𝜔2𝑅𝑠, 

or  

𝐺𝑀 = 𝜔2𝑅𝑠
3, 

(the third Kepler’s law) where from 

𝑅𝑠 = (
𝐺𝑀

𝜔2
)

1/3

= (
𝐺𝑀𝑇2

4𝜋2
)

1/3

. 

Substituting the numbers, one obtains 

𝑅𝑠 = (
0.667 × 10−10 × 0.6 × 1025 × 62002

4𝜋2
)

1/3

= 7.3 × 106 𝑚 = 7300 𝑘𝑚. 

Since the radius of the Earth is 𝑅 = 6400 𝑘𝑚, the satellite’s altitude ℎ is 

ℎ = 𝑅𝑠 − 𝑅 = 7300 − 6400 = 900 𝑘𝑚 

above the Earth’s surface.  

Now one can solve task (a) to find the gravitational force on the satellite. Using the first 

formula and the result for 𝑅𝑠, one obtains 



𝐹 = 𝐺
𝑚𝑀

𝑅𝑠
2

= 𝑚𝐺𝑀 (
4𝜋2

𝐺𝑀𝑇2
)

2/3

= 𝑚(𝐺𝑀)1−2/3 ((
2𝜋

𝑇
)

2

)

2/3

= 𝑚(𝐺𝑀)1/3 (
2𝜋

𝑇
)

4/3

. 

Substituting the numbers, one obtains 

𝐹 = 5500 × (0.667 × 10−10 × 0.6 × 1025)1/3 (
2𝜋

6200
)

4/3

= 41258 𝑁. 

24. Gravity and apparent gravity on Jupiter (Giancoli, chapter 5) 

 

Solution. First, introduce missing notations: mass of Jupiter 𝑀 = 1.9 × 1027 𝑘𝑔, radius of 

Jupiter 𝑅 = 7.1 × 104 𝑘𝑚 = 7.1 × 107 𝑚, Jupiter’s rotation period 𝑇 = 9 ℎ𝑟 55 𝑚𝑖𝑛. One 

can see that Jupiter rotates fast, thus the apparent gravity on Jupiter’s equator can be 

significantly smaller than the real gravity because of the effect of the centripetal force. We 

immediately convert the period into seconds: 𝑇 = 9 × 3600 + 55 × 60 = 35700 𝑠. 

On Jupiter’s surface, the gravity can be calculated using the law of gravitation for any mass 

𝑚: 

𝑚𝑔 = 𝐺
𝑚𝑀

𝑅2
, 

thus  

𝑔 = 𝐺
𝑀

𝑅2
. 

Substituting the numbers, one obtains 

𝑔 = 0.667 × 10−10
1.9 × 1027

(7.1 × 107)2
= 25.2 𝑚/𝑠2. 

This is slightly more than twice the value of 𝑔 on the Earth, and a person having the mass 

50 𝑘𝑔 would feel like having 50 × 25.2/9.8 = 129 𝑘𝑔. While it is questionable whether 

such a high gravity would crush a human immediately, it is clear that living with such a high 

gravity is difficult. 

Let us now consider the apparent gravity defined via the normal reaction force 𝐹𝑁 acting on 

the person from the ground. According to Newton’s second law,  

𝑚𝑔 − 𝐹𝑁 = 𝑚𝑎𝑐 = 𝑚𝜔2𝑅. 



Using the relations between the angular velocity 𝜔, frequency 𝑓, and period 𝑇, 

𝜔 = 2𝜋𝑓 =
2𝜋

𝑇
, 

one obtains 

𝐹𝑁 = 𝑚(𝑔 − 𝑎𝑐) = 𝑚(𝑔 − 𝜔2𝑅) = 𝑚 (𝑔 − (
2𝜋

𝑇
)

2

𝑅). 

One can write 𝐹𝑁 = 𝑚𝑔𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡, where  

𝑔𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑔 − (
2𝜋

𝑇
)

2

𝑅 = 𝐺
𝑀

𝑅2
− (

2𝜋

𝑇
)

2

𝑅 

is smaller than the actual 𝑔. Substituting the numbers, one obtains 

𝑔𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡 = 25.2 − (
2𝜋

35700
)

2

× 7.1 × 107 = 23.0 𝑚/𝑠2.  

This only slightly smaller than the actual 𝑔 on Jupiter. 

25. A tape planet (Giancoli, chapter 5) 

 

Solution. In this case, the apparent gravity is created by the rotation of the tape planet that 

creates the normal reaction force 𝐅𝑁 imitating the gravity 𝑚𝐠. That is, 

𝐹𝑁 = 𝑚𝑎𝑐 = 𝑚𝜔2𝑅 = 𝑚𝑔, 

where 𝑅 is the radius of the tape planet. From this one can find the angular velocity 



𝜔 = √
𝑔

𝑅
 

The angular velocity can be expressed via the orbiting period as follows: 

𝜔 = 2𝜋𝑓 =
2𝜋

𝑇
. 

Thus the period is given by  

𝑇 =
2𝜋

𝜔
= 2𝜋√

𝑅

𝑔
. 

Substituting the numbers, one obtains 

𝑇 = 2𝜋√
1.5 × 1011

9.8
= 777343 𝑠 =

777343

24 × 3600
= 9.0 𝑑𝑎𝑦𝑠. 

This is very fast. However, rotation of this planet around the sum does not lead to the 

change of seasons.  

26. Orbiting of the sum around the center of our galaxy (Giancoli, chapter 5) 

 

Solution. Let us introduce missing notations. The distance from the Sun to the center of our 

galaxy (the radius of Sun’s orbit) is 𝑅 = 30000 𝑙𝑦, The period of the sun’s orbiting is 

𝑇 = 200 × 106 𝑦𝑒𝑎𝑟𝑠, the mass of the sun is 𝑚 = 2 × 1030 𝑘𝑔. The mass is the galaxy is 𝑀. 

According to Newton’s second law, the gravitational force causes the centripetal 

acceleration of the Sun, 

𝐺
𝑚𝑀

𝑅2
= 𝑚𝑎𝑐 = 𝑚𝜔2𝑅. 

From here one finds the mass of the galaxy 

𝑀 =
𝜔2𝑅3

𝐺
. 

The angular velocity can be expressed via the orbiting period as follows: 

𝜔 = 2𝜋𝑓 =
2𝜋

𝑇
. 



Thus 

𝑀 = (
2𝜋

𝑇
)

2 𝑅3

𝐺
. 

If all stars in the galaxy have approximately the mass of the Sun, the number of the stars can 

be estimated as 

𝑁 =
𝑀

𝑚
= (

2𝜋

𝑇
)

2 𝑅3

𝑚𝐺
. 

To calculate the numerical result, first one has to convert all numbers from special units to 

the SI units.  The light year (ly) is defined as the distance covered by the light during one 

year. Using the speed of light 𝑐 = 3 × 108 𝑚/𝑠, one obtains 

1 𝑙𝑦 = 3 × 108 ×
𝑚

𝑠
× 1 𝑦𝑒𝑎𝑟 = 3 × 108 ×

𝑚

𝑠
× 365 × 24 × 3600 𝑠 = 9.46 × 1015 𝑚. 

Thus 

𝑅 = 30000 𝑙𝑦 = 30000 × 9.46 × 1015 = 2.84 × 1020 𝑚 

The orbiting period of the Sun is  

𝑇 = 200 × 106 𝑦𝑒𝑎𝑟𝑠 = 200 × 106  × 365 × 24 × 3600 = 6.31 × 1015 𝑠. 

Now the mass of the galaxy is 

𝑀 = (
2𝜋

6.31 × 1015
)

2 (2.84 × 1020)3

0.667 × 10−10
= 2.10 × 1043 𝑘𝑔. 

The number of stars in the galaxy is 

𝑁 =
𝑀

𝑚
=

2.10 × 1043

2 × 1030
= 1.05 × 1013 ≈ 1013. 



Work and energy 

27. Sliding piano (Giancoli, chapter 6) 

 

Solution. First, we introduce missing notations. The mass of the piano 𝑚 = 330 𝑘𝑔, the 

incline’s angle 𝜃 = 28°, kinetic friction coefficient 𝜇 = 0.4, the sliding distance 𝑑 = 3.6 𝑚. 

This is a problem about the incline. We use the sketch from one of the preceding problems. 

 

In the absence of acceleration (quasistatic regime) Newton’s second law has the form  

𝐅𝑡𝑜𝑡𝑎𝑙 = 𝑚𝐠 + 𝐅𝑁 + 𝐅𝑓𝑟 + 𝐅 = 𝟎. 

Components x,z of this equation (with explicit signs) are  

"x":   − 𝐹𝑓𝑟 − 𝐹 + 𝑚𝑔 sin 𝜃 = 0 

"z":    𝐹𝑁 − 𝑚𝑔 cos 𝜃 = 0. 

As the piano is sliding, the dry friction force is given by 

𝐹𝑓𝑟 = 𝜇𝐹𝑁 . 
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This is a system of three equations for three unknowns: 𝐹, 𝐹𝑓𝑟, and 𝐹𝑁. Finding 𝐹𝑁 =

𝑚𝑔 cos 𝜃 from the “z” equation, one then finds the friction force as 

𝐹𝑓𝑟 = 𝜇𝐹𝑁 = 𝜇𝑚𝑔 cos 𝜃. 

After that, from the “x” equation one finds the pushing force: 

𝐹 = 𝑚𝑔 sin 𝜃 −  𝐹𝑓𝑟 = 𝑚𝑔(sin 𝜃 − 𝜇 cos 𝜃). 

Let us calculate the work done by different forces now. The normal force is perpendicular to 

the displacement that is along x-axis and is not doing any work. The gravity force makes the 

angle 𝜃′ = 90° − 𝜃 with x-axis and doing a positive work: 

𝑊𝐺 = 𝑚𝑔𝑑 cos 𝜃′ = 𝑚𝑔𝑑 cos(90° − 𝜃) = 𝑚𝑔𝑑 sin 𝜃 . 

Substituting the numbers, one obtains 

𝑊𝐺 = 330 × 9.8 × 3.6 × sin 28° = 5466 J. 

Both pushing force and friction force are directed oppositely to the displacement and thus 

are doing a negative work. For the friction force the work is given by 

𝑊𝑓𝑟 = 𝜇𝑚𝑔 cos 𝜃  𝑑 cos 180° = −𝜇𝑚𝑔𝑑 cos 𝜃. 

Substituting the numbers, one obtains 

𝑊𝑓𝑟 = −0.4 × 330 × 9.8 × 3.6 × cos 28° = −4112 J. 

Finally, the work done by the pushing force is given by 

𝑊 = 𝐹𝑑 cos 180° = −𝑚𝑔𝑑(sin 𝜃 − 𝜇 cos 𝜃). 

Substituting the numbers, one obtains 

𝑊 = −330 × 9.8 × 3.6 × (sin 28° − 0.4 × cos 28°) = −1354 J. 

The total work is zero: 

𝑊𝐺 + 𝑊𝑓𝑟 + 𝑊 = 𝑚𝑔𝑑 sin 𝜃 − 𝜇𝑚𝑔𝑑 cos 𝜃 − 𝑚𝑔𝑑(sin 𝜃 − 𝜇 cos 𝜃) = 0 

because the sum of projections of all forces on x-axis is zero (“x” equation). 

28. Accident skid mark (Giancoli, chapter 6) 

 

Solution. First, we introduce missing notations: the length of the skid mark (distance 

traveled) 𝑑 = 88 𝑚, kinetic friction coefficient 𝜇 = 0.42. 



In this problem it is illustrated that the energy is the ability to do work. In the initial state, 

the car possesses the kinetic energy that is then wasted into the heat via dry friction in the 

process of braking /skidding. More precisely, in the process, the friction force is doing a 

negative work on the car decreasing its kinetic energy to zero. We use the work-energy 

relation 

𝑊 = 𝐸𝑓 − 𝐸𝑖          (1).  

Here  

𝐸𝑖 =
𝑚𝑣2

2
,       𝐸𝑓 = 0  

and the work of the friction force is given by 

𝑊 = −𝐹𝑓𝑟𝑑. 

Using the formula for the friction force 

𝐹𝑓𝑟 = 𝜇𝐹𝑁 = 𝜇𝑚𝑔 

and putting everything together, one obtains the work-energy balance in the form 

−𝜇𝑚𝑔𝑑 = 0 −
𝑚𝑣2

2
. 

From this equation one finds 

𝑣 = √2𝜇𝑔𝑑. 

Substituting the numbers, one obtains 

𝑣 = √2 × 0.42 × 9.8 × 88 = 26.9 𝑚/𝑠 = 26.9 × 3.6 = 96.8 𝑘𝑚/ℎ. 

Notes:  

 Police officers need to know physics. 

 A tutor solving this problem for you would typically start with the formula 

𝐹𝑓𝑟𝑑 =
𝑚𝑣2

2
. 

Although this relation is correct and leads to the correct result, it hides the fact that 

friction is doing a negative work and the kinetic energy decreases. It distorts the 

fundamental work-energy relation, Eq. (1). Thus, in our course, such a solution is 

inacceptable. 

 



29. Looped track (Giancoli, chapter 6) 

 

Solution. This is a problem about energy conservation and circular motion. At the top of the 

loop, the speed should be sufficiently high so that a normal force must add to the gravity 

force to ensure the needed centripetal acceleration. In projection on the vertical-up z-axis, 

Newton’s second law reads 

−𝐹𝑁 − 𝑚𝑔 = −𝑚𝑎𝑐 = −𝑚
𝑣2

𝑟
, 

where from 

𝐹𝑁 = 𝑚 (
𝑣2

𝑟
− 𝑔). 

To preserve the contact of the sliding block with the structure, the condition 𝐹𝑁 > 0 should 

be satisfied. This requires that the speed 𝑣 is above a minimal value,  

𝑣2 ≥ 𝑣𝑚𝑖𝑛
2 = 𝑟𝑔. 

The speed can be found from the energy conservation law. At the highest point in the loop 

the height is 𝑧 = 2𝑟. The energy conservation 𝐸𝑖 = 𝐸𝑓 becomes 

𝑚𝑔ℎ = 𝑚𝑔2𝑟 +
𝑚𝑣2

2
, 

where from 

𝑣2 = 2𝑔(ℎ − 2𝑟). 

Substituting this into the inequality above, one obtains 

2𝑔(ℎ − 2𝑟) ≥ 𝑟𝑔, 

that is, 

ℎ ≥
𝑟

2
+ 2𝑟 =

5

2
𝑟 ≡ ℎ𝑚𝑖𝑛. 

z 
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It is noteworthy that the result does not depend on 𝑚 and 𝑔. 

30. Spring cut in half (Giancoli, chapter 6) 

 

What do you think before solving this problem? What does your intuition tell you? 

Solution. If the spring is pulled with the force 𝐹, any part of the spring is acting on the 

neighboring part with the same force 𝐹 that is related to the spring’s deformation 𝑥 by the 

Hooke’s law 

𝐹 = 𝑘𝑥. 

This is the result of the absence of acceleration and Newton’s laws. In particular, if we 

consider a half of the spring, it is pulled by the other half with the same force 𝐹 but its 

elongation is 𝑥′ = 𝑥/2. For this half of the spring, the Hooke’s law has the form 

𝐹 = 𝑘′𝑥′ = 𝑘′𝑥/2. 

Comparing with the first formula, one obtains 

𝑘𝑥 = 𝑘′𝑥/2, 

that is, 𝑘′ = 2𝑘. Is it counterintuitive that cutting a spring in two makes it stronger? 

The same result can be obtained from the energy argument. The energy of the deformed 

spring is 

𝐸 =
𝑘𝑥2

2
. 

Considering the two halves of the spring, one can write the same energy as the sum of the 

energies of both halves: 

𝐸 =
𝑘′𝑥′2

2
+

𝑘′𝑥′2

2
. 

Substituting here 𝑥′ = 𝑥/2 and equating to the preceding formula, one obtains 

𝐸 = 𝑘′𝑥′2
=

𝑘′𝑥2

4
=

𝑘𝑥2

2
. 

From here follows 𝑘′ = 2𝑘. 



31. Power of the patient on a treadmill (Giancoli, chapter 6) 

 

Solution. First, we introduce missing notations. Mass of the patient 𝑚 = 75 𝑘𝑔, the slope of 

the treadmill 𝜃 = 15°, the speed of the patient 𝑣 = 3.3 𝑘𝑚/ℎ = 3.3/3.6 = 0.917 𝑚/𝑠.  

 

 

The mechanical power is given by  

𝑃 = 𝐅 ∙ 𝐯. 
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The question is of how to apply this formula correctly. 

The solution in the Giancoli book is conceptually wrong, although it leads to the correct final 

result. Giancoli assumes that the patient generates a pushing force 𝐹𝑝 = 𝑚𝑔 sin 𝜃 (to 

compensate for the gravity) that is applied to himself and multiplies this by the speed, 

obtaining the power 𝑃 = 𝑚𝑔𝑣 sin 𝜃. However, the speed of the patient is zero, and this 

approach in fact yields a zero power. 

In this setting, mechanical work is not done on the patient. Rather, the patient does work on 

the treadmill pushing it back with his feet with the force 𝐅, as shown in the sketch. This 

force is applied to the treadmill and is opposite to the friction force applied from the 

treadmill to the patient, according to Newton’s third law, 

𝐅 = −𝐅𝑓𝑟 

As there is no acceleration, the total force on the patient is zero: 

𝐅𝑓𝑟 + 𝐅𝑁 + 𝑚𝐠 = 𝟎. 

Thus, the friction force compensates for the x-component of the gravity force,  

𝐹𝑓𝑟 = 𝑚𝑔 sin 𝜃. 

Now, the treadmill band is moving down the slope and the force 𝐅 is applied to it from the 

patient in the same direction, so that the power developed by the patient is given by 

𝑃 = 𝐹𝑣 = 𝐹𝑓𝑟𝑣 = 𝑚𝑔𝑣 sin 𝜃. 

Substituting the numbers, one obtains 

𝑃 = 75 × 9.8 × 0.917 × sin 15° = 174 𝑊 

that is comparable with the power of the electric bulb (an old-style one with a wolfram 

filament). 

If a person is just walking up the incline that is at rest, then the work is done on the person 

by the person him- or herself. This problem should have the same answer and the person 

should develop the same power. However, this problem is conceptually more difficult as it is 

not easy to identify the force that is doing work. One needs to consider the human body as 

consisting of different parts, so that different parts are doing work on each other (feet on 

legs, legs on the torso, etc.) 



Linear momentum 

32. Inelastic collision 

Mass 𝑚1 = 2 𝑘𝑔 moving North-West with the velocity 𝑣1 = 4 𝑚/𝑠 collides inelastically with 

mass 𝑚2 = 3 𝑘𝑔 moving North-East with the velocity 𝑣2 = 5 𝑚/𝑠. Find the velocity of the 

system 𝑢 after the collision and the lost energy. 

Solution: In the collision the momentum of the system is conserved and in the final state 

both bodies are moving together, thus 

𝑚1𝐯1 + 𝑚2𝐯2 = (𝑚1 + 𝑚2)𝐮. 

From here one obtains 

𝐮 =
𝑚1𝐯1 + 𝑚2𝐯2

𝑚1 + 𝑚2
.             

Substituting the numbers into this formula, one obtains 

𝐮 =
2 × (4 cos 135° , 4 sin 135°) + 3 × (5 cos 45° , 5 sin 45°)

2 + 3
 

=

2 × (4 (−
1

√2
) , 4

1

√2
) + 3 × (5

1

√2
, 5

1

√2
)

2 + 3
       

=
(−2 × 4 + 3 × 5, 2 × 4 + 3 × 5)

5√2
 =

(7, 23)

5√2
 = (0.99, 3.25)𝑚/𝑠  

The energy lost in the collision if defined as 

𝐸𝑙𝑜𝑠𝑡 ≡ 𝐸𝑖 − 𝐸𝑓 , 

where 

𝐸𝑖 =
𝑚1𝐯1

2

2
+

𝑚2𝐯2
2

2
,            𝐸𝑓 =

(𝑚1 + 𝑚2)𝐮2

2
. 

Substituting here 𝐮 found above, one obtains 

𝐸𝑙𝑜𝑠𝑡 ≡
2 × 42

2
+

3 × 52

2
−

(2 + 3) × (0.992 + 3.252)

2
 

= 43.5 − 40.4 = 3.1 𝐽. 

33. Energy lost in the inelastic collision (general) 

Derive a general formula for the energy lost in the inelastic collision. Calculate the energy 

lost and the fraction of the energy lost in the collision of the mass 𝑚1 = 1 𝑘𝑔 moving with 

the speed 𝑣1,𝑖 = 2 𝑚/𝑠 and the mass 𝑚2 = 2 𝑘𝑔 moving with the speed 𝑣2,𝑖 = 1 𝑚/𝑠, if in 

the initial state the masses are moving perpendicularly to each other (the angle between 

their velocities being 90°. 



Solution. In the inelastic collision, the two masses stick together as the result of the collision, 

so that the conservation of the linear momentum has the form 

𝑚1𝐯1 + 𝑚2𝐯2 = (𝑚1 + 𝑚2)𝐮, 

where 𝐮 ≡ 𝐯𝑓 is the velocity of the system in the final state. From here, one finds 

𝐮 =
𝑚1𝐯1 + 𝑚2𝐯2

𝑚1 + 𝑚2
.            (1) 

Now, the energies in the initial and final states are given by 

𝐸𝑖 =
𝑚1𝐯1

2

2
+

𝑚2𝐯2
2

2
,            𝐸𝑓 =

(𝑚1 + 𝑚2)𝐮2

2
. 

Here and elsewhere, the square of a vector is defined as the dot-product of the vector with 

itself, for instance: 

𝐮2 ≡ 𝐮 ∙ 𝐮 = |𝐮||𝐮| cos 0° = |𝐮|2 = 𝑢2.             (2) 

The energy lost in the collision is defined as 

𝐸𝑙𝑜𝑠𝑡 ≡ 𝐸𝑖 − 𝐸𝑓 , 

so that here 

𝐸𝑙𝑜𝑠𝑡 =
𝑚1𝐯1

2

2
+

𝑚2𝐯2
2

2
−

(𝑚1 + 𝑚2)𝐮2

2
.           (3) 

Substituting the solution for 𝐮, one obtains 

𝐸𝑙𝑜𝑠𝑡 =
𝑚1𝐯1

2

2
+

𝑚2𝐯2
2

2
−

𝑚1 + 𝑚2

2
(

𝑚1𝐯1 + 𝑚2𝐯2

𝑚1 + 𝑚2
)

2

 

          =
𝑚1𝐯1

2

2
+

𝑚2𝐯2
2

2
−

𝑚1
2𝐯1

2 + 2𝑚1𝑚2𝐯1 ∙ 𝐯2 + 𝑚2
2𝐯2

2

2(𝑚1 + 𝑚2)
. 

Bringing this expression into the form with the common denominator, one proceeds as 

follows 

𝐸𝑙𝑜𝑠𝑡 =
(𝑚1 + 𝑚2)(𝑚1𝐯1

2 + 𝑚2𝐯2
2) − 𝑚1

2𝐯1
2 − 2𝑚1𝑚2𝐯1 ∙ 𝐯2 − 𝑚2

2𝐯2
2

2(𝑚1 + 𝑚2)
 

=
𝑚1𝑚2𝐯1

2 + 𝑚1𝑚2𝐯2
2 − 2𝑚1𝑚2𝐯1 ∙ 𝐯2

2(𝑚1 + 𝑚2)
=

𝑚1𝑚2(𝐯1 − 𝐯2)2

2(𝑚1 + 𝑚2)
.        (4) 

In this calculation, the terms 𝑚1
2𝐯1

2 and 𝑚2
2𝐯2

2 cancel that leads to a great simplification. The 

formula obtained is very elegant and can be checked on particular cases. If one of the 

masses is zero or the initial velocities are equal to each other, there is actually no collision 

and the lost energy is zero. Of course one can calculate the lost energy using Eq.(3) in which 

𝐮 is given by Eq.(1). However, using the formula above is more satisfying. 

For the example to consider, one can choose the axes so that the first mass is moving in the 

positive x-direction and the second mass is moving in the positive y-direction, that is 



𝐯1 = (2,0,0) 𝑚/𝑠,            𝐯2 = (0,1,0) 𝑚/𝑠. 

(we take into account the z-component, too). Thus, 

𝐯1 − 𝐯2 = (2,0,0) − (0,1,0) = (2, −1,0) 𝑚/𝑠 

and, according to Eq.(2), 

(𝐯1 − 𝐯2)2 = |𝐯1 − 𝐯2|2. 

Substituting the numbers, one obtains 

(𝐯1 − 𝐯2)2 = |(2, −1,0)|2 = 22 + (−1)2 + 02 = 5 𝑚2/𝑠2. 

Then, the lost energy given by Eq.(4) becomes 

𝐸𝑙𝑜𝑠𝑡 =
1 × 2 × 5

2 × (1 + 2)
=

5

3
= 1.67 𝐽. 

The initial energy is 

𝐸𝑖 =
𝑚1𝑣1

2

2
+

𝑚2𝑣2
2

2
=

1 × 22

2
+

2 × 12

2
= 2 + 1 = 3 𝐽. 

Thus, the fraction of the energy lost in the collision is 

𝜂 ≡
𝐸𝑙𝑜𝑠𝑡

𝐸𝑖
=

5/3

3
=

5

9
= 0.556. 

34. Recoil 

In the recoil of an object into two parts with masses 𝑚1 and 𝑚2, the energy ∆𝐸 is released. 

Find the velocities of the parts 1 and 2. 

Solution. Conservation laws for the linear momentum in this case has the form 

𝑚1𝐯1 + 𝑚2𝐯2 = 𝟎. 

As the vectors 𝐯1 and 𝐯2 (the velocities in the final state) are proportional to each other, 

that is, directed along the same line (that has a random direction), one can choose the x-axis 

along this line. Then one can discard vectors and write 

𝑚1𝑣1 + 𝑚2𝑣2 = 0, 

where 𝑣1 and 𝑣2 are projections of the velocity vectors onto the x-axis, that can be positive 

or negative. The energy balance in the process has the form 

∆𝐸 = 𝐸1 + 𝐸2 =
𝑚1𝑣1

2

2
+

𝑚2𝑣2
2

2
, 

where ∆𝐸 is the energy released and converted into mechanical energy. From the first 

equation, one obtains 

𝑣2

𝑣1
= −

𝑚1

𝑚2
. 



This implies that the lighter part has a higher speed (think about the rifle and the bullet). 

Expressing 𝑣2 via 𝑣1, 

𝑣2 = −𝑣1

𝑚1

𝑚2
, 

and substituting this into the energy equation, one obtains 

∆𝐸 =
𝑚1𝑣1

2

2
+

𝑚2

2
(−𝑣1

𝑚1

𝑚2
)

2

=
𝑚1𝑣1

2

2
+

𝑚1
2𝑣1

2

2𝑚2
=

𝑚1(𝑚1 + 𝑚2)𝑣1
2

2𝑚2
. 

From this one finds 

𝑣1 = √
2𝑚2∆𝐸

𝑚1(𝑚1 + 𝑚2)
= √

2∆𝐸

𝑚1 + 𝑚2
√

𝑚2

𝑚1
. 

The last form of the result separates the parts symmetric and non-symmetric in 1 and 2. 

Now 𝑣2 can be found using the formula for 𝑣2 above: 

𝑣2 = −𝑣1

𝑚1

𝑚2
= −√

2∆𝐸

𝑚1 + 𝑚2
√

𝑚2

𝑚1

𝑚1

𝑚2
= −√

2∆𝐸

𝑚1 + 𝑚2
√

𝑚1

𝑚2
. 

In fact, this formula could be obtained immediately from the formula for 𝑣1 by just 

exchanging 1 ⇌ 2 and changing the sign. 

35. Explosion of an object (recoil, Giancoli, chapter 7) 

 

Solution. Conservation laws for the linear momentum in this case has the form 

𝑚1𝐯1 + 𝑚2𝐯2 = 𝟎. 

As the vectors 𝐯1 and 𝐯2 (the velocities in the final state) are proportional to each other, 

that is, directed along the same line, one can choose the x-axis along this line. Then one can 

discard vectors and write 

𝑚1𝑣1 + 𝑚2𝑣2 = 0, 

where 𝑣1 and 𝑣2 are projections of the velocity vectors onto the x-axis, that can be positive 

or negative. The energy balance in the process has the form 

∆𝐸 = 𝐸1 + 𝐸2 =
𝑚1𝑣1

2

2
+

𝑚2𝑣2
2

2
, 

where ∆𝐸 is the energy released in the explosion. It turns out that the energy equation is 

not needed, however.  

The condition in the problem’s formulation is 



𝛼 ≡
𝐸1

𝐸2
= 2. 

Inserting here the kinetic energies, one obtains 

𝛼 =
𝑚1𝑣1

2

𝑚2𝑣2
2 = 𝛽 (

𝑣1

𝑣2
)

2

,         𝛽 ≡
𝑚1

𝑚2
, 

where the mass ratio, 𝛽, has to be found. From the linear-momentum conservation above 

follows 

𝑣1

𝑣2
= −

𝑚2

𝑚1
= −

1

𝛽
. 

Substituting this into the equation above, one obtains 

𝛼 = 𝛽
1

𝛽2
=

1

𝛽
. 

From this one finds 

𝛽 =
1

𝛼
=

1

2
. 

We have found that the smaller mass, here 𝑚1, receives a larger energy in the process of 

recoil. This is an important result. In shooting a rifle or a gun, the most energy of the burning 

powder goes to the bullet and only a very small energy goes to the rifle itself, as the ratio of 

the masses 𝑚𝑟𝑖𝑓𝑙𝑒/𝑚𝑏𝑢𝑙𝑙𝑒𝑡 is very large.  

36. The center of mass of a system of point masses 

Find the position of the CM of a system of three masses: 𝑚1 = 1 𝑘𝑔 at 𝐫1 = (1,1, −1) 𝑚, 

𝑚2 = 2 𝑘𝑔 at 𝐫2 = (2, −2,2) 𝑚, and 𝑚3 = 3 𝑘𝑔 at 𝐫3 = (−3,3,3) 𝑚. 

Solution. The position of the CM is defined by 

𝐫𝐶𝑀 =
1

𝑀
∑ 𝑚𝑖

𝑖

𝐫𝑖. 

Substituting the given values, one obtains 

𝐫𝐶𝑀 =
1

1 + 2 + 3
[1 × (1,1, −1) + 2 × (2, −2,2) + 3 × (−3,3,3)] 

=
(1 + 4 − 9,1 − 4 + 9, −1 + 4 + 9)

6
=

(−4,6,12)

6
= (−

2

3
, 1,2)  𝑚. 



37. People exchanging seats in a boat (Giancoli, chapter 7) 

 

Solution. Let us introduce notations: 𝑚1 = 75 𝑘𝑔, 𝑚2 = 60 𝑘𝑔, the mass of the boat 

𝑀 = 80 𝑘𝑔, 𝐿 = 3.2 𝑚. 

Neglecting the waves produced by the process, one can consider the system of two persons 

+ the boat as isolated. Then, the center of mass of this system remains at the same position. 

This problem is effectively one-dimensional, so we use the x-axis directed along the axis of 

the boat. The X-coordinate of the center of mass (CM) in the laboratory system (related to 

the ground) is given by 

𝑋𝐶𝑀 =
𝑀𝑋𝐵 + 𝑚1𝑋1 + 𝑚2𝑋2

𝑀 + 𝑚1 + 𝑚2
. 

Here 𝑋𝐵 is the coordinate of the center of the boat in the laboratory system (the ground or 

the water) and 𝑋1 and 𝑋2 are the positions of the persons in the laboratory system. The 

latter can be expressed via their positions in the boat frame (with respect to the boat) 𝑥1 

and 𝑥2 as 

𝑋1 = 𝑥1 + 𝑋𝐵,           𝑋2 = 𝑥2 + 𝑋𝐵, 

resulting in 

𝑋𝐶𝑀 =
𝑀𝑋𝐵 + 𝑚1(𝑥1 + 𝑋𝐵) + 𝑚2(𝑥2 + 𝑋𝐵)

𝑀 + 𝑚1 + 𝑚2
. 

According to the problem’s formulation,  

𝑥2 − 𝑥1 = 𝐿         (1) 

(the larger mass 𝑚1 is shifting in the positive direction, from 𝑥1 to 𝑥2). In the initial state, 

after collecting terms, one has 

𝑋𝐶𝑀,𝑖 = 𝑋𝐵,𝑖 +
𝑚1𝑥1 + 𝑚2𝑥2

𝑀 + 𝑚1 + 𝑚2
. 

In the final state, the persons have the interchanged positions and the boat is shifted, so 

that 

𝑋𝐶𝑀,𝑓 = 𝑋𝐵,𝑓 +
𝑚1𝑥2 + 𝑚2𝑥1

𝑀 + 𝑚1 + 𝑚2
. 

The positions of the CM in both states are the same: 𝑋𝐶𝑀,𝑓 = 𝑋𝐶𝑀,𝑖. Subtracting the first 

equation from the second one yields 



0 = 𝑋𝐵,𝑓 − 𝑋𝐵,𝑖 +
𝑚1(𝑥2 − 𝑥1) + 𝑚2(𝑥1 − 𝑥2)

𝑀 + 𝑚1 + 𝑚2
. 

From here, using Eq. (1), one finds the displacement of the boat, 

∆𝑋𝐵 ≡ 𝑋𝐵,𝑓 − 𝑋𝐵,𝑖 = −
𝑚1𝐿 − 𝑚2𝐿

𝑀 + 𝑚1 + 𝑚2
= −

𝑚1 − 𝑚2

𝑀 + 𝑚1 + 𝑚2
𝐿. 

Substituting the numbers, one obtains 

∆𝑋𝐵 = −
75 − 60

80 + 75 + 60
3.2 = −0.22 𝑚. 

That is, the boat is shifting in the negative direction, opposite to the direction of shifting of 

the larger mass 𝑚1. The direction of the displacement of the boat must be opposite to the 

direction of the displacement of the heavier person, to keep the CM at the same position. 

The key point in this solution is using the moving frame of the boat to specify the positions 

of the persons. This is suggested by the fact that the persons interchange their positions in 

the frame of the boat, not in the laboratory frame. 



Rotational motion 

38. Two coupled rotating disks (Giancoli, chapter 8) 

 

 

Solution. The two discs are not slipping with respect to each other, thus the velocity of the 

contact point 𝐯 is the same for both disks. Using the linear-angular velocity relation 𝑣 = 𝜔𝑅, 

one writes for both discs 

𝜔1𝑅1 = 𝑣 = 𝜔2𝑅2. 

From this one finds 

𝜔1

𝜔2
=

𝑅2

𝑅1
. 

The smaller disk is rotating faster. 

R
1
 R

2
 

v 



39. The torque on the seesaw (Giancoli, chapter 8) 

 

Solution. With respect to the support point, the total torque is the sum of two torque due to 

gravity forces on the two masses: 

𝜏 = 𝑚𝑔𝐿1 − 𝑚𝑔𝐿2 = 𝑚𝑔(𝐿1 − 𝐿2). 

We have taken into account that the torque rotating clockwise is negative and the torque 

rotating counterclockwise is positive. If the rod has the mass 𝑀 and is uniform, then its 

center of mass is in the middle of the rod at the distance from the support  

𝐿𝑀 =
𝐿1 + 𝐿2

2
− 𝐿1 =

𝐿2 − 𝐿1

2
. 

In this case, the total torque on the system is 

𝜏 = 𝑚𝑔(𝐿1 − 𝐿2) − 𝑀𝑔𝐿𝑀 = (𝑚 +
𝑀

2
) 𝑔(𝐿1 − 𝐿2). 

For 𝐿1 = 𝐿2 the torque is zero due to the symmetry. 

  



40. Torque and work on a lever 

A worker is lifting a heavy block of the mass 𝑀 with the help of the lever. The far end of the 

lever is put on the solid floor, and the other end is slowly lifted by the worker. The length of 

the lever is 𝐿. The heavy block is lying on the lever at the distance 𝑥 from the far end. What 

force does the worker apply? Prove that the total work by all forces in this process is zero. 

Prove that the work by the worker is converted into the potential energy of the heavy block. 

Solution. For the lever in the horizontal position (that is tacitly assumed in the problem’s 

formulation) the rotational equilibrium condition has the form 

𝜏 = 𝐹𝐿 − 𝑀𝑔𝑥 = 0. 

From this one finds the force applied by the worker: 

𝐹 =
𝑥

𝐿
𝑀𝑔 < 𝑀𝑔. 

One can see that the lever allows gaining in the force.  

 

Let us consider the work now. If the lever turns by a small angle ∆𝜃 out of the horizontal 

position, the elevations of the worker’s end of the lever and the heavy block are  

∆𝑧 = 𝐿∆𝜃,            ∆𝑧𝑀 = 𝑥∆𝜃, 

respectively. The total work done by the worker and by the gravity force is 

∆𝑊 = 𝐹∆𝑧 − 𝑀𝑔∆𝑧𝑀. 

Substituting the elevations listed above, one finds 

∆𝑊 = 𝐹𝐿∆𝜃 − 𝑀𝑔𝑥∆𝜃 = (𝐹𝐿 − 𝑀𝑔𝑥)∆𝜃. 

The expression in the brackets is the total torque that is zero. Thus, the total work is zero, 

too. This is how the work-energy principle is working for the lever.  

One can consider the work-energy balance as the equality between the work done by the 

worker and the increase of the potential energy of the heavy block: 

∆𝐸𝑝𝑜𝑡 = 𝑀𝑔∆𝑧𝑀 = 𝐹∆𝑧, 

where the last term in the work done by the worker. 
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41. The gravity force is applied to the CM 

For a system of masses 𝑚𝑖 placed at positions 𝑥𝑖  on the horizontal axis prove that torque of 

the gravity force with respect to the CM is zero. This allows one to consider the gravity force 

as applied at the CM.

 

Solution. First, the position of the CM is given by 

𝑥𝐶𝑀 =
1

𝑀
∑ 𝑚𝑖𝑥𝑖

𝑖

,          𝑀 = ∑ 𝑚𝑖

𝑖

. 

Then, with respect to support point 𝑥0, the lever arms of the individual gravity forces are  

𝐿𝑖 = 𝑥𝑖 − 𝑥0. 

The total torque is given by 

𝜏 = ∑ 𝑚𝑖𝑔𝐿𝑖

𝑖

= 𝑔 ∑ 𝑚𝑖(𝑥𝑖 − 𝑥0)

𝑖

= 𝑔 ∑ 𝑚𝑖𝑥𝑖

𝑖

− 𝑔𝑥0 ∑ 𝑚𝑖

𝑖

. 

Using the definitions of 𝑥𝐶𝑀 and 𝑀 above, one obtains 

𝜏 = 𝑔𝑀𝑥𝐶𝑀 − 𝑔𝑥0𝑀 = 𝑀𝑔(𝑥𝐶𝑀 − 𝑥0) = 𝑀𝑔𝐿𝐶𝑀, 

where we have introduced the lever arm of the CM 

𝐿𝐶𝑀 ≡ 𝑥𝐶𝑀 − 𝑥0.  

Thus, the total torque can be calculated in a simplified way by considering the CM instead of 

all elementary masses: 

𝜏 = ∑ 𝑚𝑖𝑔𝐿𝑖

𝑖

⇒ 𝑀𝑔𝐿𝐶𝑀. 

This means that, in the calculation of torques, one can consider the total gravity force 𝑀𝑔 

applied to the center of mass. 

We now put the support point at the center of mass of the system, 𝑥0 = 𝑥𝐶𝑀 and thus 

𝐿𝐶𝑀 = 0, then the torque of the gravity force with respect to this pivot point will be zero 

and the system will be in rotational equilibrium. 

Using similar approach, one can prove that the gravity force can be considered as applied to 

the CM for any arrangement of masses in 3D. For this, one has to put the support under the 
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CM of the system, and check that the total gravity torques with respect to 𝑥 and 𝑦 axes are 

zero. 

42. Calculation of the moment of inertia of a system of point masses (Giancoli, 

chapter 8) 

 

Solution. This problem has to be prepared for solving, so that one gets a connection to the 

general formulas. First, we rewrite the problem in the intelligible way by numbering the 

masses as shown in the picture. One obtains 

𝑚1 = 𝑚2 = 𝑚 = 1.8 𝑘𝑔,        𝑚3 = 𝑚4 = 𝑀 = 3.1 𝑘𝑔. 

After putting the origin of the coordinate system 𝑂 at the intersection of the 𝑥 and 𝑦 axes 

the coordinates of the masses become 

𝐫1 = (−0.5, 0.25) 𝑚,           𝐫2 = (1, 0.25) 𝑚 

𝐫3 = (−0.5, −0.25) 𝑚,        𝐫4 = (1, −0.25) 𝑚. 

The moment of inertia with respect to the 𝑥 axis is given by 

𝐼𝑥 = ∑ 𝑚𝑖𝑦𝑖
2

𝑖

= 𝑚1𝑦1
2 + 𝑚2𝑦2

2 + 𝑚3𝑦3
2 + 𝑚4𝑦4

2. 

Substituting the numbers, one obtains 

𝐼𝑥 = 1.8 × 0.252 + 1.8 × 0.252 + 3.1 × (−0.25)2 + 3.1 × (−0.25)2 = 0.6125 𝑘𝑔 𝑚2. 

The moment of inertia with respect to the 𝑦 axis is given by 

𝐼𝑦 = ∑ 𝑚𝑖𝑥𝑖
2

𝑖

. 

1 2 
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Substituting the numbers, one obtains 

𝐼𝑦 = 1.8 × (−0.5)2 + 1.8 × 12 + 3.1 × (−0.5)2 + 3.1 × 12 = 6.125 𝑘𝑔 𝑚2 

that is exactly ten time greater than 𝐼𝑥. One could investigate what is special about the 

numbers in this problem. 

Finally, one can calculate the moment of inertia with respect to 𝑧 axis that is perpendicular 

to the 𝑥 and 𝑦 axes and goes through their intersection 𝑂. One has 

𝐼𝑧 = ∑ 𝑚𝑖(𝑥𝑖
2 + 𝑦𝑖

2

𝑖

) = 𝐼𝑦 + 𝐼𝑥. 

Using the values calculated above, one obtains 𝐼𝑧 = 0.6125 + 6.125 = 6.7375 𝑘𝑔 𝑚2.  

Note: The relation 𝐼𝑧 = 𝐼𝑥 + 𝐼𝑦 holds for any arrangement of masses within the 𝑥𝑦 plane. 

43. Checking the Steiner theorem for a system of two masses. 

Consider the moment of inertia of a system of two masses, 𝑚1 and 𝑚2, with respect to the 

axes perpendicular to the line connecting the two masses. Consider the following cases: a) 

the axis goes through the CM of the system; b) the axis goes through the mass 𝑚1; c) the 

axis goes through the mass 𝑚2. Check if the Steiner theorem holds. 

 

Solution. First, one has to find the position of the center of mass 𝑥𝐶𝑀. Choosing the position 

of the mass 𝑚1 as the origin of the 𝑥 axis, one obtains 

𝑥𝐶𝑀 =
0𝑚1 + 𝐿𝑚2

𝑚1 + 𝑚2
=

𝑚2

𝑚1 + 𝑚2
𝐿, 

as well as 

𝐿 − 𝑥𝐶𝑀 =
𝑚1

𝑚1 + 𝑚2
𝐿. 

Now, the moment of inertia with respect to the CM is given by 

𝐼𝐶𝑀 = 𝑚1𝑥𝐶𝑀
2 + 𝑚2(𝐿 − 𝑥𝐶𝑀)2. 

L 

xCM 
m1 m2 

a) 
b) 

c) 



Substituting here the expressions for 𝑥𝐶𝑀 and 𝐿 − 𝑥𝐶𝑀 above, one finds 

𝐼𝐶𝑀 = 𝑚1 (
𝑚2

𝑚1 + 𝑚2
𝐿)

2

+ 𝑚2 (
𝑚1

𝑚1 + 𝑚2
𝐿)

2

=
𝑚1𝑚2

𝑚1 + 𝑚2
𝐿2. 

The moment of inertia with respect to the axis going through the mass 𝑚1 is 

𝐼1 = 𝑚2𝐿2. 

The moment of inertia with respect to the axis going through the mass 𝑚2 is 

𝐼2 = 𝑚1𝐿2. 

Let us now obtain 𝐼1 using the Steiner theorem, that is, 

𝐼1 = 𝐼𝐶𝑀 + (𝑚1 + 𝑚2)𝑥𝐶𝑀
2 . 

One obtains 

𝐼1 =
𝑚1𝑚2

𝑚1 + 𝑚2
𝐿2 + (𝑚1 + 𝑚2) (

𝑚2

𝑚1 + 𝑚2
𝐿)

2

 

     =
𝑚1𝑚2

𝑚1 + 𝑚2
𝐿2 +

𝑚2
2

𝑚1 + 𝑚2
𝐿2 = 𝑚2𝐿2 

that coincides with the result above obtained directly. The same calculation can be done for 

𝐼2. 

44. Two masses on a massive block 

A massless cord goes over a massive block of radius 𝑅 and the moment of inertia 𝐼, and the 

masses 𝑚1 and 𝑚2 are suspended at the ends of the cord. Find the acceleration of the 

masses and the tension of the cord. 

 

Solution. A similar problem with a massless block was solved above in the section on 

dynamics. Here, the tension forces on the two sides of the block must be different to 

provide the torque on the block needed to give it the required angular acceleration. The 

latter satisfies the constraint tying it to the linear acceleration of the loads 𝑎: 

m
1
 

m
2
 

m1g 

m2g 

T1 

T2 

+ 

+ 
𝑚1𝑔 − 𝑇1 = 𝑚1𝑎 

−𝑚2𝑔 + 𝑇2 = 𝑚2𝑎 

𝜏 = (𝑇1 − 𝑇2)𝑅 = 𝐼𝛼 

𝑎 = 𝛼𝑅 

 



𝑎 = 𝛼𝑅. 

Again, to write down Newton’s second law for both masses and the block, it is essential to 

choose the positive direction of motion that is down for one of the masses and up for the 

other, as shown on the sketch. The equations of motion for the masses (Newton’s second 

law) and for the block, with explicit signs, are as follows 

𝑚1𝑔 − 𝑇1 = 𝑚1𝑎 

−𝑚2𝑔 + 𝑇2 = 𝑚2𝑎 

𝜏 = (𝑇1 − 𝑇2)𝑅 = 𝐼𝛼. 

It is convenient to divide the last equation by 𝑅 and express 𝛼 = 𝑎/𝑅. This yields a system 

of three linear equations with three unknowns: 𝑇1, 𝑇2, and 𝑎: 

𝑚1𝑔 − 𝑇1 = 𝑚1𝑎 

−𝑚2𝑔 + 𝑇2 = 𝑚2𝑎 

𝑇1 − 𝑇2 =
𝐼

𝑅2
𝑎. 

Adding these equations, one can eliminate the tension forces that yields 

(𝑚1 − 𝑚2)𝑔 = (𝑚1 + 𝑚2 +
𝐼

𝑅2
) 𝑎. 

Thus 

𝑎 =
𝑚1 − 𝑚2

𝑚1 + 𝑚2 +
𝐼

𝑅2

𝑔. 

One can see that the total mass of the system increases because of the massive block that 

contributes 𝐼/𝑅2 as its effective mass. If 𝑚1 > 𝑚2, the acceleration is positive and the 

masses are accelerating in the directions indicated in the sketch. Tension forces can now be 

found from the first and second equations of motion. One obtains 

𝑇1 = 𝑚1𝑔 − 𝑚1𝑎 = 𝑚1𝑔 (1 −
𝑚1 − 𝑚2

𝑚1 + 𝑚2 +
𝐼

𝑅2

) =
𝑚1 (2𝑚2 +

𝐼
𝑅2)

𝑚1 + 𝑚2 +
𝐼

𝑅2

𝑔 

and 

𝑇2 = 𝑚2𝑎 + 𝑚2𝑔 = 𝑚2𝑔 (
𝑚1 − 𝑚2

𝑚1 + 𝑚2 +
𝐼

𝑅2

+ 1) =
𝑚2 (2𝑚1 +

𝐼
𝑅2)

𝑚1 + 𝑚2 +
𝐼

𝑅2

𝑔. 

The difference of the tension forces is 

𝑇1 − 𝑇2 =
𝐼

𝑅2

𝑚1 − 𝑚2

𝑚1 + 𝑚2 +
𝐼

𝑅2

𝑔 =
𝐼

𝑅2
𝑎. 

This is just the equation of motion for the block listed above. In the limit of the massless 

block, 𝐼 = 0, the tension forces become the same, 𝑇1 = 𝑇2. 



45. Rotational vs translational kinetic energy of a rolling body 

A solid cylinder is rolling on a horizontal surface without slipping. Find the ratio of its 

rotational to translational kinetic energies. 

Solution. The formulas for both parts of the kinetic energy have the form 

𝐸𝑡𝑟 =
𝑀𝑣2

2
,           𝐸𝑟𝑜𝑡 =

𝐼𝜔2

2
. 

The angular and linear velocities are related by 

𝑣 = 𝜔𝑅. 

With the help of this (in the form 
𝜔

𝑣
=

1

𝑅
), for the ratio of the energies one obtains 

𝐸𝑟𝑜𝑡

𝐸𝑡𝑟
=

𝐼𝜔2

𝑀𝑣2
=

𝐼

𝑀𝑅2
. 

For the solid sphere, one has  

𝐼 =
2

5
𝑀𝑅2.  

Thus, in this case, 

𝐸𝑟𝑜𝑡

𝐸𝑡𝑟
=

2

5
. 

46. Rolling down the incline 

A solid sphere is put on the incline with the angle 𝜃. Find the acceleration of the center of 

mass of the sphere if it is rolling without slipping. 

 

Solution. The three forces acting on the rolling sphere are shown in the sketch above. With 

respect to the center of the sphere, only the friction force has a nonzero torque, and this 

force creates the angular acceleration in the direction of rolling. This is why the friction force 

is directed back. Because of this, the acceleration of the center of the rolling object is always 

smaller than that of a body sliding down the incline without friction, 𝑔 sin 𝜃. The equations 
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of motion are Newton’s second law for translational motion of the center of mass and for 

the rotation around the CM. The former projected on the 𝑥-axis reads 

𝑚𝑔 sin 𝜃 − 𝐹𝑓𝑟 = 𝑚𝑎, 

the same as for the body sliding with friction. The rotational Newton’s law reads 

𝜏 = 𝐹𝑓𝑟𝑅 = 𝐼𝛼, 

where 𝑅 is the radius of the sphere. Finally, there is a constraint equation relating 𝛼 and 𝑎 in 

the condition of non-slipping: 

𝑎 = 𝛼𝑅. 

Thus, we have a system of three equations with three unknowns: 𝐹𝑓𝑟, 𝑎, and 𝛼, that is well 

defined and can be solved. Dividing the rotational equation by 𝑅 and expressing 𝛼 via 𝑎, one 

obtains 

𝐹𝑓𝑟 =
𝐼

𝑅2
𝑎. 

Substituting this into the first equation and solving for 𝑎, one obtains 

𝑎 =
𝑚𝑔 sin 𝜃

𝑚 +
𝐼

𝑅2

=
𝑔 sin 𝜃

1 +
𝐼

𝑚𝑅2

 

that is smaller than 𝑎 = 𝑔 sin 𝜃 for the body sliding without friction. The formula above is 

good for any rolling body: a wheel, a cylinder, a solid or a hollow sphere. For the solid 

sphere one has  

𝐼 =
2

5
𝑚𝑅2,  

thus, in this case, 

𝑎 =
𝑔 sin 𝜃

1 +
2
5

=
5

7
𝑔 sin 𝜃. 

47. The minimal friction coefficient for rolling down the incline without 

slipping 

In the problem above, find the minimal value of the static friction coefficient, for which 

rolling without slipping is possible. 

Solution. The no-slipping condition requires 

𝐹𝑓𝑟 ≤ 𝜇𝑠𝐹𝑁 . 

Substituting  

𝐹𝑓𝑟 =
𝐼

𝑅2
𝑎 =

𝐼

𝑅2

𝑔 sin 𝜃

1 +
𝐼

𝑚𝑅2

=
𝑚𝑔 sin 𝜃

𝑚𝑅2

𝐼 + 1
,        𝐹𝑁 = 𝑚𝑔 cos 𝜃, 



one obtains the condition 

𝑚𝑔 sin 𝜃

𝑚𝑅2

𝐼 + 1
≤ 𝜇𝑠𝑚𝑔 cos 𝜃 

from which follows 

𝜇𝑠 ≥
tan 𝜃

𝑚𝑅2

𝐼 + 1
. 

For the solid sphere, this condition becomes 

𝜇𝑠 ≥
tan 𝜃

5
2 + 1

=
2

7
tan 𝜃. 

48. Rolling cylinder pulled at its center 

There is a cylinder of mass 𝑀 that can roll without slipping on a horizontal surface. It is 

pulled by its center by a cord going over a massless block and then down to the mass 𝑚 

suspended on the cord. Find the linear acceleration of the system, the tension of the cord, 

and the friction force acting on the cylinder. 

 

Solution. As the block is massless, the tension forces on its sides are the same. With the 

obvious choice of the positive direction of motion, Newton’s second law for the suspended 

mass has the form 

𝑚𝑔 − 𝑇 = 𝑚𝑎. 

For the rolling cylinder, there are two equations of motion for its translational and rotational 

motion: 

𝑇 − 𝐹𝑓𝑟 = 𝑀𝑎 

𝜏 = 𝐹𝑓𝑟𝑅 = 𝐼𝛼. 
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Dividing the rotational equation by 𝑅 and expressing the angular acceleration via the linear 

acceleration as 𝛼 = 𝑎/𝑅, for the rolling cylinder one obtains 

𝑇 − 𝐹𝑓𝑟 = 𝑀𝑎 

𝐹𝑓𝑟 =
𝐼

𝑅2
𝑎. 

Summing the equation for the suspended mass and thsese two equations, one eliminates 𝑇 and 𝐹𝑓𝑟  

and obtains 

𝑚𝑔 = (𝑚 + 𝑀 +
𝐼

𝑅2
) 𝑎, 

where the expression in the brackets is the effective mass of the system. From here one finds the 

acceleration of the system: 

𝑎 =
𝑚

𝑚 + 𝑀 +
𝐼

𝑅2

𝑔. 

Now, the friction force can be obtained from the rotational equation: 

𝐹𝑓𝑟 =
𝐼

𝑅2
𝑎 =

𝑚
𝐼

𝑅2

𝑚 + 𝑀 +
𝐼

𝑅2

𝑔 

The cord tension force can be found from the equation for the suspended mass: 

𝑇 = 𝑚𝑔 − 𝑚𝑎 = 𝑚𝑔 (1 −
𝑚

𝑚 + 𝑀 +
𝐼

𝑅2

) =
𝑚 (𝑀 +

𝐼
𝑅2)

𝑚 + 𝑀 +
𝐼

𝑅2

𝑔. 

49. Rolling cylinder pulled at its top 

There is a cylinder of mass 𝑀 that can roll without slipping on a horizontal surface. It is 

pulled by its top by a cord going over a massless block and then down to the mass 𝑚 

suspended on the cord. Find the linear acceleration of the system, the tension of the cord, 

and the friction force acting on the cylinder. 
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Solution. As the block is massless, the tension forces on its sides are the same. With the 

obvious choice of the positive direction of motion, Newton’s second law for the suspended 

mass has the form 

𝑚𝑔 − 𝑇 = 𝑚𝑎. 

For the rolling cylinder, there are two equations of motion for its translational and rotational 

motion: 

𝑇 − 𝐹𝑓𝑟 = 𝑀𝑎 

𝜏 = 𝐹𝑓𝑟𝑅 + 𝑇𝑅 = 𝐼𝛼. 

Dividing the rotational equation by 𝑅 and expressing the angular acceleration via the linear 

acceleration as 𝛼 = 𝑎/𝑅, for the rolling cylinder one obtains 

𝑇 − 𝐹𝑓𝑟 = 𝑀𝑎 

𝐹𝑓𝑟 + 𝑇 =
𝐼

𝑅2
𝑎. 

Summing the doubled equation for the suspended mass and these two equations, one eliminates 𝑇 

and 𝐹𝑓𝑟  and obtains 

2𝑚𝑔 = (2𝑚 + 𝑀 +
𝐼

𝑅2
) 𝑎. 

From here one finds the acceleration of the system: 

𝑎 =
2𝑚

2𝑚 + 𝑀 +
𝐼

𝑅2

𝑔 =
𝑚

𝑚 +
1
2 (𝑀 +

𝐼
𝑅2)

𝑔. 

The mass combination in the denominator is the effective mass of the syste. It is smaller than in the 

preceding problem because the contribution of the rolling body enters with the factor ½. 

The cord tension force can be found from the equation for the suspended mass: 

𝑇 = 𝑚𝑔 − 𝑚𝑎 = 𝑚𝑔 (1 −
2𝑚

2𝑚 + 𝑀 +
𝐼

𝑅2

) =
𝑚 (𝑀 +

𝐼
𝑅2)

2𝑚 + 𝑀 +
𝐼

𝑅2

𝑔. 

The friction force can be obtained by subtracting translational equation for the cylinder from the 

rotational equation: 

𝐹𝑓𝑟 + 𝑇 − (𝑇 − 𝐹𝑓𝑟) = 2𝐹𝑓𝑟 =
𝐼

𝑅2
𝑎 − 𝑀𝑎 = (

𝐼

𝑅2
− 𝑀) 𝑎. 

From this one obtains 

𝐹𝑓𝑟 =
𝑚 (

𝐼
𝑅2 − 𝑀)

2𝑚 + 𝑀 +
𝐼

𝑅2

𝑔 

For the solid cylinder, 

𝐼 =
1

2
𝑀𝑅2, 



so that the friction force becomes 

𝐹𝑓𝑟 = −

𝑚𝑀
2

2𝑚 +
3𝑀
2

𝑔 = −
𝑚𝑀

4𝑚 + 3𝑀
𝑔. 

Note that the friction force is negative. This means that it is directed not to the left, as shown in the 

sketch, but to the right. This is the case for most round bodies having the factor smaller than 1 in the 

moment of inertia. For the hollow cylinder 

𝐼 = 𝑀𝑅2, 

and the friction force is zero! 

50. Angular momentum conservation (Giancoli, chapter 8) 

 

Solution. As there are no external torque acting on the system disk+rod, its algular 

momentum is conserved, 𝐿 = 𝑐𝑜𝑛𝑠𝑡, or, in terms of the initial and final states, 

𝐿 = 𝐼𝑑𝑖𝑠𝑘𝜔𝑖 = (𝐼𝑑𝑖𝑠𝑘 + 𝐼𝑟𝑜𝑑)𝜔𝑓 . 

Thus, the final angular velocity 𝜔𝑓 is 

𝜔𝑓 =
𝐼𝑑𝑖𝑠𝑘

𝐼𝑑𝑖𝑠𝑘 + 𝐼𝑟𝑜𝑑
𝜔𝑖. 

The moments of inertia of the disk is given by 

𝐼𝑑𝑖𝑠𝑘 =
1

2
𝑀𝑅2. 

The moment of inertia of the rod (with respect to its center) is 



𝐼𝑟𝑜𝑑 =
1

12
𝑀𝑙2 =

1

12
𝑀(2𝑅)2 =

1

3
𝑀𝑅2. 

Substituting these expressions, one obtains 

𝜔𝑓 =

1
2 𝑀𝑅2

1
2 𝑀𝑅2 +

1
3 𝑀𝑅2

𝜔𝑖 =
3

5
𝜔𝑖. 

Substituting the numbers, one obtains 

𝜔𝑓 =
3

5
× 2.3

𝑟𝑒𝑣

𝑠
= 1.38

𝑟𝑒𝑣

𝑠
. 



Physics part II 

 



Electrostatics 

51. Electric field from a collection of charges 

Electric charges Q1 = Q, Q2 = 2Q, and Q3 = 3Q are placed at r1 = (1,0,0)a, r2 = (0,1,0)a, and r3 = 

(0,0,1)a. Find the electric field E at r = (1,1,1)a. 

Solution. This problem deals the electric field in the general vector form in 3D with vectors 

given by their components, such as A = (Ax,Ay,Az). In the notations above a is a length in 

meters. The basic formula for the electric field of a point charge Q following from the 

Coulomb’s law reads 

E = 𝑘
𝑄

𝑟2

r

𝑟
. 

Here the first part gives the magnitude of the electric-field vector E while the unit vector r/r 

gives its direction. (Check that it is indeed a unit vector by calculating its magnitude that 

should be 1). This formula implies that the charge Q is in the origin of a coordinate system 

and the position of the observation point is given by the vector r that goes from the origin to 

the observation point. However, if there are several charges, one cannot put them all in the 

origin. A more general formula for the electric field E1 created by the charge Q1 that is not 

necessarily in the origin reads 

𝑬1 = 𝑘
𝑄1

|r − r1|2

r − r1

|r − r1|
. 

Here the vector r − r1 goes from the charge Q1 located at r1 to the observation point r. This 

formula can be generalized for several charges put at different positions: 

𝐄 = ∑ 𝑘
𝑄𝑖

|r − r𝑖|2

r − r𝑖

|r − r𝑖|
𝑖

= 𝑘 ∑ 𝑄𝑖

r − r𝑖

|r − r𝑖|3

𝑖

. 

This formula can be used as a starting point for solving our problem. It is convenient to pre-

calculate 

r − r1 = (1,1,1)𝑎 − (1,0,0)𝑎 = (0,1,1)𝑎 

r − r2 = (1,1,1)𝑎 − (0,1,0)𝑎 = (1,0,1)𝑎 

r − r3 = (1,1,1)𝑎 − (0,0,1)𝑎 = (1,1,0)𝑎 

and  

|r − r1| = √02 + 12 + 12𝑎 = √2𝑎 

|r − r2| = √2𝑎 

|r − r3| = √2𝑎. 

Now 

𝐄 = 𝑘 [
𝑄

𝑎2

(0,1,1)

2
3
2

+
2𝑄

𝑎2

(1,0,1)

2
3
2

+
3𝑄

𝑎2

(1,1,0)

2
3
2

] 



= 𝑘
𝑄

𝑎2

(0,1,1) + 2(1,0,1) + 3(1,1,0)

2
3
2

 

= 𝑘
𝑄

𝑎2

(0 + 2 + 3,1 + 0 + 3,1 + 2 + 0)

2
3
2

 

=  𝑘
𝑄

𝑎2

(5,4,3)

2
3
2

. 

Understanding this problem gives a student a tool to find the electric field from a collection 

of point charges in the most general form. 

52. Forces on charges Q put in corners of a rectangle with sides a and b 

Charges Q are put in the corners of a rectangle with sides a and b. Find the magnitude of the 

force acting on each charge. 

Solution. Here we use the Coulomb’s law for the interaction of two point charges Q1 and Q2 

at positions r1 and r2 

F12 = 𝑘
𝑄1𝑄2

|𝐫1 − r2|2

𝐫1 − r2

|𝐫1 − r2|
. 

This is the force acting on charge 1 from charge 2. The force is directed along the line 

connecting the two charges. Vector 𝐫1 − r2 goes from charge 2 to charge 1. It is repulsive if 

the charges have the same sign and attractive if the charges have different signs.  

In the problem, position vectors are not explicitly given but we know that the lines 

connecting the charges are sides and diagonals of the rectangle. Thus, we do not need the 

full form of the formula above. 

 

 

 

 

 

 

 

We have to introduce the axes x and y and project all forces on these axes to and add the 

forces component by component. The magnitudes of the forces acting on each of the 

charges are the same, only their directions are different. We will consider the force acting 

on the charge 1, 

F1 = 𝐅12 + 𝐅13 + 𝐅14. 

 

y 

x 
F13 

F14 1 

2 3 

4 

F12 

a 

b 



The force from charge 2 has only y component, while the force from charge 4 has only x-

component. The force from charge 3 has both x- and y-components and is defined by the 

distance √𝑎2 + 𝑏2, as well as by  

cos 𝜃 =
𝑎

√𝑎2 + 𝑏2
,       sin 𝜃 =

𝑏

√𝑎2 + 𝑏2
.        

One obtains 

𝐹1,𝑥 = −𝑘
𝑄2

𝑎2
− 𝑘

𝑄2

𝑎2 + 𝑏2
cos 𝜃 = −𝑘

𝑄2

𝑎2
− 𝑘

𝑄2𝑎

(𝑎2 + 𝑏2)
3
2

 

𝐹1,𝑦 = −𝑘
𝑄2

𝑏2
− 𝑘

𝑄2

𝑎2 + 𝑏2
sin 𝜃 = −𝑘

𝑄2

𝑏2
− 𝑘

𝑄2𝑏

(𝑎2 + 𝑏2)
3
2

. 

Now the magnitude of the force is given by 

𝐹1 = √𝐹1,𝑥
2 + 𝐹1,𝑦

2 = 𝑘𝑄2√(
1

𝑎2
+

𝑎

(𝑎2 + 𝑏2)
3
2

)

2

+ (
1

𝑏2
+

𝑏

(𝑎2 + 𝑏2)
3
2

)

2

. 

Forces acting on other charges have the same magnitude, so that one can discard the 

subscript 1. In the case b=a the result simplifies to 

𝐹 = 𝑘
𝑄2

𝑎2
√2 (1 +

1

23/2
)

2

= 𝑘
𝑄2

𝑎2
(√2 +

1

2
). 

This result can be obtained directly for the problem with the square instead of the rectangle 

that is much simpler (the next problem). 

53. Forces on charges Q put in corners of a square 

This problem is a particular case of the more general preceding problem. In the case of the 

square with all charges the same, there is a symmetry that allows one to obtain the solution 

without invoking the full vector formalism. 

Solution. By the symmetry it is clear that the force on charge 1 is directed along the diagonal 

shown in the drawing. Thus, one has to project all three forces on this direction that yields 

𝐹 = 2𝑘
𝑄2

𝑎2
cos 45° + 𝑘

𝑄2

(√2𝑎)2
. 
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Here the factor 2 accounts for the two contributions from charges 2 and 4. The second term 

accounts for charge 3. With cos 45° = √2/2 one obtains 

𝐹 = 𝑘
𝑄2

𝑎2
(√2 +

1

2
). 

This result has been obtained as a particular case of the preceding problem and it can be 

used for testing the validity of the latter. 

54. Forces on different charges at an equilateral triangle 

Charges Q, Q, and 2Q are put at the corners of an equilateral triangle with side a. Find the 

magnitudes of the forces acting on each charge. 

 

Solution. Here the system has symmetry with respect to the triangle’s bisectrix shown in the 

drawing. By the symmetry, the force on charge 2Q, 

F3 = F31 + F32, 

is directed along the bisectrix. The magnitude of this force is given by 

𝐹3 = 𝑘
𝑄 × 2𝑄

𝑎2
2 cos 30° = 𝑘

𝑄2

𝑎2
2√3. 

To the contrary, there is no symmetry that could help to simplify the forces acting on 

charges Q. Thus, one has to add the vectors in 

F1 = F12 + F13, 

component by component using x- and y-axes shown in the drawing. One obtains 

𝐹1,𝑥 = 𝐹12,𝑥 + 𝐹13,𝑥 = −𝑘
𝑄2

𝑎2
cos 60° − 𝑘

2𝑄2

𝑎2
= −𝑘

𝑄2

𝑎2
(

1

2
+ 2) = −𝑘

𝑄2

𝑎2

5

2
 

and 

𝐹1,𝑦 = 𝐹12,𝑦 + 𝐹13,𝑦 = −𝑘
𝑄2

𝑎2
sin 60° + 0 = −𝑘

𝑄2

𝑎2

√3

2
. 

Q 

Q 

2Q 

a 
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y 
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Now the magnitude of F2 is given by 

𝐹1 = √𝐹1,𝑥
2 + 𝐹1,𝑦

2 = 𝑘
𝑄2

𝑎2
√(

5

2
)

2

+ (
√3

2
)

2

= 𝑘
𝑄2

𝑎2

1

2
√25 + 3 = 𝑘

𝑄2

𝑎2

√28

2
= 𝑘

𝑄2

𝑎2
√7. 

The force acting on the other charge Q has the same magnitude: F2 = F1. 

55. Electric field at the center line between two equal charges 

Find the electric field E(z) along the straight line going between two equal charges Q put at 

the distance a from each other. Analyze particular cases.  

 

 

 

 

 

 

Solution. Put the origin of the coordinate system O in the point between the two charges 

and direct z-axis in the right horizontal direction. From the symmetry it follows that the 

electric field on the center line is directed horizontally. It is given by 

𝐸 = 2𝑘
𝑄

𝑟2
cos 𝜃, 

where the factor 2 takes care for the two contributions into the result from the upper and 

lower charges. Using 

𝑟 = √𝑧2 + (
𝑎

2
)

2

,        cos 𝜃 =
𝑧

𝑟
 , 

one finally obtains  

𝐸 = 𝑘
2𝑄𝑧

(𝑧2 + (
𝑎
2)

2

)
3/2

. 

One particular case is the point between the charges, z=0. Here the electric field from the 

two charges cancel each other and E=0. The formula above reproduces this result that 

serves as its check. 

Another particular case is the region far away from the charges, z>>a. Here one can neglect 

the term (a/2)2 in the denominator of the formula after which the result becomes 

𝐸 = 𝑘
2𝑄

𝑧2
. 

Q 

E 

r 
a/2 

a/2 

z 
 

 0

0

O 

Q 



This is is nothing else than the electric field of the charge 2Q at the distance z. This is an 

expected result as from large distances the two charges close to each other are looking as 

one double charge. This is another check on our general formula. 

The plot of the dependence E(z) is shown below. There is a maximum of E at the distance z 

of order a. 

 

 

 

 

 

56. Electric field at the center line between two opposite charges 

Find the electric field E(z) along the straight line going between two opposite charges Q and 

–Q put at the distance a from each other. Analyze particular cases.  

 

 

 

 

 

 

 

Solution. As the upper charge is negative, its electric field at the observation point is 

directed toward it, as shown in the drawing. The resulting electric field E is thus directed up. 

It is given by 

𝐸 = 2𝑘
𝑄

𝑟2
sin 𝜃. 

Using 

𝑟 = √𝑧2 + (
𝑎

2
)

2

,        sin 𝜃 =
𝑎/2

𝑟
 , 

one finally obtains  

𝐸 = 𝑘
𝑄𝑎

(𝑧2 + (
𝑎
2)

2

)
3/2

. 
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-Q 

0 z 
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z 
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O 



One particular case of this formula is z=0, the observation point between the charges. In this 

case one obtains 

𝐸 = 𝑘
8𝑄

𝑎2
 

that is the doubled electric field at the distance a/2 from the charge Q. 

At large distances , z>>a, one can neglect the term (a/2)2 in the denominator of the formula 

after which the result becomes 

𝐸 = 𝑘
𝑄𝑎

𝑧3
. 

As the power in the denominator is three rather than two, one concludes that the electric 

field produced by two opposite charges decreases faster at large distances than the field 

produces by one charge. Indeed, looking from large distances, one cannot see the system of 

two opposite charges as one effective charge (as in the preceding problem) because the 

sum of the two charges is zero. Such a system is called “electric dipole”. 

 

 

 

 

57. Electric potentials in the center of the equilateral triangle of charges and in 

the middle of a side. 

Consider an equilateral triangle with side a having point charges Q at its corners. Compare 

electric potentials in the center of the triangle and in the middle of its side. What is your 

expectation? Which potential is higher? 

 

 

 

 

 

 

Solution. Let us denote the electric potential in the center of the triangle Vc and the electric 

potential in the middle of the side Vm. At the center one has 

𝑉𝑐 = 3𝑘
𝑄

𝑙
, 

while in the middle of the side 

Vm 

Vc 
l 

 

a 
h 

a/2 

Q Q 

Q 

z 

E 



𝑉𝑚 = 2𝑘
𝑄

𝑎/2
+ 𝑘

𝑄

ℎ
. 

With 

ℎ = 𝑎 cos 30° = 𝑎
√3

2
,           𝑙 =

𝑎/2

cos 30°
=

𝑎

√3
 

one finally obtains 

𝑉𝑐 = 𝑘
𝑄

𝑎
3√3 ≈ 𝑘

𝑄

𝑎
× 5.196 

and  

𝑉𝑚 = 𝑘
𝑄

𝑎
(4 +

2

√3
) ≈ 𝑘

𝑄

𝑎
× 5.155 < 𝑉𝑐. 

These two values are so close to each other that no intuition in the world can figure out 

what potential is higher without the actual calculating the potentials. 

58. Electric potentials in the center of a square of charges and in the middle of 

a square’s side. 

Consider a square with side a having point charges Q at its corners. Compare electric 

potentials in the center of the square and in the middle of its side. What is your 

expectation? Which potential is higher? 

Solution. Let us denote the electric potential in the center of the triangle Vc and the electric 

potential in the middle of the side Vm. At the center one has 

𝑉𝑐 = 4𝑘
𝑄

𝑎/√2
= 𝑘

𝑄

𝑎
4√2 = 𝑘

𝑄

𝑎
× 5.657 

In the middle of a site there are two different contributions: 

𝑉𝑚 = 2𝑘
𝑄

𝑎/2
+ 2𝑘

𝑄

𝑙
. 
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The distance 𝑙 can be obtained from the Pythagoras’ theorem: 

𝑙 = √𝑎2 + (
𝑎

2
)

2

= 𝑎
√5

2
. 

Finally, 

𝑉𝑚 = 𝑘
𝑄

𝑎
4 (1 +

1

√5
) = 𝑘

𝑄

𝑎
× 5.789 > 𝑉𝑐. 



Electric circuits 

59. The Wheatstone bridge 

 

Not all circuits can be calculated using the formulas for the serial and parallel connection of 

resistors. The simplest example is the so-called Wheatstone bridge. The task is to calculate 

the effective resistance of the bridge as 𝑅 = 𝑉/𝐼. For this, one has to write down the 

Kirchhoff’s equations and solve them (using computer algebra) for 𝐼 for a given 𝑉. In the 

limits 𝑅5 = 0 and 𝑅5 → ∞ the problem simplifies, and these solutions can be used to check 

the general formula for 𝑅. 

Solution. The Kirchhoff equations for the currents are 

𝐼 = 𝐼1 + 𝐼3,           𝐼1 = 𝐼2 + 𝐼5,            𝐼3 + 𝐼5 = 𝐼4 

and Kirchhoff equations for the voltages, combined with the Ohm’s law, have the form 

𝑅1𝐼1 +  𝑅2𝐼2 = 𝑉,            𝑅3𝐼3 +  𝑅4𝐼4 = 𝑉,              𝑅1𝐼1 +  𝑅5𝐼5 +  𝑅4𝐼4 = 𝑉. 

One can add more equations but they are not independent and follow from the equations 

written above. There are six unknowns, all currents, and six equations, so that the system of 

these linear equations is well defined and can be solved. It is difficult to do by hand but one 

can use computer algebra. Surprisingly, one obtains a formula compact enough: 

𝑅 =
𝑉

𝐼
=

(𝑅1 + 𝑅2)(𝑅3 + 𝑅4)𝑅5 + (𝑅1 + 𝑅3)𝑅2𝑅4 + (𝑅2 + 𝑅4)𝑅1𝑅3

(𝑅1 + 𝑅2 + 𝑅3 + 𝑅4)𝑅5 + (𝑅1 + 𝑅3)(𝑅2 + 𝑅4)
. 

For 𝑅5 = 0, one can set this in the formula above and obtain 

𝑅 =
𝑅1𝑅3

𝑅1 + 𝑅3
+

𝑅2𝑅4

𝑅2 + 𝑅4
. 

For 𝑅5 → ∞, one can neglect in the general formula the terms in the numerator and the 

denominator that do not contain 𝑅5. After this 𝑅5 cancels and one obtains 



𝑅 =
(𝑅1 + 𝑅2)(𝑅3 + 𝑅4)

𝑅1 + 𝑅2 + 𝑅3 + 𝑅4
. 

These two limits can be considered independently. For 𝑅5 = 0, the upper and the lower 

corners of the circuit are short-circuited, thus one has the parallel connection of resistors 𝑅1 

and 𝑅3 and the parallel connection of resistors 𝑅2 and 𝑅4. These two groups of resistors are 

connected serially. Thus  

𝑅 =
1

1
𝑅1

+
1

𝑅3

+
1

1
𝑅2

+
1

𝑅4

=
𝑅1𝑅3

𝑅1 + 𝑅3
+

𝑅2𝑅4

𝑅2 + 𝑅4
. 

For 𝑅5 → ∞, there is simply no resistor 𝑅5 in the circuit. Then we have resistors 𝑅1 and 𝑅2 

connected serially, same for 𝑅3 and 𝑅4, and these two groups are connected in parallel. 

Thus one obtains 

𝑅 =
1

1
𝑅1 + 𝑅2

+
1

𝑅3 + 𝑅4

=
(𝑅1 + 𝑅2)(𝑅3 + 𝑅4)

𝑅1 + 𝑅2 + 𝑅3 + 𝑅4
. 

One more feature of the Bridge is the following. If 𝑅1 = 𝑅3 and 𝑅2 = 𝑅4, the circuit is 

symmetric with respect to the horizontal central line. Thus, in this case, the current through 

𝑅5 does not flow and one can remove 𝑅5 (make a break or short-circuiting at its place). One 

obtains 

𝑅 =
𝑅1 + 𝑅2

2
 

that also follows from all the formulas above as a particular case.  

More complicated electric circuits can be treated similarly. Typically, the system of linear 

equations has to be solved numerically as the analytical solution becomes too cumbersome. 



60. Problem 83, end of Chapter 19 of the Giancoli book, 6th edition 

 

Solution. Without redrawing the circuit with general notations for resistors, one can write 

down the equations as follows. For both switches open one has 

(𝑅50 + 𝑅20 + 𝑅10)𝐼 = ℰ,        𝐼20 = 𝐼. 

For both switches closed for the total current 𝐼 one has  

(𝑅50 +
1

1
𝑅20

+
1
𝑅

) 𝐼 = ℰ. 

The voltage 𝑉𝑅 on the group of parallel resistors 𝑅20 and 𝑅 is 

𝑉𝑅 =
1

1
𝑅20

+
1
𝑅

𝐼 =
1

1
𝑅20

+
1
𝑅

×
ℰ

𝑅50 +
1

1
𝑅20

+
1
𝑅

=
ℰ

𝑅50 (
1

𝑅20
+

1
𝑅) + 1

. 

The current 𝐼20 is given by 

𝐼20 =
𝑉𝑅

𝑅20
=

ℰ

𝑅50 (
1

𝑅20
+

1
𝑅) + 1

1

𝑅20
. 

Equating it with 𝐼20 found from the first equation, one obtains 

ℇ

𝑅50 + 𝑅20 + 𝑅10
=

ℰ

𝑅50 (
1

𝑅20
+

1
𝑅) + 1

1

𝑅20
. 

This is the equation for 𝑅. Canceling ℇ and simplifying the fractions, one obtains 



(𝑅50 (
1

𝑅20
+

1

𝑅
) + 1) 𝑅20 = 𝑅50 + 𝑅20 + 𝑅10 

and further 

𝑅20𝑅50 (
1

𝑅20
+

1

𝑅
) = 𝑅50 + 𝑅10 

and 

1

𝑅
= −

1

𝑅20
+

𝑅50 + 𝑅10

𝑅20𝑅50
=

1

𝑅20
(−1 +

𝑅50 + 𝑅10

𝑅50
) =

−𝑅50 + 𝑅50 + 𝑅10

𝑅20𝑅50
=

𝑅10

𝑅20𝑅50
. 

Finally, 

𝑅 =
𝑅20𝑅50

𝑅10
=

20 × 50

10
= 100 Ω. 

61. A circuit with two batteries and three resistors 

Find the currents and voltages for each of three resistors in the following circuit 

 

Solution. Choose the positive directions of the currents according to the directions of the 

EMF’s of the batteries. According to the first Kirchhoff’s law,  

𝐼3 = 𝐼1 + 𝐼2 

(charges are not accumulating in the nodes). The second Kirchhoff’s law states that for each 

closed loop in the circuit the sum of voltages is zero that reflects the fact that electric 

potential is defined unambiguously (and the work of the electric field over each closed 

trajectory is zero): 

∑ 𝑉𝑖

𝑖

= 0. 

To the Kirchhoff’s laws, one has to add the Ohm’s law  

𝑉𝑖 = 𝑅𝑖𝐼𝑖  

I
3
 

I
2
 I

1
 

R
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 R

2
 R

1
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2
 E

1
 



for each resistor. On the top of it, there can be EMF’s acting within resistors (batteries have 

their own internal resistance and thus can be considered as resistors) and pushing the 

current through them. With the EMF’s, the Ohms law becomes 

𝑉𝑖 + E𝑖 = 𝑅𝑖𝐼𝑖. 

Substituting 𝑉𝑖 = 𝑅𝑖𝐼𝑖 − E𝑖 into the second Kirchhoff’s law, one obtains 

∑ 𝑅𝑖𝐼𝑖

𝑖

= ∑ E𝑖

𝑖

. 

In the circuit above, we neglect the internal resistances of the batteries. The Kirchhoff-

Ohm’s law above for the left and right loops becomes 

𝑅1𝐼1 + 𝑅3(𝐼1 + 𝐼2) = E1 

𝑅2𝐼2 + 𝑅3(𝐼1 + 𝐼2) = E2. 

This is a system of two linear equations with two unknowns that has a solution. To solve this 

system of equations in a most elegant way, one can first rewrite it in the form collecting 

terms with I1 and I2 

(𝑅1+𝑅3)𝐼1 + 𝑅3𝐼2 = E1 

𝑅3𝐼1 + (𝑅2+𝑅3)𝐼2 = E2. 

Then one can eliminate, say, I2 by multiplying the first equation by R2+R3, the second 

equation by R3 and then subtracting the second equation from the first one. This yields 

(𝑅1 + 𝑅3)(𝑅2 + 𝑅3)𝐼1 − 𝑅3
2𝐼1 = (𝑅2 + 𝑅3)E1 − 𝑅3E2. 

From here one finds 

𝐼1 =
(𝑅2 + 𝑅3)E1 − 𝑅3E2

𝑅1𝑅2 + (𝑅1+𝑅2)𝑅3
. 

Since this circuit is symmetric, one can obtain the formula for I2 without calculations just by 

replacing 1 → 2, 2 → 1. This yields 

𝐼2 =
(𝑅1 + 𝑅3)E2 − 𝑅3E1

𝑅1𝑅2 + (𝑅1+𝑅2)𝑅3
. 

Now 

𝐼3 = 𝐼1 + 𝐼2 =
𝑅2E1 + 𝑅1E2

𝑅1𝑅2 + (𝑅1+𝑅2)𝑅3
. 

Voltages on the three resistors can be now found from Ohm’s law. One can see that the 

currents can flow both in positive and negative directions. For instance, if E1=E2, then both 

currents are positive. If E1 is sufficiently stronger than E2 (work out the exact condition!), 

then I1>0 but I2<0. If E2 is sufficiently stronger than E1, then I2>0 but I1<0. 

In the particular case R3=0 (short circuiting) there are two independent circuits for which 

one obtains 



𝐼1 =
E1

𝑅1
,         𝐼2 =

E2

𝑅2
 

that follows from the formulas above if one sets R3=0. This provides a check for the formulas 

obtained. 

If one removes R3, there is only one loop for which one obtains 

𝐼1 ≡ 𝐼 =
E1 − E2

𝑅1 + 𝑅2
. 

This result follows from the limit 𝑅3 → ∞ as follows 

𝐼1 =
(𝑅2/𝑅3 + 1)E1 − E2

𝑅1𝑅2/𝑅3 + 𝑅1+𝑅2
→
E1 − E2

𝑅1 + 𝑅2
. 

(one discards the terms containing R3 in the denominator). This is another check of our main 

result. 

62. Problem 79, end of Chapter 19 of the Giancoli book, 6th edition 

 

Solution. To use algebra, first we introduce the notations for the resistors and currents, 

making another sketch of the circuit, trying to choose the notations as symmetric as 

possible 



 

First, one can eliminate 𝐼3 and 𝐼4 from the 1-st Kirchhoff’s law: 

𝐼3 = 𝐼1 + 𝐼5,             𝐼4 = 𝐼2 − 𝐼5. 

Then, one can write the 2-nd Kirchhoff’s law combined with the generalized Ohm’s law for 

the three loops: ℰ1𝑅1𝑅3, ℰ2𝑅2𝑅4, and ℰ1ℰ2ℰ5𝑅2𝑅1(counterclockwise). One obtains 

𝑅1𝐼1 + 𝑅3(𝐼1 + 𝐼5) = ℰ1 

𝑅2𝐼2 + 𝑅4(𝐼2 − 𝐼5) = ℰ2 

−𝑅1𝐼1 + 𝑅2𝐼2 = −ℰ1 + ℰ2 + ℰ5. 

In the third equation, there is a minus sign in front of 𝑅1𝐼1 and ℰ1 because we are moving 

counterclockwise in the direction opposite to the chosen positive direction of 𝐼1 and against 

the EMF of the first battery. There are three equations for three unknowns, the currents 𝐼1, 

𝐼2, and 𝐼5. Thee equations are close to symmetric, except for the minuses. The first step in 

solving this system of equations is to group the terms with the same currents in the first two 

equations: 

(𝑅1 + 𝑅3)𝐼1 + 𝑅3𝐼5 = ℰ1 

(𝑅2 + 𝑅4)𝐼2 − 𝑅4𝐼5 = ℰ2 

−𝑅1𝐼1 + 𝑅2𝐼2 = −ℰ1 + ℰ2 + ℰ5.           (1) 

Now, one can eliminate 𝐼1 and 𝐼2 from the first two equations, 

𝐼1 =
ℰ1 − 𝑅3𝐼5

𝑅1 + 𝑅3
,             𝐼2 =

ℰ2 + 𝑅4𝐼5

𝑅2 + 𝑅4
 ,          (2) 

and substitute these expression into the third equation: 

−𝑅1

ℰ1 − 𝑅3𝐼5

𝑅1 + 𝑅3
+ 𝑅2

ℰ2 + 𝑅4𝐼5

𝑅2 + 𝑅4
= −ℰ1 + ℰ2 + ℰ5. 

Regrouping the terms, one obtains 

𝑅1𝑅3

𝑅1 + 𝑅3
𝐼5 +

𝑅2𝑅4

𝑅2 + 𝑅4
𝐼5 =

𝑅1

𝑅1 + 𝑅3
ℰ1 −

𝑅2

𝑅2 + 𝑅4
ℰ2 − ℰ1 + ℰ2 + ℰ5. 

On the right side, one can add the similar terms that yields 
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(
𝑅1𝑅3

𝑅1 + 𝑅3
+

𝑅2𝑅4

𝑅2 + 𝑅4
) 𝐼5 = −

𝑅3

𝑅1 + 𝑅3
ℰ1 +

𝑅4

𝑅2 + 𝑅4
ℰ2 + ℰ5. 

Finally, 

𝐼5 =
−

𝑅3

𝑅1 + 𝑅3
ℰ1 +

𝑅4

𝑅2 + 𝑅4
ℰ2 + ℰ5

𝑅1𝑅3

𝑅1 + 𝑅3
+

𝑅2𝑅4

𝑅2 + 𝑅4

. 

The currents 𝐼1 and 𝐼2 can be found by substituting this expression into the formulas for 𝐼1 

and 𝐼2 above in Eq. (2). However, the formulas for 𝐼1 and 𝐼2 become too cumbersome and it 

does not make sense to write them down. At this point, the numbers can be plugged into 

the formulas. One obtains 

𝐼5 =
−

12
10 + 12 14 +

20
15 + 20

18 + 12

10 × 12
10 + 12 +

15 × 20
15 + 20

10−3 =
47

45
10−3𝐴 ≈ 1.0444 × 10−3 𝐴. 

𝐼1 =
14 − 12

47
45

10 + 12
10−3 =

1

15
10−3𝐴 ≈ 0.0666 × 10−3𝐴 = 0.667 × 10−4𝐴 

𝐼2 =
18 + 20

47
45

15 + 20
10−3 =

10

9
 10−3𝐴 ≈ 1.1111 × 10−3 𝐴. 

The factor 10−3 arises because the resistances are in K. One can see that all the current 

are positive, thus they all flow in the directions shown in the sketch, although 𝐼1 is 

anomalously small. The latter is the current through the 14 V battery. Finally, the voltage 

between the points a and b in the sketch is 

𝑉𝑎 − 𝑉𝑏 = 𝑅1𝐼1 − 𝑅2𝐼2. 

Here the minus sign arises because we move from a to b across the resistor 𝑅2 in the 

direction opposite to the chosen positive direction of the current 𝐼2. As 𝐼1 is anomalously 

small, the voltage is dominated by the second term and is negative, that is, 𝑉𝑎 is lower than 

𝑉𝑏. Numerically, 

𝑉𝑎 − 𝑉𝑏 = 10
1

15
− 15

10

9
= −16 𝑉. 

The solution in the Giancoli book is purely numerical: one plugs numbers already into Eq. 

(1). 



Magnetic field created by electric currents 

63. Triangle of wires with the same direction of currents 

 

Find the forces acting on the long parallel wires forming an equilateral triangle with a side a 

in the cross-section. All currents flow in the same direction. 

Solution. The solution of such problems resembles the solution of the problems with 

charges in electrostatics. The difference is that the currents flowing in the same direction 

attract and the currents flowing in different directions repel each other. As in the case of the 

Coulomb interaction, the forces between the wires are directed along the lines connecting 

them. Thus, the problem is to add up force vectors acting on each wire, as shown in the 

figure. In this case, because of the symmetry, the direction of the total forces is obvious, so 

that one has to project the forces acting from the individual wires on the direction of the 

total force. One obtains, for each wire, 

𝐹 =
𝜇0

2𝜋

𝐼2

𝑎
𝑙 × 2 cos 30° =

𝜇0

2𝜋

𝐼2

𝑎
𝑙√3, 

where 𝑙 is the length of the wire. 

64. Triangle of wires with different directions of currents  
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Find the forces acting on the long parallel wires forming an equilateral triangle with a side a 

in the cross-section. Two currents flow in one direction and one current is flowing in the 

other direction. 

Solution. Here the currents in wires 2 and 3 flows in one direction, while the current in wire 

1 flows in the other direction. Again, there is symmetry in the problem, so that the 

directions of all forces are obvious. The magnitude of 𝐅2 and 𝐅3 are the same: 

𝐹2 = 𝐹3 =
𝜇0

2𝜋

𝐼2

𝑎
𝑙 × 2 cos 60° =

𝜇0

2𝜋

𝐼2

𝑎
𝑙. 

The magnitude of 𝐅1 is the same as in the preceding problem, only its direction is inverted: 

𝐹 =
𝜇0

2𝜋

𝐼2

𝑎
𝑙 × 2 cos 30° =

𝜇0

2𝜋

𝐼2

𝑎
𝑙√3. 

65. Magnetic field in the center of the triangle of wires 

Here we find the magnetic field in the center of the equilateral triangle of wires in the case 

when two currents are flowing in one direction and the third current is flowing in the other 

direction, as in the preceding problem.  

Solution. The total magnetic field is the sum of all three contributions created by each wire: 

𝐁 = 𝐁1 + 𝐁2 + 𝐁3. 

The magnetic field from wires 2 and 3 is rotating clockwise around the respective wires, 

whereas the magnetic field from wire 1 rotates counterclockwise. Each magnetic field is 

perpendicular to the line connecting the wire and the observation point. The directions of 

the magnetic fields shown in the sketch makes the angles 30° with the bisectrices. The 

direction of the total magnetic field coincides with that of 𝐁1, thus we project 𝐁2 and 𝐁3 

onto this direction. The result is 

𝐵 =
𝜇0

2𝜋

𝐼

𝑏
(1 + 2 cos 60°) =

𝜇0

2𝜋

𝐼

𝑏
(1 + 2

1

2
) =

𝜇0

2𝜋

𝐼

𝑏
× 2, 

where 𝑏 is the distance between the corner of the triangle and its center. It can be obtained 

as 
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𝑏 =
𝑎/2

cos 30°
=

𝑎/2

√3/2
=

𝑎

√3
. 

Substituting this into the formula for B, one finally obtains 

𝐵 =
𝜇0

2𝜋

𝐼

𝑎
2√3. 

If the current in wire 1 flow in the same direction as the other two, then 𝐁1 is inverted and 

the three vectors pointing in different directions cancel each other, 𝐁 = 0. 

66. Magnetic field in the middles of the sides of the triangle of wires 

 

Here we find the magnetic field in the middles the sides of the equilateral triangle of wires 

in the case when two currents are flowing in one direction and the third current is flowing in 

the other direction, as in the preceding problem. 

Solution: In general, 

𝐁 = 𝐁1 + 𝐁2 + 𝐁3. 

In the middle of the 23 side, 𝐁2 and 𝐁3 are opposite and cancel each other, so that only 𝐁1 

remains, 𝐁 = 𝐁1. Thus, one has 

𝐵 =
𝜇0

2𝜋

𝐼

ℎ
, 

where h is the height of the triangle,  

ℎ = 𝑎 cos 30° =
𝑎√3

2
. 

Substituting this into the formula for B, one finally obtains 

𝐵 = 𝐵1 =
𝜇0

2𝜋

𝐼

𝑎

2

√3
 

for the middle of the 23 side. The situation in the middle of the sides 12 and 13 is similar by 

symmetry. For instance, for the 12 side, 𝐁1 and 𝐁2 are the same, while 𝐁3 is perpendicular 

to them. One has 
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𝐵1 = 𝐵2 =
𝜇0

2𝜋

𝐼

𝑎/2
,        𝐵3 =

𝜇0

2𝜋

𝐼

𝑎

2

√3
. 

The magnitude of the total field is given by  

𝐵 =
𝜇0

2𝜋

𝐼

𝑎
√42 + (

2

√3
)

2

=
𝜇0

2𝜋

𝐼

𝑎
× 2√

12 + 1

3
=

𝜇0

2𝜋

𝐼

𝑎
× 2√

13

3
 

67. Magnetic field at the center line between two long wires with the currents 

in the same direction 

Two long straight wires are going parallel to each other at the distance a from each other. 

The wires carry the currents I that go in the same direction. Find the magnetic field created 

by this system at the center line between the wires (the vertical line on the drawing). 

 

Solution. We set the origin of the coordinate system in the point O in the middle between 

the wires and the z-axis going up along the center line. Let the currents be directed inside 

the paper sheet, then, according to the screw rule, the magnetic field created by each wire 

is directed clockwise. The currents 1 and 2 create magnetic fields B1 and B2 directed as 

shown in the drawing. By symmetry, the resulting magnetic field B = B1 + B2 is directed 

horizontally to the right. Using the basic formula for the magnetic field created by the long 

wire  

𝐵 =
𝜇0

2𝜋

𝐼

𝑟
, 

and projecting the vectors B1 and B2 on the horizontal direction x, one obtains 

𝐵 = 𝐵1,𝑥 + 𝐵2,𝑥 =
𝜇0

2𝜋

𝐼

𝑟
× 2 sin 𝜃. 

With  

𝑟 = √𝑧2 + (𝑎/2)2 ,            sin 𝜃 =
𝑧

𝑟
  

 

 

 r r 

z 

a/2 
1 2 

B1 

B2 

B 

a/2 O 



one finally obtains 

𝐵 =
𝜇0𝐼

2𝜋

2𝑧

𝑧2 + (𝑎/2)2
. 

Here, it does not make sense to cancel 2 in the numerator and denominator. 

Let us analyze particular and limiting cases. First, our formula yields B=0 for z=0 (at the point 

O). This is an expected result, as in this case fields B1 and B2 are opposite and cancel each 

other.  

At large distances, z>>a, one can neglect (𝑎/2)2 in the denominator that yields 

𝐵 =
𝜇0

2𝜋

2𝐼

𝑧
. 

This is the field produced by one wire with the current 2I. Indeed, from large distances these 

two wires are seen as one wire with the double current. This limiting case serves as one of 

the checks of the general formula. 

68. Magnetic field at the center line between two long wires with the currents 

in the opposite directions 

Two long straight wires are going parallel to each other at the distance a from each other. 

The wires carry the currents I that go in the opposite directions. Find the magnetic field 

created by this system at the center line between the wires (the vertical line on the 

drawing). 

 

Solution. We set the origin of the coordinate system in the point O in the middle between 

the wires and the z-axis going up along the center line. Let current 1 be directed inside the 

paper sheet and current 2 be directed outside the paper sheet, then, according to the screw 

rule, the magnetic fields created by each wire are directed clockwise and counterclockwise, 

respectively. The currents 1 and 2 create magnetic fields B1 and B2 directed as shown in the 

drawing. By symmetry, the resulting magnetic field B = B1 + B2 is directed vertically down. 

Using the basic formula for the magnetic field created by the long wire  

𝐵 =
𝜇0

2𝜋

𝐼

𝑟
, 

. 
O B 1 

2 
B

2
 B

1
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and projecting the vectors B1 and B2 on the vertical direction x, one obtains 

𝐵 = 𝐵1,𝑧 + 𝐵2,𝑧 =
𝜇0

2𝜋

𝐼

𝑟
2 cos 𝜃. 

With  

𝑟 = √𝑧2 + (𝑎/2)2 ,            cos 𝜃 =
𝑎/2

𝑟
  

one finally obtains 

𝐵 =
𝜇0𝐼

2𝜋

𝑎

𝑧2 + (𝑎/2)2
. 

Let us consider particular and limiting cases of this formula. At z=0 the result reads  

𝐵 =
𝜇0𝐼

2𝜋

4

𝑎
 

that is twice the magnetic field created by a wire at the distance a/2, an expected result. 

At large distances, z>>a, one can neglect (𝑎/2)2 in the denominator that yields 

𝐵 =
𝜇0𝐼

2𝜋

𝑎

𝑧2
. 

This decreases at large distances faster than the magnetic field from one wire since B1 and 

B2 become almost opposite and nearly cancel each other. 



Different problems on the magnetic field 

69. Problem 86, end of chapter 20, Giancoli 6th edition: Suspended wires with 

opposite currents  

 

 

Solution. First, we introduce missing notations. Second, we identify the forces acting on a 

wire, as shown in the sketch. The three forces, including the tension force 𝐓 from the 

suspending cord, balance each other: 

𝐅 + 𝑚𝐠 + 𝐓 = 0. 

In components (with explicit signs of the force components), this vector equation becomes 

(𝑥): − 𝐹 + 𝑇 sin 𝜃 = 0,          (𝑦) :  − 𝑚𝑔 + 𝑇 cos 𝜃 = 0. 

The magnetic force 𝐹 is given by 

𝐹 =
𝜇0

2𝜋

𝐼2

𝑆
𝑙 =

𝜇0

2𝜋

𝐼2

2𝑎 sin 𝜃
𝑙, 

where 𝑙 is the length of the wires. 

Now, one can eliminate the tension force from the mechanical equilibrium equation to 

relate 𝐹 to 𝑚𝑔. Multiplying the x-equation by cos 𝜃, the y-equation by sin 𝜃, and 

subtracting them from each other, one obtains 

−𝐹 cos 𝜃 + 𝑚𝑔 sin 𝜃 = 0 

F 

mg 

a 

 

x 

y 

T 

 



or 

𝐹 = 𝑚𝑔 tan 𝜃. 

In fact, this relation could be written immediately without considering 𝑇. Equating this to 

the magnetic expression for 𝐹, one obtains 

𝑚𝑔 tan 𝜃 =
𝜇0

2𝜋

𝐼2

2𝑎 sin 𝜃
𝑙. 

Solving this for 𝐼 yields 

𝐼 = √𝑚𝑔
sin2𝜃

cos 𝜃

2𝜋

𝜇0

2𝑎

𝑙
. 

Here, the mass of the wire is proportional to its length, so that the result does not depend 

on 𝑙. Expressing the wire mass as 

𝑚 = 𝜌𝑙𝜋𝑑2/4, 

one obtains 

𝐼 = √
𝜌𝑙𝜋𝑑2

4
𝑔

sin2𝜃

cos 𝜃

2𝜋

𝜇0

2𝑎

𝑙
= 𝑑√

2𝜋

𝜇0

𝜋𝑎

2
𝜌𝑔

sin2𝜃

cos 𝜃
 

that is the final analytical result. Now one can substitute the given numerical values, 

including the aluminum density 𝜌 = 2700 𝑘𝑔/𝑚3. One obtains 

𝐼 = 0.5 × 10−3√
2𝜋

4𝜋 × 10−7

𝜋 × 0.5

2
2700 × 9.8

sin 3°

√cos 3°
= 8.44 𝐴 

70. Problem 84, end of chapter 20, Giancoli 6th edition: Energy loss in cyclotron 

motion 

 



Solution. The proton circling in the magnetic field interacts with the gas molecules and gives 

them a part of its kinetic energy. As the gas is rarified, these interactions occur at large 

distances and are weak. This is why the kinetic energy of the proton changes slowly. The 

equation describing the cyclotron motion (the second Newton’s law) has the form 

𝑒𝑣𝐵 = 𝑚
𝑣2

𝑅
, 

where from the well-known formula for the orbit radius follows: 

𝑅 =
𝑚𝑣

𝑒𝐵
. 

To tailor it to the current problem, one can relate the velocity with the kinetic energy: 

𝐸𝑘 =
𝑚𝑣2

2
. 

Finding 𝑣 from the formula for 𝑅 and substituting it into the kinetic energy, one obtains 

𝐸𝑘 =
𝑚

2
(

𝑅𝑒𝐵

𝑚
)

2

=
(𝑅𝑒𝐵)2

2𝑚
. 

In this formula, 𝑅𝑒𝐵 is the linear momentum of the proton. Now the loss of the kinetic 

energy can be represented as 

∆𝐸𝑘 =
(𝑒𝐵)2

2𝑚
(𝑅1

2 − 𝑅2
2). 

Substituting the numbers, one obtains 

∆𝐸𝑘 =
(1.6 × 10−19 × 0.01)2

2 × 1.67 × 10−27
(102 − 8.52) × 10−6 = 2.1 × 10−20 J. 

71. Problem 87, end of chapter 20, Giancoli 6th edition: Helical motion of the 

charge in the magnetic field 

 

Solution. First, we introduce the missing notation of 𝜃 as the angle between the electron’s 

velocity and the magnetic field. The motion of the electron is described, as usual by the 

second Newtons’ law: 



𝐅 = 𝑚𝐚. 

Here 𝐅 is the Lorentz force, 

𝐅 = 𝑒𝐯 × 𝐁. 

Only the velocity component perpendicular to 𝐁 make a contribution to the force, and the 

force is perpendicular to 𝐁. On the other hand, the velocity component parallel to 𝐁 does 

not create and force, and there is no force in this direction. One can conclude that the 

motion parallel to the magnetic field if free, while the motion in the plane perpendicular to 

𝐁 should be a cyclotron motion. 

Introducing the coordinate axes z along the magnetic field, x and y perpendicular to the 

magnetic field, and projecting the equation of motion onto these axis, one obtains 

𝑣𝑧 = const = 𝑣 cos 𝜃 

for the motion along the magnetic field and the circular motion with the speed  

𝑣⊥ = const = 𝑣 sin 𝜃 

in the xy plane. The radius of the orbit is 

𝑅 =
𝑚𝑣⊥

𝑒𝐵
=

𝑚𝑣 sin 𝜃

𝑒𝐵
. 

The period of the orbiting is 

𝑇 =
2𝜋𝑅

𝑣⊥
=

2𝜋𝑚

𝑒𝐵
. 

During this time, the electron covers the distance 

𝑝 = 𝑣𝑧𝑇 = 𝑣 cos 𝜃
2𝜋𝑚

𝑒𝐵
. 

Substituting the numerical values, one obtains 

𝑅 =
0.91 × 10−30 × 3 × 106 sin 45°

1.6 × 10−19 × 0.23
= 0.0000518 𝑚 = 0.518 × 10−4 𝑚 

and 

𝑝 = 3 × 106 cos 45°
2𝜋 × 0.91 × 10−30

1.6 × 10−19 × 0.23
= 0.00032959 𝑚 = 3.30 × 10−4 𝑚. 



Electromagnetic induction 

72. Problem 13 end of chapter 21, Giancoli 6th edition 

 

Solution. First, introduce missing notations. The magnetic field 𝐵 = 0.75 𝑇, The loop 

diameters 𝐷1 = 20 𝑐𝑚 = 0.2 𝑚, 𝐷2 = 6 𝑐𝑚 = 0.06 𝑚, the time interval ∆𝑡 = 0.5 𝑠, 

Resistance of the coil 𝑅 = 2.5 Ω.  

We use the Faraday-Lenz law 

ℰ = −
ΔΦ

Δ𝑡
. 

Here, we take into account only the external magnetic flux and neglect the contribution of 

the currents in the loop (this is valid for the resistance of the loop large enough so that the 

current is small) 

ΔΦ = Φ2 − Φ1 =
𝜋𝐷2

2

4
𝐵 −

𝜋𝐷1
2

4
𝐵 =

𝜋

4
𝐵(𝐷2

2 − 𝐷1
2). 

Thus one obtains 

ℰ = −
𝜋

4
𝐵

𝐷2
2 − 𝐷1

2

Δ𝑡
, 

where we keep the symbolic Lenz sign that shows that the direction of the EMF is such that 

it induces currents whose magnetic field partially compensates the change of the external 

magnetic flux. Substituting the numbers, one obtains 

ℰ = −
𝜋

4
0.75

0.062 − 0.22

0.5
= 0.0439 𝑉 = 43.9 𝑚𝑉. 

(a) The loop is contracting, thus the magnetic flux into the plane of the loop (away from us) 

is decreasing. Thus, the current will flow in the clockwise direction to create its own 

magnetic flux into the plane of the loop. 

(b) The induced current is given by the Ohm’s law 

𝐼 =
ℰ

𝑅
=

𝜋𝐵

4𝑅

𝐷2
2 − 𝐷1

2

Δ𝑡
. 

Substituting the numbers, one obtains 𝐼 =
0.0439

2.5
= 0.01756 𝐴 = 17.56 𝑚𝐴.  



73. Problem 18 end of chapter 21, Giancoli 6th edition 

 

Solution. First, we introduce missing notations. The coil’s diameter 𝐷 = 22 𝑐𝑚 = 0.22 𝑚, 

the number of turns of wire 𝑁 = 20, the diameter of the wire 𝑑 = 2.6 𝑚𝑚 = 2.1 × 10−3 𝑚 

the rate of change of the magnetic field 
∆𝐵

∆𝑡
= 8.65 × 10−3 𝑇/𝑠. We have to add the 

resistivity of the copper 𝜌 = 1.72 × 10−8 Ω 𝑚. 

We use the Faraday-Lenz law for a coil with 𝑁 turns 

ℰ = −𝑁
ΔΦ

Δ𝑡
. 

Here, we take into account only the external magnetic flux and neglect the contribution of 

the currents in the coil (this is valid for the resistance of the coil large enough so that the 

current is small). The applicability of this approach can be tested a posteriori. 

In our case, the Faraday-Lenz law becomes 

ℰ = −𝑁
𝜋𝐷2

4

Δ𝐵

Δ𝑡
 

and the current is given by  

𝐼 =
ℰ

𝑅
= −𝑁

𝜋𝐷2

4𝑅

Δ𝐵

Δ𝑡
. 

The resistance of the wire is given by 

𝑅 = 𝜌
𝐿

𝑆
= 𝜌

𝜋𝐷𝑁

𝜋𝑑2/4
= 𝜌

4𝐷𝑁

𝑑2
. 

Substituting this into the formula for the current, one obtains 

𝐼 = −𝑁
𝜋𝐷2

4

𝑑2

𝜌 × 4𝐷𝑁

Δ𝐵

Δ𝑡
= −

𝜋𝐷𝑑2

16𝜌

Δ𝐵

Δ𝑡
. 

Substituting the numerical values, one obtains 

𝐼 = −
𝜋 × 0.22 × (2.1 × 10−3)2

16 × 1.72 × 10−8
8.65 × 10−3 = 0.0958 𝐴. 

(b) The dissipated power is  

𝑃 = 𝐼2𝑅. 

Substituting the formulas for the current and resistance above, one obtains 



𝑃 = (
𝜋𝐷𝑑2

16𝜌

Δ𝐵

Δ𝑡
)

2

𝜌
4𝐷𝑁

𝑑2
=

𝜋2𝐷3𝑑2𝑁

64𝜌
(

Δ𝐵

Δ𝑡
)

2

. 

Substituting the numbers yields 

𝑃 =
𝜋20.223(2.1 × 10−3)2 × 20

64 × 1.72 × 10−8
(8.65 × 10−3)2 = 0.00063 𝑊 = 0.63 𝑚𝑊. 

Let us look at what happens if we take into account the magnetic flux created by the current 

in the wire. The total magnetic EMF in this case will be 

ℰ = −𝑁
ΔΦ

Δ𝑡
− 𝐿

∆𝐼

∆𝑡
, 

where  

𝐿 =
𝜇0𝑁2𝑆

𝑙
=

𝜇0𝑁2𝜋𝐷2

4𝑙
 

and 𝑙 is the coil’s length whose numerical value is not given. Using the Ohm’s law, one 

obtains the equation for the current 

𝑅𝐼 + 𝐿
∆𝐼

∆𝑡
= −𝑁

ΔΦ

Δ𝑡
. 

This equation contains both the current and the rate of the current’s change, that is, it is a 

differential equation that belongs to the calculus-based course. Qualitatively one can say 

that the current cannot increase immediately from zero to a finite value obtained above 

after the external magnetic flux started to change. The current will increase from zero to the 

value obtained above during the characteristic time  

𝜏𝐿𝑅 =
𝐿

𝑅
. 

74. EMF in a rotating coil 

A coil with diameter 𝐷 and 𝑁 turns of wire is initially oriented with its axis parallel to the 

magnetic field 𝐵. It begins to rotate with the angular velocity 𝜔 around an axis 

perpendicular to the magnetic field. What is the average EMF during the time ∆𝑡? Work out 

the result in the limit of short ∆𝑡. What is the exact condition for ∆𝑡 to be short? What is the 

EMF at the initial moment of time? 

Tip. Use the formula 

cos 𝜃 ≅ 1 −
𝜃2

2
,         𝜃 ≪ 1. 

Solution. We use the Faraday law 

ℰ = −𝑁
ΔΦ

Δ𝑡
. 

The magnetic flux is defined by 



Φ = 𝑆𝐁 ∙ 𝐧 = 𝑆𝐵 cos 𝜃, 

where 𝐧 is the normal to the coil’s plane and 𝜃 is the angle between the vectors 𝐁 and 𝐧. In 

the initial state 𝐧 ∥ 𝐁 and thus 𝜃 = 0. In the initial state, 𝑡 = 0, the magnetic flux has its 

maximal possible value 

Φ(0) = Φ0 ≡ 𝑆𝐵. 

Because of the coil’s rotation, the angle changes at the linear rate: 

𝜃 = 𝜔𝑡. 

At the time 𝑡 the magnetic flux is given by 

Φ(𝑡) = Φ0 cos 𝜃 = Φ0 cos(𝜔𝑡). 

Thus, the average EMF in the process is given by 

ℰ = −𝑁
Φ(∆𝑡) − Φ(0)

Δ𝑡
= −𝑁Φ0

1 − cos(𝜔∆𝑡)

Δ𝑡
. 

If the time interval is short, that is, 

𝜔∆𝑡 ≪ 1         or         ∆𝑡 ≪ 1/𝜔  

(or the rotation angle is small), then one can use the small-argument expansion of the 

cosine that yields 

ℰ = −𝑁Φ0

(𝜔∆𝑡)2

2Δ𝑡
≅ −𝑁Φ0

𝜔2∆𝑡

2
. 

One can see that the average EMF is small for small  ∆𝑡. In the limit  ∆𝑡 → 0, that is, at the 

initial moment of time, the EMF is zero. 



Geometrical optics 

75. Mirror equation 

 

Solution: Introduce missing notations: ℎ𝑜 = 1.5 𝑐𝑚, 𝑑𝑜 = 20 𝑐𝑚, 𝑟 = 30 𝑐𝑚; find 𝑑𝑖 and ℎ𝑖. 

Basic formulas. The focal length is given by 

𝑓 = 𝑟/2. 

The mirror equation is 

1

𝑑𝑜
+

1

𝑑𝑖
=

1

𝑓
. 

The magnification 𝑚 is defined by 

𝑚 =
ℎ𝑖

ℎ𝑜
= −

𝑑𝑖

𝑑𝑜
. 

(a) From the mirror equation follows the solution for 𝑑𝑖: 

1

𝑑𝑖
=

1

𝑓
−

1

𝑑𝑜
 

thus  

𝑑𝑖 =
1

1
𝑓

−
1

𝑑𝑜

=
𝑑𝑜𝑓

𝑑𝑜 − 𝑓
. 

From here one can see that for 𝑑𝑜 > 𝑓 the image is real (𝑑𝑖 > 0), while for 𝑑𝑜 < 𝑓 the 

image is virtual (𝑑𝑖 < 0). If 𝑑𝑜 → 𝑓 + 0, then 𝑑𝑖 → ∞, while for 𝑑𝑜 → 𝑓 − 0, then 𝑑𝑖 → −∞. 

If the object is at the center of curvature, 𝑑𝑜 = 𝑟 = 2𝑓, then also 𝑑𝑖 = 𝑟 = 2𝑓.  

Substituting the numbers, one obtains 

𝑓 =
30

2
= 15 𝑐𝑚 

and 

𝑑𝑖 =
20 × 15

20 − 15
= 60 𝑐𝑚. 

(b) Substituting the formula for 𝑑𝑖 into that for the magnification, one obtains 

𝑚 =
ℎ𝑖

ℎ𝑜
= −

𝑑𝑖

𝑑𝑜
= −

𝑓

𝑑𝑜 − 𝑓
=

𝑓

𝑓 − 𝑑𝑜
 

and  



ℎ𝑖 = 𝑚ℎ𝑜 =
ℎ𝑜𝑓

𝑓 − 𝑑𝑜
. 

Substituting the numbers, one obtains 

𝑚 =
15

15 − 20
= −3 

and  

ℎ𝑖 =
1.5 × 15

15 − 20
= −4.5 𝑐𝑚. 

76. The depth of the pool 

 

Solution. First, introduce missing notations: 𝜃′1 = 14°, 𝐿 = 5.5 𝑚 (the length of the pool), 

𝑛 = 1.33 (refraction index of water). Find ℎ, the depth of the basin. 

The angle 𝜃′1 is the angle complimentary to the incidence angle 𝜃1, that is,  

𝜃1 = 90° − 𝜃1
′ . 

We use the Snell’s law 

𝑛1 sin 𝜃1 = 𝑛2 sin 𝜃2 

with 𝑛1 = 1 for the air and 𝑛2 = 𝑛 for the water. From here, one finds the refraction angle: 

sin 𝜃2 =
sin 𝜃1

𝑛
=

cos 𝜃1
′

𝑛
. 

Now, from the triangle formed by the light ray inside the pool, its left wall, and the bottom, 

one finds 

𝐿

ℎ
= tan 𝜃2, 

so that 

ℎ = 𝐿 cot 𝜃2 = 𝐿 cot arcsin
cos 𝜃1

′

𝑛
. 



This is the analytical answer to the problem that is sufficient for an exam. However, it can be 

simplified, as tangent and cotangent can be expressed via the sine and cosine. Here, 

cot 𝜃2 =
cos 𝜃2

sin 𝜃2
=

√1 − sin2 𝜃2

sin 𝜃2
= √

1

sin2 𝜃2
− 1. 

Using this, one obtains 

ℎ = 𝐿 cot 𝜃2 = 𝐿√
𝑛2

cos2 𝜃1
′ − 1. 

Substituting the numbers yields 

ℎ = 5.5√
1.332

cos2 14°
− 1 = 5.16 𝑚. 

77. Critical angle in another material 

 

Solution. The critical angle is defined by the condition that the angle of refraction is 90°, that 

is, 

𝑛1 sin 𝜃1 ≡ 𝑛1 sin 𝜃𝐶 = 𝑛2 sin 90° = 1, 

as there is the air on the other side. For another material on the refractive side, one can 

write a similar formula: 

𝑛1 sin 𝜃′𝐶 = 𝑛′2, 

where 𝑛′2 is the refraction index of the water, so that 

sin 𝜃′𝐶 =
𝑛′2

𝑛1
. 

One has to find 𝑛1. From the first equation one finds 

𝑛1 =
1

sin 𝜃𝐶
. 

So that 

sin 𝜃′𝐶 = 𝑛′2 sin 𝜃𝐶  

and 

𝜃′𝐶 = arcsin(𝑛′2 sin 𝜃𝐶),         sin 𝜃𝐶 <
1

𝑛′2
 . 



78. Total internal reflection in a prism 

 

Solution. To solve the problem, we need a more detailed sketch.  

 

We have to apply the Snell’s law two times, for both refractions, 

sin 𝜃1 = 𝑛 sin 𝜃2 ,            𝑛 sin 𝜃3 = sin 𝜃4 = 1. 

An additional relation for the angles can be obtained from the triangle formed by the two 

sides of the prism and the light ray inside the prism. One has 

𝜙 + 𝜃′2 + 𝜃′3 = 180° 

as well as 

𝜃′2 = 90° − 𝜃2,           𝜃′
3 = 90° − 𝜃3. 

Substituting this into the relation for the angles in the triangle, one obtains 

𝜙 − 𝜃2 − 𝜃3 = 0. 

To find the required 𝜃1 as 

𝜃1 = sin−1(𝑛 sin 𝜃2), 

 

 

   

' 
' 



one needs 𝜃2 that follows from the relation above: 

𝜃2 = 𝜙 − 𝜃3. 

Here, 𝜃3 follows from the second Snell’s law: 

𝜃3 = sin−1 (
1

𝑛
), 

so that  

𝜃1 = sin−1 (𝑛 sin (𝜙 − sin−1 (
1

𝑛
))), 

Substituting the numbers, one obtains 𝜃1 ≅ 49°. Note that for 𝜙 small enough the value of 

𝜃1 is negative that corresponds to the incident ray (on the left of the prism) deviating 

clockwise from the normal (not counterclockwise, as shown in the sketch).  

79. Change of the direction of light in the prism 

a) Find the change-of-the-direction angle 𝛿 in a prism with the apex angle 𝛼 and the 

refraction index 𝑛 for the arbitrary incidence angle 𝜃1; b) Find the result in the symmetric 

case; c) Express the refraction index 𝑛 via 𝜃1 in the symmetric case; d*) Obtain the limiting 

expression for 𝛿 for small 𝛼. 

 

Solution.  

a) The change-of-direction angle 𝛿 shown in the sketch can be found considering the 

triangle ABC. One has 

𝛿 = 180° − ∡𝐴𝐶𝐵. 

(We do not introduce a notation for the angle ∡𝐴𝐶𝐵 to avoid a mess on the sketch). On the 

other hand, as in any triangle the sum of all angles is 180°, one finds 

 

   
 

' ' 
 

A B 
C 

' ' 

O 



∡𝐴𝐶𝐵 = 180° − ∡𝐶𝐴𝐵 − ∡𝐴𝐵𝐶. 

Thus  

𝛿 = ∡𝐶𝐴𝐵 + ∡𝐴𝐵𝐶. 

Further, 

∡𝐶𝐴𝐵 = 𝜃2
′ − 𝜃1

′ = 90° − 𝜃2 − (90° − 𝜃1) = 𝜃1 − 𝜃2 

and 

∡𝐴𝐵𝐶 = 𝜃3
′ − 𝜃4

′ = 90° − 𝜃3 − (90° − 𝜃4) = 𝜃4 − 𝜃3. 

Substituting these expressions into the formula for 𝛿, one obtains 

𝛿 = 𝜃1 − 𝜃2 − 𝜃3 + 𝜃4. 

To find the remaining angles for a given 𝜃1, one uses the Snell’s law for the two sides of the 

prism, 

sin 𝜃1 = 𝑛 sin 𝜃2 ,            𝑛 sin 𝜃3 = sin 𝜃4 

Another relation can be obtained from the triangle AOB: 

𝛼 + 𝜃′2 + 𝜃′3 = 180°, 

as well as 𝜃′2 = 90° − 𝜃2 and 𝜃′
3 = 90° − 𝜃3. Substituting this into the relation above, one 

obtains 

 𝛼 − 𝜃2 − 𝜃3 = 0           (1) 

and thus 

𝜃3 = 𝛼 − 𝜃2. 

This simplifies the formula for 𝛿 to  

𝛿 = 𝜃1 − 𝛼 + 𝜃4.         (2) 

Now, one has to find 𝜃4: 

𝜃4 = sin−1(𝑛 sin 𝜃3) = sin−1(𝑛 sin(𝛼 − 𝜃2)) = sin−1 (𝑛 sin (𝛼 − sin−1 (
sin 𝜃1

𝑛
))). 

The final result for 𝛿 reads 

𝛿 = 𝜃1 − 𝛼 + sin−1 (𝑛 sin (𝛼 − sin−1 (
sin 𝜃1

𝑛
)))              (3). 

One can see that for 𝛼 = 0 (that corresponds to a flat glass) one has 𝛿 = 0. It can be shown 

that 𝛿 reaches its minimal value in the symmetric case. 

b) In the symmetric case, one has 𝜃1 = 𝜃4 and 𝜃2 = 𝜃3. From (1) one obtains 

𝜃2 =
𝛼

2
. 



Now from the Snell’s law follows 

𝜃1 = sin−1(𝑛 sin 𝜃2) = sin−1 (𝑛 sin
𝛼

2
) 

Now from (2) one obtains 

𝛿 = 2𝜃1 − 𝛼 = 2 sin−1 (𝑛 sin
𝛼

2
) − 𝛼. 

c) We now resolve the last formula for 𝑛: 

sin (
𝛿 + 𝛼

2
) = 𝑛 sin

𝛼

2
, 

thus 

𝑛 =
sin (

𝛿 + 𝛼
2 )

sin
𝛼
2

. 

This formula is used in the lab to find the refraction index.  

d*) To simplify (3) for small 𝛼, one can use the trigonometric formula 

sin(𝛼 − 𝛽) = sin 𝛼 cos 𝛽 − sin 𝛽 cos 𝛼 .               (4) 

Thus one obtains  

𝛿 = 𝜃1 − 𝛼 + sin−1 [𝑛 (sin 𝛼 cos sin−1 (
sin 𝜃1

𝑛
) − sin sin−1 (

sin 𝜃1

𝑛
) cos 𝛼)]. 

Here 

sin sin−1 (
sin 𝜃1

𝑛
) =

sin 𝜃1

𝑛
 

cos sin−1 (
sin 𝜃1

𝑛
) = √1 − (

sin 𝜃1

𝑛
)

2

. 

Thus 

𝛿 = 𝜃1 − 𝛼 + sin−1 [𝑛 (sin 𝛼 √1 − (
sin 𝜃1

𝑛
)

2

−
sin 𝜃1

𝑛
cos 𝛼)] 

or 

𝛿 = 𝜃1 − 𝛼 + sin−1 [𝑛 sin 𝛼 √1 − (
sin 𝜃1

𝑛
)

2

− sin 𝜃1 cos 𝛼] 

As 𝛼 is small, one can use sin 𝛼 ≅ 𝛼 and cos 𝛼 ≅ 1 to simplify this to 



𝛿 = 𝜃1 − 𝛼 − sin−1 [sin 𝜃1 − 𝑛𝛼√1 − (
sin 𝜃1

𝑛
)

2

].            (5) 

In the argument of arcsin, the first term is regular, while the second one is small. Thus, it can 

be approximately simplified. Writing 

𝛾 = sin−1 [sin 𝜃1 − 𝑛𝛼√1 − (
sin 𝜃1

𝑛
)

2

] 

and further 

sin 𝛾 = sin 𝜃1 − 𝑛𝛼√1 − (
sin 𝜃1

𝑛
)

2

,                (6) 

one can see that 𝛾 is very close to 𝜃1. Thus we write 𝛾 = 𝜃1 − 𝜀, where 𝜀 is a small angle. 

Now, using (4), one can write 

sin 𝛾 = sin(𝜃1 − 𝜀) = sin 𝜃1 cos 𝜀 − sin 𝜀 cos 𝜃1 ≅ sin 𝜃1 − 𝜀 cos 𝜃1. 

Substituting this into (6), one obtains 

𝜀 cos 𝜃1 = 𝑛𝛼√1 − (
sin 𝜃1

𝑛
)

2

, 

where from 

𝜀 = 𝑛𝛼
√1 − (

sin 𝜃1

𝑛 )
2

cos 𝜃1
= 𝛼

√𝑛2 − sin2 𝜃1

cos 𝜃1
. 

Now, (5) becomes 

𝛿 = 𝜃1 − 𝛼 − 𝛾 = 𝜃1 − 𝛼 − (𝜃1 − 𝜀) = 𝜀 − 𝛼 

and, finally, 

𝛿 = 𝛼 (
√𝑛2 − sin2 𝜃1

cos 𝜃1
− 1). 

One can see that if 𝛼 = 0 or 𝑛 = 1, the deviation angle 𝛿 becomes zero, as it should be. 

Thus, our formula passes the available checks. If the incidence angle is small, then one can 

use cos 𝜃1 ≅ 1 and sin 𝜃1 ≅ 0 to obtain the simplified result 

𝛿 = 𝛼(𝑛 − 1). 



Wave optics 

80. Modified two-slit experiment 

 

A glass plate of thickness 𝑡 is placed before one of the slits in the two-slit experiment. How 

does it modify the two-slit interference? 

Solution. As the wave length in glass is smaller than that in the air (𝜆𝑛 = 𝜆/𝑛 < 𝜆), the wave 

going through the glass make an effective extra distance in comparison to that going 

through the air. To define this extra distance, one has to consider phases of the waves. 

Phase 𝜑 in radians, accrued at the distance 𝑥 is given by 

𝜑 = 2𝜋
𝑥

𝜆
.              (1) 

Indeed, at the distance 𝑥 = 𝜆 the accrued phase is 2𝜋, that is, 360°. The phase accrued in 

the glass plate is  

𝜑𝑛 = 2𝜋
𝑡

𝜆𝑛
= 2𝜋𝑛

𝑡

𝜆
. 

On the other hand, for the wave traveling the same distance through the air the accrued 

phase 𝜑 is given by a similar formula without 𝑛. The phase difference between the two 

waves is thus 

∆𝜑 ≡ 𝜑𝑛 − 𝜑 = 2𝜋(𝑛 − 1)
𝑡

𝜆
. 

Now we can define the effective extra distance ∆𝑥 by inverting the phase-distance relation 

(1): 

∆𝑥 = 𝜆
∆𝜑

2𝜋
= (𝑛 − 1)𝑡. 

This adds up to the extra distance in the double-slit experiment 𝑑 sin 𝜃. In particular, the 

condition for the interference maximum now has the form 

(𝑛 − 1)𝑡 + 𝑑 sin 𝜃 = 𝑚𝜆,            𝑚 = integer. 

The glass plate rotates all interference maxima in the negative direction. In particular, the 

zero-order fringe is seen at the angle corresponding to sin 𝜃 = −(𝑛 − 1)𝑡/𝑑. 



81. One-slit diffraction 

 

Solution. First, introduce missing notations: 𝜆 = 630 𝑛𝑚 = 6.3 × 10−7 𝑚, 𝐷 = 1 𝑐𝑚 =

10−2, 𝐿 = 380,000 𝑘𝑚 = 3.8 × 108𝑚. 

The laser beam undergoes one-slit diffraction, and its angular width is determined by the 

angle 𝜃 corresponding to the first diffraction minimum that is defined by 

𝐷 sin 𝜃 = 𝑚𝜆,          𝑚 = ±1. 

Since this angle is very small, sin 𝜃 ≅ tan 𝜃 ≅ 𝜃. The width of the beam on the Moon’s 

surface is 

∆𝑥 = 2𝐿 tan 𝜃 ≅ 2𝐿𝜃 =
2𝐿𝜆

𝐷
. 

Substituting the numbers, one obtains 

∆𝑥 =
2 × 3.8 × 108 × 6.3 × 10−7

10−2
= 47880 𝑚 = 48 𝑘𝑚. 

82. Thin-film interference (theory) 

Thin-film interference occurs between the light rays reflected 

from different surfaces of a thin film, as shown for the thin 

layer of oil on the water. To observe interference in natural 

light that is incoherent, the thickness of the film 𝑡 has to be 

much smaller than the coherence length of light, 𝑡 ≪ 𝜉. For 

thicker films, the two rays will have a random phase with 

respect to each other so that there will be no interference. 

Practically, thin-film interference can be observed on films with 

the thickness comparable to the wave length of light 𝜆. In the 

laser light that is coherent, interference can be observed on 

thicker films.  

The condition for constructive interference is that the phase shift between the two reflected 

waves is a multiple of 360° that corresponds to the extra distance covered by one ray with 

respect to the other equal to a multiple of the wave lengths of light in the film 𝜆𝑛 = 𝜆/𝑛. In 

addition, there is a phase jump by 180° upon reflection if the refraction index of the other 

media is larger than that of the media hosting the incident and reflected rays (case (a) in the 

figure below). This corresponds to changing the extra distance by 𝜆𝑛/2. 



Thus, the condition for the constructive interference can be written 

as 

2𝑡 + [𝜆𝑛/2] + [𝜆𝑛/2] = 𝑚𝜆𝑛,     𝑚 = integer 

Here the terms in the square brackets should be added or not 

depending on whether there is a phase jump or not. If there are 

phase jumps on both surfaces, they cancel each other and have no 

effect. The condition for the destructive interference has the form 

2𝑡 + [𝜆𝑛/2] + [𝜆𝑛/2] = 𝜆𝑛/2 + 𝑚𝜆𝑛,     𝑚 = integer 

In this form, the interference conditions can be understood and memorized.  

In the case of an oil film on the water surface, we use 𝑛 = 1.47 for the oil that is larger than 

that of the water, 1.33. Thus there is a phase jump for the ray reflected at A but no jump for 

that reflected at B. The condition for the constructive interference becomes 

2𝑡 + 𝜆𝑛/2 = 𝑚𝜆𝑛,     𝑚 = integer 

83. Thin-film interference 

 

Solution. In this case, there is a phase jump on both interfaces, thus phase jumps can be 

ignored and the condition for the constructive interference reads 

2𝑡 = 𝑚𝜆𝑛,     𝑚 = integer. 

With increasing the film width 𝑡 and thus the number 𝑚 the incoherence of the natural light 

leads to gradual washing out the interference. Thus the strongest interference is observed 

for 𝑚 = 1 that requires  

𝑡 =
𝜆𝑛

2
=

𝜆

2𝑛
. 

Substituting the numbers, one obtains 

𝑡 =
643

2 × 1.34
= 240 𝑛𝑚. 

 

 

 



84. Polarizers 

 

 

Solution. First, we introduce missing notations: 𝜙 = 40°, 𝜂 = 0.15. Using the Malus law for 

the intensities of light, we obtain 

𝐼1 = 𝐼0 cos2 𝜃,           𝐼2 = 𝐼1 cos2 𝜙. 

Combining these two formulas, one obtains 

𝐼2 = 𝐼0 cos2 𝜃 cos2 𝜙. 

According to the data in the problem, 

𝐼2

𝐼0
= 𝜂. 

Thus, for the angle 𝜃 one obtains the equation 

𝜂 = cos2 𝜃 cos2 𝜙. 

Solving it for 𝜃, one obtains 

 𝜃 = cos−1 √
𝜂

cos2 𝜙
= cos−1

√𝜂

cos 𝜙
. 

Substituting the numerical values yields 

𝜃 = cos−1
√0.15

cos 40°
= 59.63° ≈ 60°. 

 

I0 

P1 P2 

I1 I2 

  


	Introductory Physics: Problems solving
	Introduction
	Physics part I
	Kinematics
	1. Professor’s way to work
	2. A 2D walker
	3. Motion with constant acceleration
	4. A car trip (1D motion)
	5. Rocket motion (1D)
	6. Tennis serve (Giancoli Chapter 3)
	7. Dropping a package from a copter into a moving car (Giancoli Chapter 3)
	8. Targeting angle (projectile motion)
	9. Hitting an elevated target (projectile motion, Giancoli, Chapter 3)
	10. Car jumping (Projectile motion, Giancoli, Chapter 3)
	11. Vertical motion with gravity ― full quadratic equation
	12. Targeting angle for different heights (projectile motion)
	13. Boat in the river (relative motion, Giancoli, Chapter 3)
	14. Airplane flying in the wind (relative motion, Giancoli, Chapter 3)

	Dynamics: Newton’s laws
	15. Two masses on a massless block
	16. Dangling watch in the airplane (Giancoli, chapter 4)
	17. Pulling a block with friction
	18. Pulling a block uphill with friction
	19. Two boxes with different frictions on the incline (Giancoli, chapter 4)

	Circular motion
	20. A lamp dangling in a train (Giancoli, chapter 5)
	21. Two masses on a string (Giancoli, chapter 5)
	22. A car going over a hilltop
	23. The satellite (Giancoli, chapter 5)
	24. Gravity and apparent gravity on Jupiter (Giancoli, chapter 5)
	25. A tape planet (Giancoli, chapter 5)
	26. Orbiting of the sum around the center of our galaxy (Giancoli, chapter 5)

	Work and energy
	27. Sliding piano (Giancoli, chapter 6)
	28. Accident skid mark (Giancoli, chapter 6)
	29. Looped track (Giancoli, chapter 6)
	30. Spring cut in half (Giancoli, chapter 6)
	31. Power of the patient on a treadmill (Giancoli, chapter 6)

	Linear momentum
	32. Inelastic collision
	33. Energy lost in the inelastic collision (general)
	34. Recoil
	35. Explosion of an object (recoil, Giancoli, chapter 7)
	36. The center of mass of a system of point masses
	37. People exchanging seats in a boat (Giancoli, chapter 7)

	Rotational motion
	38. Two coupled rotating disks (Giancoli, chapter 8)
	39. The torque on the seesaw (Giancoli, chapter 8)
	40. Torque and work on a lever
	41. The gravity force is applied to the CM
	42. Calculation of the moment of inertia of a system of point masses (Giancoli, chapter 8)
	43. Checking the Steiner theorem for a system of two masses.
	44. Two masses on a massive block
	45. Rotational vs translational kinetic energy of a rolling body
	46. Rolling down the incline
	47. The minimal friction coefficient for rolling down the incline without slipping
	48. Rolling cylinder pulled at its center
	49. Rolling cylinder pulled at its top
	50. Angular momentum conservation (Giancoli, chapter 8)


	Physics part II
	Electrostatics
	51. Electric field from a collection of charges
	52. Forces on charges Q put in corners of a rectangle with sides a and b
	53. Forces on charges Q put in corners of a square
	54. Forces on different charges at an equilateral triangle
	55. Electric field at the center line between two equal charges
	56. Electric field at the center line between two opposite charges
	57. Electric potentials in the center of the equilateral triangle of charges and in the middle of a side.
	58. Electric potentials in the center of a square of charges and in the middle of a square’s side.

	Electric circuits
	59. The Wheatstone bridge
	60. Problem 83, end of Chapter 19 of the Giancoli book, 6th edition
	61. A circuit with two batteries and three resistors
	62. Problem 79, end of Chapter 19 of the Giancoli book, 6th edition

	Magnetic field created by electric currents
	63. Triangle of wires with the same direction of currents
	64. Triangle of wires with different directions of currents
	65. Magnetic field in the center of the triangle of wires
	66. Magnetic field in the middles of the sides of the triangle of wires
	67. Magnetic field at the center line between two long wires with the currents in the same direction
	68. Magnetic field at the center line between two long wires with the currents in the opposite directions

	Different problems on the magnetic field
	69. Problem 86, end of chapter 20, Giancoli 6th edition: Suspended wires with opposite currents
	70. Problem 84, end of chapter 20, Giancoli 6th edition: Energy loss in cyclotron motion
	71. Problem 87, end of chapter 20, Giancoli 6th edition: Helical motion of the charge in the magnetic field

	Electromagnetic induction
	72. Problem 13 end of chapter 21, Giancoli 6th edition
	73. Problem 18 end of chapter 21, Giancoli 6th edition
	74. EMF in a rotating coil

	Geometrical optics
	75. Mirror equation
	76. The depth of the pool
	77. Critical angle in another material
	78. Total internal reflection in a prism
	79. Change of the direction of light in the prism

	Wave optics
	80. Modified two-slit experiment
	81. One-slit diffraction
	82. Thin-film interference (theory)
	83. Thin-film interference
	84. Polarizers



